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Abstract

Probabilistic Al planning methods that min-
imize expected execution cost have a neu-
tral attitude towards risk. We demonstrate
how one can transform planning problems
for risk-sensitive agents into equivalent ones
for risk-neutral agents provided that expo-
nential utility functions are used. The trans-
formed planning problems can then be solved
with these existing Al planning methods. To
demonstrate our ideas, we use a probabilis-
tic planning framework (“probabilistic de-
cision graphs”) that can easily be mapped
into Markov decision problems. It allows
one to describe probabilistic effects of ac-
tions, actions with different costs (resource
consumption), and goal states with different
rewards. We show the use of probabilistic
decision graphs for finding optimal plans for
risk-sensitive agents in a stochastic blocks-
world domain.

1 Introduction

In recent years, numerous planning methods have
been developed that are able to deal with stochastic
domains.! Consider the stochastic domains for which
it is easy to construct plans that always reach a given
goal for sure (at least, in the limit). Then, one needs
a criterion for choosing among these plans. Such a
metric is for example the execution cost of the plans:
One quantifies the “resource consumption” (for exam-
ple, time, energy, or money) of an action with a single
real number that depends only on the action, the state
it is executed in, and the resulting state. Then, the
execution cost of a plan is defined to be the sum of

'"Examples of probabilistic planning methods include
[Smith, 1988], [Bresina and Drummond, 1990], [Chris-
tiansen and Goldberg, 1990], [Hansson et al., 1990],
[Koenig, 1991], [Dean et al., 1993], [Kushmerick et al.,
1993], and many others.
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the resource consumption costs of all actions executed
from the time at which the agent begins until it stops
in a goal state.

Since the execution cost of a probabilistic plan can
vary from plan execution to plan execution, almost
all probabilistic planning methods that take execution
cost into account use the expected execution cost as
ranking criterion: Out of all plans that guarantee to
achieve the given goal, they choose the one that min-
imizes the expected execution cost (when optimizing)
or one whose expected execution cost is smaller than
a given number (when satisficing). Since they do not
take the variance of the execution cost into account,
they assume that the agent that executes the plan has
a risk-neutral attitude.

However, people are usually not risk-neutral. A risk-
seeking agent (“gambler”) is willing to accept a plan
with a larger expected execution cost if the uncertainty
is increased and vice versa for a risk-averse agent (“in-
surance holder”): If a plan is executed only once (or a
small number of times), then — among all plans with
the same expected execution cost — the larger the
variance of the execution cost, the larger the chance to
do much better than average. Of course, the chance
to do much worse rises as well.

Imagine, for example, that your task is to design a
robot for the annual AAAI robot competition, where
it has to complete a given task (for example, “find
the coffee pot”) in as short a time as possible. You
want the robot to win the competition, but — in case
it loses — do not care whether it makes second or
last place. You know that your robot is not much
faster than your competitors’ robots, maybe even a bit
slower, but cannot assess the capabilities of the other
robots in enough detail to use them for determining the
utilities of the various task completion times of your
robot. In this case, you probably want your robot to
take chances, and thus a risk-seeking attitude should
be built into the robot’s planning mechanism.

It is possible to achieve a risk-sensitive attitude by
ranking plans not according to their expected execu-



tion costs, but according to their expected execution
costs plus or minus a fraction of the variances [Fi-
lar et al., 1989] [Karakoulas, 1993], or by searching
for plans whose execution costs are optimal in the
best or worst case (“nature acts like a friend or en-
emy”) [Heger and Karsten, 1992] [Heger, 1994], see
also [Moore and Atkeson, 1993]. However, utility the-
ory [von Neumann and Morgenstern, 1947] — a sub-
field of decision theory — provides a normative frame-
work for making decisions according to a given risk
attitude, provided that the agent accepts a few simple
axioms and has unlimited planning resources available.
The key result of utility theory is that, for every atti-
tude towards risk, there exists a utility function that
transforms costs ¢ into real values u(c) (“utilities”)
such that it is rational to maximize expected utility.
Its application to planning problems has been studied
by [Etzioni, 1991], [Russell and Wefald, 1991], [Had-
dawy and Hanks, 1992], [Wellman and Doyle, 1992],
[Goodwin and Simmons, 1992], and others. Therefore,
we would like to stay within this framework.

In this paper, we describe a planning framework
(“probabilistic decision graphs”) that can easily be
mapped into Markov decision problems and of which
cost-annotated decision trees (the kind used in utility
theory) are a special case. It allows one to describe
probabilistic effects of actions, actions with different
costs (resource consumption), and goal states with dif-
ferent rewards (goodness). We show that replacing all
costs and rewards with their respective utilities, but
leaving the planning mechanism unchanged, usually
leads to erroneous results. Furthermore, the best ac-
tion to execute in a state can depend on the total cost
that the agent has already accumulated when deciding
on the action.

For utility functions of a certain class, however, plan-
ning problems for risk-sensitive agents can be trans-
formed into equivalent planning problems for risk-
neutral agents which can then be solved with dynamic
programming methods or probabilistic Al planning
methods that minimize (or satisfice) expected execu-
tion cost. The transformation has the property that
the better a plan is for the transformed, risk-neutral
planning problem, the better it is for the original,
risk-sensitive planning problem as well. Qur approach
builds on previous work by [Howard and Matheson,
1972] in the context of Markov decision theory. A
blocks-world example is used to illustrate our ideas
and show how the optimal plan depends on the degree
of risk-sensitivity of the agent.

2 The Planning Framework

The following representation of probabilistic planning
problems was used in [Koenig, 1991]. A similar frame-
work has recently been used by [Dean et al., 1993] and
is commonly used for table-based reinforcement learn-

ing.

Planning is done in a state space. S is its finite set of
states, sg € S the start state, and G C S a set of goal
states. A plan determines at every point in time which
action the agent has to execute in its current state. In a
goal state s, the agent receives a (positive or negative)
one-time goal reward? r[s] and then has to terminate.
The goal rewards reflect that different goal states can
be of different value to the agent. However, to keep the
following discussion simple, we will use only planning
examples for which all goal rewards are zero. In a non-
goal state s, the agent can choose an action a from a
finite set of actions A(s). Nature then determines the
outcome of the action with a coin flip: with transition
probability p®[s,s’], the agent incurs an action cost
c®[s,8'] < 0 and is in successor state s’. Thus, we
assume that the outcomes of all action executions are
mutually independent given the current state of the
agent (Markov property). The action costs reflect the
resources consumed, for example, time needed or effort
spent. We assume that the values of all parameters are
completely known and do not change over time. We do
not assume, however, that the planner uses a planning
approach that operates in the state space (instead of,
say, the space of partial plans).

For a given plan, we define the probability of goal
achievement of state s as the probability with which
the agent eventually reaches a goal state if it is started
in s and obeys the plan. If this probability equals
one, we say that the plan solves s. A plan that solves
the start state is called admissible. In the risk-neutral
case, a plan is evaluated according to the expected
total reward of the start state. The expected total re-
ward v[s] of state s for a given plan is the expected
sum of the reward of the goal state and the total cost
of the actions that are executed from the time at which
the agent is started in s until it stops in a goal state
(given that it obeys the plan). Similarly, the expected
total utility u[s] of state s is the expected utility of
the sum of the goal reward and the total cost of the
executed actions.

The planning framework described above is very gen-
eral. For example, one can easily represent goal states
in which the agent does not have to stop (that is, goal
states that the agent can leave in order to reach a dif-
ferent goal state that has a larger goal reward). This
is necessary if one wants unsolvable states to have an
expected total reward that is finite instead of minus
infinity. One could, for example, allow the agent to
stop in any state, but penalize it for stopping in a
non-goal state. (In this case, all non-goal states must
be converted to goal states that have a very small goal
reward and can be left again.)

2From here on, we use the terms “rewards” and “costs”
as follows: Rewards can be positive or negative values, but
costs are always negative values.
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Figure 1: Building Blocks

For risk-neutral agents, the planning framework is iso-
morphic to Markov decision problems [Mine and Os-
aki, 1970]. A state-action mapping (“stationary, de-
terministic policy”) specifies for every state the action
that the agent has to execute when it is in that state.
For Markov decision problems, one can restrict plans
to state-action mappings without losing optimality.

We use an easier-to-depict representation for proba-
bilistic planning problems here, which we call “prob-
abilistic decision graphs”, that resembles the kind of
decision trees that are used in utility theory. Its build-
ing blocks are shown in Figure 1. Every state corre-
sponds to a (large) circle. The large circle of a non-goal
state s contains a decision tree that consists of a de-
cision node (square) followed by chance nodes (small
circles), one for every a € A(s). Transition probabil-
ities and action costs are specified for every outcome
of the actions. The circle of a goal state contains a
value node (diamond) for the goal reward. To repre-
sent a planning problem, these building blocks have to
be connected so that there are no dangling outcome
arrows. In addition, the start state is marked with an
incoming arrow that has no source state and is labeled
“start.”

Note that probabilistic decision graphs can have cy-
cles: cycles do not imply that a decision depends on
itself, but that a decision depends on the same deci-
sion made at an earlier point in time. In the follow-
ing, we will distinguish two simplifications of this plan-
ning framework, namely acyclic probabilistic decision
graphs and the even simpler acyclic probabilistic de-

3 The Problem

We suspect that researchers have largely ignored the
question of how to incorporate risk-sensitive attitudes
into their planning mechanisms because they assume
that by replacing all costs and rewards with their re-
spective utilities (for an appropriate utility function)
one can achieve risk-sensitive attitudes without chang-
ing the planning mechanisms. In the following, we use
acyclic probabilistic decision graphs to demonstrate
that this is not necessarily the case after reviewing how
to use dynamic programming techniques to determine
optimal plans for risk-neutral agents.

3.1 Planning for Risk-Neutral Agents

A risk-neutral agent has to solve planning task PT1:
given a complete specification of the planning problem,
find a plan for which the start state has the largest
expected total reward.

An optimal state-action mapping for planning task
PT1 can be determined in polynomial time with dy-
namic programming techniques. To solve an acyclic
probabilistic decision graph, we could transform it as
follows: First, we propagate the action costs to the
value nodes. This amounts to duplicating shared sub-
trees, since every path from the start state to a goal
state needs to have its own value node. The result-
ing decision tree can then be solved in time linear in
its size: the expected total reward of a value node is
the sum of its goal reward and the accumulated costs,
the expected total reward of a chance node is the av-
erage over the expected total rewards of its successor
nodes weighted with the transition probabilities, and
the expected total reward of a decision node is the
maximum of the expected total rewards of its succes-
sor nodes. The action that achieves the maximum is
the optimal decision for the decision node. The ex-
pected total reward v[s] of a (non-goal) state s is equal
to the expected total reward of the decision node that
it contains, and the optimal action a[s] for the state is
the same one that is optimal for its decision node.

The transformation outlined above can be done in
linear time if no subtrees are shared. However, if
subtrees are shared, it is expensive, since the num-
ber of paths — and therefore the size of the trans-
formed decision tree — can be exponential in the num-
ber of states of the original tree. Fortunately, it is
well known that the following dynamic programming
technique (“[averaging-out-and-]folding-back”) solves
acyclic probabilistic decision graphs for risk-neutral
agents on the original tree in linear time, that is, with-
out duplicating shared subtrees.

cision graphs without shared subtrees (“cost-annotated r[s] fors e G
decision trees”). The last two varieties are commonly  v[s] := max Z p[s,s'](c"[s,s'] + v[s']) otherwise
used in utility theory. agA(s) =
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Thus, one evaluates every subtree only once and the
run-time of the algorithm is linear in the size of the
original decision tree. Dynamic programming algo-
rithmes, such as this one, can be used to solve planning
task PT1, because the Markov property holds for all
states: the expected total reward wv[s] of every state
(and thus the optimal action a[s] for the state) is in-
dependent of how the agent reached the state.

3.2 Planning for Risk-Sensitive Agents

A risk-sensitive agent has to solve planning task PT2:
given a utility function and a complete specification of
the planning problem, find a plan for which the start
state has the largest expected total utility.

Planning task PT2 can be solved for probabilistic deci-
sion graphs without action costs by first replacing all
goal rewards with their respective utilities and then
using any planning method for risk-neutral agents. In
reality, however, the probabilistic decision graphs of
planning task PT2 do have action costs. Similarly
to how we proceeded earlier for risk-neutral agents,
we could first propagate the action costs to the value
nodes (which involves duplicating shared subtrees if
they exist). Next, all rewards at the value nodes are re-
placed with their respective utilities. Finally, folding-
back is used to determine an optimal plan. Remem-
ber that this method has an exponential run-time in
the worst case (and is not directly applicable to cyclic
probabilistic decision graphs). As an example, con-
sider the partly specified planning problem shown in
Figure 2. This planning problem contains a shared
subtree that represents the choice between a deter-
ministic lottery® A (reward -0.48 for sure) and a non-
deterministic lottery B (rewards -0.10 and -1.00 with
equal probability). The application of folding-back on
this planning problem for a risk-seeking agent with
utility function u(c) = —/—c (for ¢ < 0) is shown in
Figure 3. (Actions that are sub-optimal are “crossed
out” with two horizontal lines.)

It is not optimal to simply replace all costs and rewards
with their respective utilities and then use folding-back
on the resulting tree, because in general u(cy + ¢2) #
u(c1) + u(ez) for two rewards ¢; and cq (that is, the
value function is no longer time-additive). In fact, dy-
namic programming methods can no longer be used
in any way without considering the total action cost
that the agent has already accumulated when deciding
on the actions, because the Markov property does not

3«Lottery” is a term from utility theory. A lottery is
recursively defined to be either a reward that is received
for sure (that is, with probability one) or a probability
distribution over lotteries.

“..." means: irrelevant for the example

Figure 2: A Planning Problem with a Shared Subtree

necessarily hold for risk-sensitive agents [Raiffa, 1968].

Consider again the planning problem from Figure 2.
As demonstrated in Figure 3 for u(c) = —/—c, the
agent should choose lottery B if it has already accumu-
lated action costs of -0.10 when deciding between the
two lotteries. However, if the accumulated action costs
are -1.00, it should prefer lottery A. This can be ex-
plained as follows: The agent is risk-seeking, since its
utility function —/—c is convex, but the convexity de-
creases the more negative ¢ gets. The action costs that
the agent has already accumulated have to be added to
all rewards of a lottery. For example, if the accumu-
lated action costs are -0.10, then lottery B becomes
“rewards -0.20 and -1.10 with equal probability.” If
the agent has already accumulated cost -1.0, then lot-
tery B becomes “rewards -1.10 and -2.00 with equal
probability.” Thus, the more action costs the agent
accumulates, the more negative the total rewards be-
come and the less risk-seeking the agent is. Since the
agent accumulates more and more action costs over
time, it becomes less and less risk-seeking.

This problem makes planning very inefficient. One can
circumvent it with planning methods that have a lim-
ited look-ahead. The planner of [Kanazawa and Dean,
1989], for example, determines the plan that generates
the largest expected total utility in the first n steps,
executes the first action of the plan, and repeats. Such
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Figure 3: Solution for a Risk-Sensitive Agent

planning methods still duplicate shared subtrees (since
they “unroll” the underlying Markov decision prob-
lem), but one can now control the amount of work re-
quired for one iteration by varying the look-ahead n.
These, and related heuristic planning methods, suffer
from the limited horizon problem and their success de-
pends critically on the structure of the planning task.

4 A Solution

Our proposed method for incorporating risk-sensitive
attitudes involves transforming planning task PT2 into
a planning task PT3, which can then be solved with
any standard (that is, risk-neutral) planning method.
The resulting, optimal plan for planning task PT3 is
optimal for the risk-sensitive planning task PT2 as
well. The key to accomplishing this task is to utilize
utility functions that maintain the Markov property.

Consider utility functions with the following property
(called “constant local risk aversion” [Pratt, 1964] or
“delta property” [Howard and Matheson, 1972]): if all
rewards of an arbitrary lottery are increased by an ar-
bitrary amount, then the certainty equivalent of the
lottery is increased by this amount as well. (If the ex-
pected utility of a lottery is z, then u=!(z) is called
its certainty equivalent.) The only utility functions
with this property are the identity function, convex
exponential functions u(c¢) = 4°¢ for vy > 1, concave

exponential functions u(¢) = —v¢ for 0 < v < 1, and
their strictly positively linear transformations [Wat-
son and Buede, 1987]. Since these utility functions are
parameterized with a parameter 7, one can express a
whole spectrum of risk-sensitivity, ranging from be-
ing strongly risk-averse to being strongly risk-seeking.
The larger ~, the more risk-seeking the agent is, and
vice versa. For ~ approaching infinity, for exam-
ple, the agent is “extremely risk-seeking”: it assumes
(wrongly) that nature does not flip coins to determine
the outcomes of its actions, but makes the ones hap-
pen from which the agent benefits most [Koenig and
Simmons, 1993]. Similarly, for v approaching zero —
the other extreme case — the agent thinks that nature
hurts it as much as it can. Such “extremely risk-averse
agents” believe in Murphy’s law: If anything can go
wrong, it will. They have recently been studied in
the AI literature by [Moore and Atkeson, 1993] and
[Heger, 1994].

These utility functions have the advantage that they
maintain the Markov property [Howard and Matheson,
1972]: if the agent executes an action in its current
state and behaves optimally afterwards, then it faces
a lottery. There is one lottery for every action that
the agent can execute in its current state. The lot-
tery with the largest expected utility or, equivalently,
the largest certainty equivalent identifies the optimal
action. Before determining the certainty equivalents,
however, one has to add the action costs that the agent
has already accumulated to all (goal) rewards of every
lottery. This increases the certainty equivalent of every
lottery by the same amount (namely, the accumulated
action costs), since the utility function has the delta
property. Thus, when comparing lotteries, one can ig-
nore the accumulated action costs.

[Howard and Matheson, 1972] apply utility functions
with the delta property to Markov decision problems
with finite and infinite time horizons. In the later case,
they assume a non-goal oriented task, and every state-
action mapping has to determine an irreducible (that
is, strongly connected) Markov chain. As shown in
[Koenig and Simmons, 1994], their analysis can be ap-
plied to non-goal oriented planning and reinforcement
learning tasks if the agent is risk-sensitive towards
variations of the reward that it receives per action
execution. Unfortunately, our goal-oriented planning
task PT2 does not possess the properties required by
Howard and Matheson, and thus we cannot use their
methods and proofs unchanged.

4.1 Planning for Risk-Seeking Agents

In the following, we will temporarily restrict our at-
tention to risk-seeking agents with utility function
u(c) =~° (or any strictly positively linear transforma-
tion thereof) for risk parameter v > 1. For these util-
ity functions, we show how to calculate the expected
total utility of a given plan. Then, we will transform



the planning problem into one for a risk-neutral agent
and show how to solve it.

4.1.1 Calculating the Expected Total Utility
of a Plan

Assume that, for some planning problem, a plan (that
is, a state-action mapping) is given that assigns action
a[s] to non-goal state s. The expected total utility of
this plan, that is, the expected total utility u[sq] of its
start state sg, can recursively be calculated as follows.

The (expected) total utility of a goal state s is u[s] =
u(r[s]) = 4"Bl.  After the agent has executed ac-
tion a[s] in a non-goal state s, it incurs action cost
¢?][s, '] and is in successor state s’ with probability
p?ls)[s,s']. In state s', it faces a lottery again. This
lottery has expected total utility u[s’] and certainty
equivalent u~'(u[s']) = log, u[s']. According to the
axioms of utility theory, the lottery can be replaced
with its certainty equivalent. Then, the agent incurs a
total reward of ¢?1[s, s'] + u=*(u[s']) with probability
p?ls)[s, s']. Thus, the expected total utility of s can be
calculated as follows:*

uls] Y s, s Tu(c™ s, s+ u (u[s]))

s'eS
= Y prlelfs, o]y e T ')
s'eS
b5 s u=(uls’
= 3 pell[s, o]y s Ly e
s'eS
_ cols ][s,s'], l;
= 3 petelfs, sy )
s'eS
= 3 pIs, sy e )
s'e S\G
als clsl[s,s'] _r[s’
+ 3 s,y et

s'e@G

This system of linear equations is always uniquely solv-

able.

4.1.2 Transforming the Planning Problem

To show how every planning task PT2 for a risk-
seeking agent can be transformed into an equivalent
planning task PT3 for a risk-neutral agent, we assume
again that a state-action mapping is given. We use the
same symbols for planning task PT3 that we used for
PT2, but overline them.

Since (without loss of generality) a risk-neutral agent
has utility function u(c) = ¢, it holds that u[s] = ¥[s].

*This corresponds to the policy-evaluation step in
[Howard and Matheson, 1972] with the “certain equivalent
gain” g = 0.

A goal state s has (expected) total utility u[s] =
u(7[s]) = 7[s]. The expected total utility of a non-goal
state s is

(s, o] + 5~ (als")

> p s, s'u

s'esS

> s, 8 (s,

s'eS

U [8] =

s+ ufs'])

Comparing these results with the ones in the previous
section shows that u[s] = u[s] for all states s € S and
all planning problems if and only if three equahtles
hold: 7[s] = 4"s] for s € G. Furthermore, p?l*l[s, s'] =
pl][s, 5’]76{1[8][3’5,] and ¢1[s, s'] = 0 for s € S\ G and
s'es.

Thus, planning task PT2 for a risk-seeking agent with
utility function u(c) = ¥¢ is equivalent to the following
planning task PT3 for a risk-neutral agent:

Introduce one additional goal state s with
goal reward zero. Otherwise, the state space,
action space, start state, and goal states
remain unchanged.  The %oal reward of
any goal state s # 5 is 4')].  When the
agent executes action a in a non-goal state
s, it incurs an action cost of zero and is
in successor state s’ with transition prob-
ability pa[s][s,s’]'yca[sl[s’sl]. These probabil-
ities do not sum up to one. With the
complementary transition probability 1 —
o ESp“[s] [s,s']y¢ eollLs, 'l the agent incurs
an action cost of zero and is in successor state
s.

Thus, given v, one transforms planning task PT2 into
the above planning task, for which one then deter-
mines the plan with the largest expected total reward.
The transformation is trivial and can be done in linear
time, since both representations are of the same size.

The only reason for introducing state s is to make
the probabilities sum up to one. Since its expected
total reward is zero, it will not show up in the calcu-
lations. The specification of PT3 for the risk-seeking
planning problem from Figure 2 is shown in Figure 4.
Note that, although they can both be expressed with
probabilistic decision graphs of the same topology, the
specification of the planning problem for PT3 differs
fundamentally from the one of PT1. For example, an
obvious difference is that all actions of planning task
PT3 have action cost zero. Therefore, action costs can
be ignored for risk-sensitive planning.

4.1.3 Finding Optimal Plans

Planning task PT3 can be solved with probabilistic
AT planning methods or, alternatively, with dynamic






It turns out that the Markov decision problems for
planning task PT3 have a simpler structure than the
ones for PT1 (namely, all state-action mappings de-
termine absorbing Markov chains). This simplifies the
optimization algorithms.

In order to determine an optimal plan for planning
task PT3, one can for example use value-iteration
[Bellman, 1957], policy-iteration [Howard, 1964], Q-
learning [Watkins, 1989], or linear programming. As
an example of such a dynamic programming technique
consider a simplified version of Howard’s single-chain
policy-iteration algorithm [Howard, 1964] [Howard and
Matheson, 1972]. One can either use the algorithm
on the transformed planning task PT3 or, as we have
done here, adapt the algorithm so that it works on the
original planning task PT2:

1. Choose an arbitrary state-action mapping a[s] €

A(s) for all s € S\ G.

2. (value-determination operation) Solve the system
of linear equations

als colelys st
uls] = Y p s, 8y ]
s'eS\G
als clels s r[s’
+ > p s, sl By
s'e@
for s € S\ G.

3. If no u[s] for any s € S\ G has changed in the
previous step (from the value that it had in the
previous iteration), then stop. An optimal state-
action mapping is to select action a[s] in state

seS\G.

4. (policy-improvement routine) Set for every s €

S\ G

als] := arg max ( Z pa[s,sl]'yca[s’sl]'u[sl]
a€A(s) SESNG
+ Z pa[S,SI]")/CG[S’SI]"}/T[SI])
s'e@
5. Go to 2.

This algorithm is an anytime algorithm. The term
“anytime algorithm” was coined by [Boddy and Dean,
1989]), and [Bresina and Drummond, 1990] first de-
veloped an anytime planner. The policy-iteration al-
gorithm is an anytime algorithm in the sense that the
expected total utility of no state can decrease from
one iteration to the next, but the expected total util-
ity of at least one state strictly increases, until the
optimal state-action mapping is found in finite time
[Howard, 1964]. Thus, the expected total utility of the
currently best plan cannot decrease from iteration to

i

There are seven goal states, al of which are equally preferable.

In every blocks-world state, one can move a block that has a clear top
onto either the table or a different block that has a clear top, or paint a
block white or black.

goal

Moving ablock takes only one minute to execute, but is very unreliable.
With probability 0.10, the moved block ends up at its intended destina-
tion. With probability 0.90, however, the gripper loses the block and it
ends up directly on the table. (Thus, moving a block to the table always
succeeds.)

Painting a block takes three minutes and is always successful.

Figure 6: A Blocks-World Problem

iteration. A solved state remains solved in the follow-
ing iterations and an admissible plan stays admissible.
Anytime planning methods can be used to determine
— according to decision-theoretic criteria — when to
stop planning and start executing the plan, because
the possible future increase in plan quality does not
justify the effort of planning any further.

However, dynamic programming algorithms are brute-
force search algorithms and thus are often impracti-
cal, since they do not utilize available domain knowl-
edge such as how different actions interact with each
other. AI planning methods, on the other hand, are
knowledge-based.  Although AI planning methods,
such as the ones of [Smith, 1988] or [Dean et al., 1993],
are usually not able to guarantee the optimality of
their plans, they can be used for risk-seeking planning
instead of Markov decision algorithms. The larger the
expected total reward of the plan that they determine
for planning task PT3, the larger is the expected total
utility of the same plan for the corresponding planning
task PT2.

4.1.4 Example: A Stochastic Blocks-World

We use the blocks-world problem that is stated in Fig-
ure 6 to illustrate this planning method. Figure 7
shows four of the state-action mappings that solve it,
and Figure 8 illustrates how the certainty equivalents
u~™"(u[so]) = log, u[so] of the four plans vary with the
natural logarithm of the risk parameter ~.

Plan A, which involves no risk and can be executed in
six minutes (that is, has total reward -6.00), has the
largest expected total reward of all plans (not just the
four plans shown) and will therefore be chosen by a
risk-neutral agent. However, plan A is not necessarily
optimal for a risk-seeking agent. When executing plan
D, for example, the agent can reach a goal state in
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Figure 7: Some Plans for the Blocks-World Problem

only three minutes if it is lucky.

The optimal plan for a risk-seeking agent is the one
with the largest expected total utility or, equivalently,
certainty equivalent. Since Plan A is deterministic,
its certainty equivalent equals the (expected) total
reward of its start state, no matter what the risk-
attitude of the agent is. The other three plans are
non-deterministic. Thus, their certainty equivalents
increase, the more risk-seeking the agent becomes,
and different plans can be optimal for different de-
grees of risk-seeking attitude. Figure 8 shows that
plan A is optimal in the interval Iny € (0.00,0.93].
For Iny € [0.94,4.58], plan C is optimal, and plan D
should be chosen for Iny € [4.59,00). (These state-
ments hold for all plans, not just the four plans shown

in the figure.)

In order to be able to apply probabilistic planning
methods other than Markov decision algorithms, we
explicitly transform the planning problem into one
for a risk-neutral agent. The original planning prob-
lem can for example be expressed with augmented
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Figure 8: Certainty Equivalents (Risk-Seeking Case)

STRIPS-rules [Koenig, 1991], three for the move ac-
tions (“move block X from the top of block Y on top of
block 7,” “stack block X on top of block Y,” “unstack
block X from block Y”) and one for the paint action
(“paint block X with color C”). The first move action
can be expressed as follows:

move(X,Y,Z)
precond: on(X,Y), clear(X), clear(Z),

block(X), block(Y), block(Z),
unequal(X,Z)

outcome:

/* the primary outcome */

prob: 0.1

reward: -1.0

delete: on(X,Y), clear(Z)

add: on(X,Z), clear(Y)

outcome:

/* failure: block X falls down */

prob: 0.9

reward: -1.0

delete: on(X,Y)

add: clear(Y),on(X,table)

The transformation changes the transition probabil-
ities, action costs, and goal rewards. In particular,
the STRIPS-rules are transformed as shown in Sec-
tion 4.1.2. For example, for v = 2, the above STRIPS-
rule is transformed into the following one:

move(X,Y,Z)

precond: on(X,Y), clear(X), clear(Z),
block(X), block(Y), block(Z),
unequal(X,Z)

outcome:

or Different Degrees of Risk-Seeking Attitude gamma
T T



/* the primary outcome */
prob: 0.05
reward: 0.0
delete: on(X,Y), clear(Z)

add: on(X,Z), clear(Y)
outcome:

/* failure: block X falls down */
prob: 0.45

reward: 0.0
delete: on(X,Y)
add: clear(Y),on(X,table)

With the complementary probability (0.5), the action
execution results in the new goal state s, that has goal
reward zero, but is not modeled explicitly. All other
goal states (i.e. the goal states of the original, risk-
seeking planning problem) get assigned a goal reward
of one. Now, one can use any planning method that
maximizes expected total reward on the transformed
STRIPS-rules to determine an optimal plan for the
risk-seeking agent.

4.2 Planning for Risk-Averse Agents

For risk-averse agents, one can proceed as outlined
for risk-seeking agents in the previous section. In
this case, one has to use a function from the family
u(c) = —° (or any strictly positively linear transfor-
mation thereof) for 0 < 4 < 1. Although the val-

a[s] ’ .
[5:577 can no longer be interpreted as

probabilities (since ), ¢ pll[s, s’hca[sl[s’sl] > 1), one
can use the same methods as in the risk-seeking case if
one takes care of one complication: The solution u[sg]
of the system of linear equations from Section 4.1.1
can now be finite even for plans that have expected
total utility minus infinity. The planning methods can
then erroneously return such plans as optimal solu-
tions. Fortunately, these plans are easy to characterize
(“plans that have at least one cycle with ‘probability’
greater than one”), and one can remedy the problem
by either initializing the dynamic programming algo-
rithms more restrictedly or extending them slightly.
Details are given in [Koenig and Simmons, 1994].

ues p1[s, ']y

If there are cycles in probabilistic decision graphs, then
— unfortunately — the expected total utilities of ad-
missible plans (and thus their certainty equivalents)
can be minus infinity. Imagine for example an ex-
tremely risk-averse agent. Thus, given a plan, the
agent assumes that nature will try to keep it away from
a goal state. The agent assigns a plan an expected to-
tal utility of minus infinity if a vicious nature could
indeed prevent it from reaching a goal state. In this
case, utility theory might no longer be able to distin-
guish admissible plans from inadmissible ones. Table 1
shows that this problem can not arise for risk-neutral
or risk-seeking agents.
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Figure 9: Certainty Equivalents (Risk-Averse Case)

As an example, consider again the blocks-world do-
main from Section 4.1.4. Figure 9 shows how the cer-
tainty equivalents of the four plans for the blocks-world
problem vary with the natural logarithm of the risk pa-
rameter « if the agent is risk-averse. The optimal plan
for such an agent is always plan A, independent of ~.
Although the certainty equivalent of plan A is defined
for all values of In~, the certainty equivalents of plans
B, C, and D are finite only for —0.11 <Invy < 0 (that
is, 0.9 <y < 1). They are minus infinity for smaller
values of In~.

5 Conclusion

This paper focuses on probabilistic planning for risk-
sensitive agents, since there are many situations where
it is not optimal to determine plans that minimize ex-
pected execution cost. We use acyclic and cyclic prob-
abilistic decision graphs as the planning framework
and use utility functions that possess the delta prop-
erty. These utility functions cover a whole spectrum of
risk-sensitive attitudes from being strongly risk-averse
to being strongly risk-seeking, and fill a gap between
approaches previously studied in the AI literature.

We have shown that one can use standard probabilis-
tic planning methods to solve risk-sensitive planning
problems. However, it is not enough to replace all
costs and rewards with their respective utilities. In-
stead, one can transform the acyclic probabilistic deci-
sion graph into a different probabilistic decision graph
of equal size, that one can then optimize for a risk-
neutral agent in linear time with dynamic program-
ming methods. Cyclic probabilistic decision graphs
can be solved in a similar way in polynomial time with
Markov decision algorithms.

This approach to risk-sensitive planning allows one to

ans for Different Degrees of Risk-Averse Attitude gamma
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augment risk-neutral probabilistic AI planning algo-
rithms, since one can use any planning method on the
transformed planning problem that minimizes (or sat-
isfices) expected execution cost to determine an opti-
mal (or satisficing) plan for a risk-seeking agent. The
better a plan is for the transformed planning problem,
the better it is for the original planning problem as
well. Although the derivation of the transformation
requires some knowledge of utility theory and Markov
decision theory, the transformation itself is very sim-
ple and can be applied without any understanding of
the formalisms involved.

We believe that much of the work in operations re-
search or decision theory can be utilized for Al research
in a similar way. These disciplines have a different ap-
proach to decision making than Al and, consequently,
most of their methods might not be interesting from
an Al point of view. However, they also offer results
that are useful for other problem solving approaches.
These results can (and should) be utilized by AT re-
searchers.
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