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Abstract Robotics researchers have used auction-based coordination systems for
robot teams because of their robustness and efficiency. However, there
is no research into systematic methods for deriving appropriate bidding
rules for given team objectives. In this paper, we propose the first such
method and demonstrate it by deriving bidding rules for three possi-
ble team objectives of a multi-robot exploration task. We demonstrate
experimentally that the resulting bidding rules indeed exhibit good per-
formance for their respective team objectives and compare favorably
to the optimal performance. Our research thus allows the designers
of auction-based coordination systems to focus on developing appropri-
ate team objectives, for which good bidding rules can then be derived
automatically.
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1. Introduction

The time required to reach other planets makes planetary surface ex-
ploration missions prime targets for automation. Sending rovers to other
planets either instead of or together with people can also significantly re-
duce the danger and cost involved. Teams of rovers are both more fault
tolerant (through redundancy) and more efficient (through parallelism)
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than single rovers if the rovers are coordinated well. However, rovers
cannot be easily tele-operated since this requires a large number of hu-
man operators and is communication intensive, error prone, and slow.
Neither can they be fully preprogrammed since their activities depend
on their discoveries. Thus, one needs to endow them with the capability
to coordinate autonomously with each other. Consider, for example, a
multi-robot exploration task where a team of lunar rovers has to visit
a number of given target locations to collect rock samples. Each tar-
get must be visited by at least one rover. The rovers first allocate the
targets to themselves, and each rover then visits the targets that are
allocated to it. The rovers know their current location at all times but
might initially not know where obstacles are in the terrain. It can there-
fore be beneficial for the rovers to re-allocate the targets to themselves
as they discover more about the terrain during execution, for example,
when a rover discovers that it is separated by a big crater from its next
target. Similar multi-robot exploration tasks arise for mine sweeping,
search and rescue operations, police operations, and hazardous material
cleaning, among others.

Multi-robot coordination tasks are typically solved with heuristic
methods since optimizing the performance is often computationally in-
tractable. They are often solved with decentralized methods since cen-
tralized methods lack robustness: if the central controller fails, so does
the entire robot team. Market mechanisms, such as auctions, are popular
decentralized and heuristic multi-robot coordination methods (Rabideau
et al., 2000). In this case, the robots are the bidders and the targets are
the goods up for auction. Every robot bids on targets and then visits
all targets that it wins. As the robots discover more about the terrain
during execution, they run additional auctions to change the allocation
of targets to themselves. The resulting auction-based coordination sys-
tem is efficient in terms of communication (robots communicate only
numeric bids) and computation (robots compute their bids in parallel).
It is therefore not surprising that auctions have been shown to be effec-
tive multi-robot coordination methods (Gerkey and Matarić, 2002; Zlot
et al., 2002; Thayer et al., 2000; Goldberg et al., 2003). However, there
are currently no systematic methods for deriving appropriate bidding
rules for given team objectives. In this paper, we propose the first such
method and demonstrate it by deriving bidding rules for three possible
team objectives of the multi-robot exploration task. We demonstrate
experimentally that the resulting bidding rules indeed exhibit good per-
formance for their respective team objectives and compare favorably
to the optimal performance. Our research thus allows the designers of
auction-based coordination systems to focus on developing appropriate
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team objectives, for which good bidding rules can then be derived auto-
matically.

2. The Auction-Based Coordination System

In known environments, all targets are initially unallocated. During
each round of bidding, all robots bids on all unallocated targets. The
robot that places the overall lowest bid on any target is allocated that
particular target. A new round of bidding starts, and all robots bid
again on all unallocated targets, and so on until all targets have been
allocated to robots. (Note that each robot needs to bid only on a single
target during each round, namely on one of the targets for which its bid
is the lowest, since all other bids from the same robot have no chance
of winning.) Each robot then calculates the optimal path for the given
team objective for visiting the targets allocated to it and then moves
along that path. A robot does not move if no targets are allocated to it.

In unknown environments, the robots proceed in the same way but
under the optimistic initial assumption that there are no obstacles. As
the robots move along their paths and a robot discovers a new obsta-
cle, it informs the other robots about it. Each robot then re-calculates
the optimal path for the given team objective for visiting the unvisited
targets allocated to it, taking into account all obstacles that it knows
about. If the performance significantly degrades for at least one robot
(in our experiments, we use a threshold of 10 percent difference), then
the robots use auctions to re-allocate all unvisited targets among them-
selves. Each robot then calculates the optimal path for the given team
objective for visiting the targets allocated to it and then moves along
that path, and so on until all targets have been visited.

This auction-based coordination system is similar to multi-round auc-
tions and sequential single-item auctions. Its main advantage is its sim-
plicity and the fact that it allows for a decentralized implementation on
real robots. Each robot computes its one bid locally and in parallel with
the other robots, broadcasts the bid to the other robots, listens to the
broadcasts of the other robots, and then locally determines the winning
bid. Thus, there is no need for a central auctioneer and therefore no
single point of failure. A similar but more restricted auction scheme has
been used in the past for robot coordination (Dias and Stentz, 2000).

3. Team Objectives for Multi-Robot Exploration

A multi-robot exploration task consists of the locations of n robots
and m targets as well as a cost function that specifies the cost of moving
between locations. The objective of the multi-robot exploration task is
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to find an allocation of targets to robots and a path for each robot that
visits all targets allocated to it so that the team objective is achieved.
Note that the robots are not required to return to their initial locations.
In this paper, we study three team objectives:

MiniSum: Minimize the sum of the path costs over all robots.

MiniMax: Minimize the maximum path cost over all robots.

MiniAve: Minimize the average per target cost over all targets.

The path cost of a robot is the sum of the costs along its path, from its
initial location to the first target on the path, and so on, stopping at the
last target on the path. The per target cost of a target is the sum of the
costs along the path of the robot that visits the target in question, from
its initial location to the first target on the path, and so on, stopping at
the target in question.

Optimizing the performance for the three team objectives is NP-hard
and thus likely computationally intractable, as they resemble the Trav-
eling Salesperson Problem, the Min-Max Vehicle Routing Problem, and
the Traveling Repairperson Problem (or Minimum Latency Problem), re-
spectively, which are intractable even on the Euclidean plane. However,
these team objectives cover a wide range of applications. For example,
if the cost is energy consumption, then the MiniSum team objective
minimizes the total energy consumed by all robots until all targets have
been visited. If the cost is travel time, then the Minimax team objective
minimizes the time until all targets have been visited (task-completion
time) and the MiniAve team objective minimizes how long it takes on
average until a target is visited (target-visit time). The MiniSum and
MiniMax team objectives have been used in the context of multi-robot
exploration (Dias and Stentz, 2000; Dias and Stentz, 2002; Berhault
et al., 2003; Lagoudakis et al., 2004). The MiniAve team objective, on
the other hand, has not been used before in this context although it is
very appropriate for search-and-rescue tasks, where the health condition
of several victims deteriorates until a robot visits them. Consider, for
example, an earthquake scenario where an accident site with one victim
is located at a travel time of 20 units to the west of a robot and another
accident site with twenty victims is located at a travel time of 25 units to
its east. In this case, visiting the site to the west first and then the site
to the east achieves both the MiniSum and the MiniMax team objec-
tives. However, the twenty victims to the east are visited very late and
their health condition thus is very bad. On the other hand, visiting the
site to the east first and then the site to the west achieves the MiniAve

team objective and results in an overall better average health condition
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of the victims. This example illustrates the importance of the MiniAve

team objective in cases where the targets occur in clusters of different
sizes.

4. Systematic Generation of Bidding Rules

We seek to derive an appropriate bidding rule for a given team ob-
jective. This problem has not been studied before in the robotics lit-
erature. Assume that there are n robots r1, . . . , rn and m currently
unallocated targets t1, . . . , tm. Assume further that the team objective
has the structure to assign a set of targets Ti to robot ri for all i, where
the sets T = {T1, . . . , Tn} form a partition of all targets that optimizes
the performance f

(

g(r1, T1), . . . , g(rn, Tn)
)

for given functions f and g.
Function g determines the performance of each robot, and function f de-
termines the performance of the team as a function of the performance
of the robots. The three team objectives fit this structure. For any
robot ri and any set of targets Ti, let PC(ri, Ti) denote the minimum
path cost of robot ri and STC(ri, Ti) denote the minimum sum of per
target costs over all targets in Ti if robot ri visits all targets in Ti from
its current location. Then, it holds that

MiniSum: minT

∑

j PC(rj , Tj),

MiniMax: minT maxj PC(rj , Tj), and

MiniAve: minT
1
m

∑

j STC(rj , Tj).

A bidding rule determines how much a robot bids on a target. We
propose the following bidding rule for a given team objective, which is
directly derived from the team objective itself.

Bidding Rule Robot r bids on target t the difference in performance
for the given team objective between the current allocation of tar-
gets to robots and the allocation that results from the current one
if robot r is allocated target t. (Unallocated targets are ignored.)

Consequently, robot ri should bid on target t

f
(

g(r1, T
′

1), . . . , g(rn, T ′

n)
)

− f
(

g(r1, T1), . . . , g(rn, Tn)
)

,

where T ′

i = Ti ∪ {t} and T ′

j = Tj for i 6= j. The bidding rule thus
performs hill climbing to maximize the performance and can thus suffer
from local optima. However, optimizing the performance is NP-hard
for the three team objectives. Our auction-based coordination system
is therefore not designed to optimize the performance but to be efficient
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and result in a good performance, and hill climbing has these properties.
One potential problem with the bidding rule is that the robots might
not have all the information needed to compute the bids. For example,
a robot may not know the locations of the other robots. However, we
will now show that a robot can calculate its bids for the three team
objectives knowing only its current location, the set of targets allocated
to it, and the cost function:

For the MiniSum team objective, robot ri should bid on target tX
j

PC(rj , T
′

j) −
X

j

PC(rj , Tj) = PC(ri, Ti ∪ {t}) − PC(ri, Ti).

For the MiniMax team objective, robot ri should bid on target t

max
j

PC(rj , T
′

j) − max
j

PC(rj , Tj) = PC(ri, Ti ∪ {t}) − max
j

PC(rj , Tj).

This derivation uses the fact that maxj PC(rj , T
′

j) = PC(ri, T
′

i ),
otherwise target t would have already been allocated in a previous
round of bidding. The term maxj PC(rj , Tj) can be dropped since
the outcomes of the auctions remain unchanged if all bids change
by a constant. Thus, robot ri can bid just PC(ri, Ti ∪ {t}) on
target t.

For the MiniAve team objective, robot ri should bid on target t

1

m

X
j

STC(rj , T
′

j)−
1

m

X
j

STC(rj , Tj) =
1

m

�
STC(ri, Ti∪{t})−STC(ri, Ti)

�
.

The factor 1/m can be dropped since the outcomes of the auctions
remain unchanged if all bids are multiplied by a constant factor.
Thus, robot ri can bid just STC(ri, Ti ∪ {t}) − STC(ri, Ti) on
target t.

Thus, the bidding rules for the three team objectives are

BidSum: PC(ri, Ti ∪ {t}) − PC(ri, Ti),

BidMax: PC(ri, Ti ∪ {t}), and

BidAve: STC(ri, Ti ∪ {t}) − STC(ri, Ti).

The robots need to be able to calculate their bids efficiently but com-
puting PC(ri, Ti ∪ {t}) or STC(ri, Ti ∪ {t}) is NP-hard. Robot ri thus
uses a greedy method to approximate these values. In particular, it finds
a good path that visits the targets in Ti ∪ {t} for a given team objec-
tive as follows. It already has a good path that visits the targets in Ti.
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Figure 1. A simple multi-robot exploration task.

First, it inserts target t into all positions on the existing path, one after
the other. Then, it tries to improve each new path by first using the
2-opt improvement rule and then the 1-target 3-opt improvement rule.
Finally, it picks the best one of the resulting paths for the given team
objective. The 2-opt improvement rule takes a path and inverts the or-
der of targets in each one of its continuous subpaths in turn, picks the
best one of the resulting paths for the given team objective, and repeats
the procedure until the path can no longer be improved. The 1-target
3-opt improvement rule removes a target from the path and inserts it
into all other possible positions on the path, picks the best one of the
resulting paths for the given team objective, and repeats the procedure
until the path can no longer be improved.

The three bidding rules are not guaranteed to achieve their respective
team objectives even if the values PC(ri, Ti ∪{t}) and STC(ri, Ti ∪{t})
are computed exactly. Consider the simple multi-robot exploration task
in Figure 1 with 2 robots and 2 targets and unit costs between adjacent
locations. All bidding rules can result in the robots following the solid
lines, resulting in a performance of 3 for the MiniSum team objective, a
performance of 3 for the MiniMax team objective, and a performance
of 2 for the MiniAve team objective. However, the robots should follow
the dashed lines to maximize the performance for all three team objec-
tives, resulting in a performance of 2 for the MiniSum team objective, a
performance of 1 for the MiniMax team objective, and a performance
of 1 for the MiniAve team objective. (We rely on a particular way
of breaking ties in this multi-robot exploration example but can easily
change the edge costs by small amounts to guarantee that the bidding
rules result in the robots following the solid lines independently of how
ties are broken.) In a forthcoming paper, we analyze the performance
of the three bidding rules theoretically and show that the performance
of the BidSum bidding rule in the Euclidean case is at most a factor
of two away from optimum, whereas no constant-factor bound exists for
the performance of the BidMax and BidAve bidding rules even in the
Euclidean case.
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5. Experimental Evaluation

To demonstrate that the performance of the three bidding rules is
indeed good for their respective team objectives, we implemented them
and then tested them in office-like environments with rooms, doors, and
corridors, as shown in Figure 2. We performed experiments with both
unclustered and clustered targets. The locations of the robots and tar-
gets for each multi-robot exploration task were chosen randomly in the
unclustered target case. The locations of the robots and targets were
also chosen randomly in the clustered target case, but with the restric-
tion that 50 percent of the targets were placed in clusters of 5 targets
each. The numbers in the tables below are averages over 10 different
multi-robot exploration tasks with the same settings. The performance
of the best bidding rule for a given team objective is shown in bold.

5.1 Known Environments

We mapped our environments onto eight-connected uniform grids of
size 51 × 51 and computed all costs between locations as the shortest
distances on the grid. Our auction-based coordination system used these
costs to find an allocation of targets to robots and a path for each robot
that visits all targets allocated to it. We interfaced it to the popular
Player/Stage robot simulator (Gerkey et al., 2003) to execute the paths
and visualize the resulting robot trails. Figure 2 shows the initial loca-
tions of the robots (squares) and targets (circles) as well as the resulting
robot trails (dots) for each one of the three bidding rules for a sample
multi-robot exploration task with 3 robots and 20 unclustered targets in
a completely known environment. Sum, Max and Ave in the caption
of the figure denote the performance for the MiniSum, MiniMax and
MiniAve team objectives, respectively. Each bidding rule results in a
better performance for its team objective than the other two bidding
rules. For example, the BidSum bidding rule results in paths of very
different lengths, whereas the BidMax bidding rule results in paths of
similar lengths. Therefore, the performance of the BidMax bidding rule
is better for the MiniMax team objective than the one of the BidSum

bidding rule.
We compared the performance of the three bidding rules against the

optimal performance for multi-robot exploration tasks with one or two
robots and ten targets. The optimal performance was calculated by
formulating the multi-robot exploration tasks as integer programs and
solving them with the commercial mixed integer program solver CPLEX.
The NP-hardness of optimizing the performance did not allow us to solve
larger multi-robot exploration tasks. Table 1 shows the performance of
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Figure 2. Player/Stage screenshots: initial locations (top left) and robot trails
with the BidSum (top right) [Sum=182.50, Max=113.36 , Ave=48.61], BidMax

(bottom left) [Sum=218.12 , Max=93.87 , Ave=46.01], and BidAve (bottom right)
[Sum=269.27 , Max=109.39 , Ave=45.15] bidding rules.

each bidding rule and the optimal performance for each team objec-
tive. Again, each bidding rule results in a better performance for its
team objective than the other two bidding rules, with the exception of
ties between the BidSum and BidMax bidding rules for multi-robot
exploration tasks with one robot. These ties are unavoidable because
the MiniSum and MiniMax team objectives are identical for one-robot
exploration tasks. The performance of the best bidding rule for each
team objective is always close to the optimal performance. In particu-
lar, the performance of the BidSum bidding rule for the MiniSum team
objective is within a factor of 1.10 of optimal, the performance of the
BidMax bidding rule for the MiniMax team objective is within a factor
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Table 1. Performance of bidding rules against optimal in known environments.

Robots Bidding Unclustered Clustered
Rule Sum Max Ave Sum Max Ave

1 BidSum 199.95 199.95 103.08 143.69 143.69 78.65
1 BidMax 199.95 199.95 103.08 143.69 143.69 78.65
1 BidAve 214.93 214.93 98.66 155.50 155.50 63.12

1 Optimal 199.95 199.95 98.37 143.69 143.69 63.12

2 BidSum 193.50 168.50 79.21 134.18 97.17 62.47
2 BidMax 219.15 125.84 61.39 144.84 90.10 57.38
2 BidAve 219.16 128.45 59.12 157.29 100.56 49.15

2 Optimal 189.15 109.34 55.45 132.06 85.86 47.63

of 1.44 of optimal, and the performance of the BidAve bidding rule for
the MiniAve team objective is within a factor of 1.28 of optimal.

We also compared the performance of the three bidding rules against
each other for large multi-robot exploration tasks with one, five or ten
robots and 100 targets. Table 2 shows the performance of each bidding
rule. Again, each bidding rule results in a better performance for its
team objective than the other two bidding rules, with the exception of
the unavoidable ties.

5.2 Unknown Environments

We compared the performance of the three bidding rules against each
other for the same large multi-robot exploration tasks as in the previous
section but in initially completely unknown environments. In this case,
we mapped our environments onto four-connected uniform grids of size
51×51 and computed all costs between locations as the shortest distances
on the grid. These grids were also used to simulate the movement of the
robots in a coarse and noise-free simulation. (We could not use eight-
connected grids because diagonal movements are longer than horizontal
and vertical ones, and the simulation steps thus would need to be much
smaller than moving from cell to cell.) The robots sense all blockages in
their immediate four-cell neighborhood. Table 3 shows the performance
of each bidding rule. Again, each bidding rule results in a better per-
formance for its team objective than the other two bidding rules, with
the exception of the unavoidable ties and two other exceptions. The
average number of auctions is 28.37 with a maximum of 82 auctions in
one case. In general, the number of auctions increases with the number
of robots. Note that the difference in performance between known and
unknown environments is at most a factor of three. It is remarkable that
our auction-based coordination system manages to achieve such a good
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Table 2. Performance of bidding rules against each other in known environments.

Robots Bidding Unclustered Clustered
Rule Sum Max Ave Sum Max Ave

1 BidSum 554.40 554.40 281.11 437.25 437.25 212.81
1 BidMax 554.40 554.40 281.11 437.25 437.25 212.81
1 BidAve 611.50 611.50 243.30 532.46 532.46 169.20

5 BidSum 483.89 210.30 80.74 374.33 186.50 66.94
5 BidMax 548.40 130.41 58.70 450.72 112.18 50.50
5 BidAve 601.28 146.18 55.19 500.05 132.98 42.41

10 BidSum 435.30 136.70 45.89 318.52 102.15 35.14
10 BidMax 536.90 77.95 31.39 402.30 63.89 25.88
10 BidAve 564.73 88.23 30.04 437.23 71.52 22.02

Table 3. Performance of bidding rules against each other in unknown environments.

Robots Bidding Unclustered Clustered
Rule Sum Max Ave Sum Max Ave

1 BidSum 1459.90 1459.90 813.40 1139.20 1139.20 672.14
1 BidMax 1459.90 1459.90 813.40 1139.20 1139.20 672.14
1 BidAve 1588.50 1588.50 826.82 1164.40 1164.40 463.14

5 BidSum 943.60 586.90 223.47 771.40 432.90 166.60
5 BidMax 979.00 238.10 98.48 811.30 216.90 86.58
5 BidAve 992.10 240.10 90.54 838.30 214.10 79.36

10 BidSum 799.50 312.20 93.69 596.10 223.20 63.95
10 BidMax 885.40 123.60 48.43 677.80 110.60 37.92
10 BidAve 871.80 133.00 45.19 697.80 121.50 35.43

performance for all team objectives since there has to be some perfor-
mance degradation given that we switched both from known to unknown
environments and from eight-connected to four-connected grids.

6. Conclusions and Future Work

In this paper, we described an auction-based coordination system and
then proposed a systematic method for deriving appropriate bidding
rules for given team objectives. We then demonstrated it by deriving
bidding rules for three possible team objectives of a multi-robot explo-
ration task, that relate to minimizing the total energy consumption,
task-completion time, and average target-visit time. (The last team ob-
jective had not been used before but we showed it to be appropriate
for search-and-rescue tasks.) Finally, we demonstrated experimentally
that the derived bidding rules indeed exhibit good performance for their



12

respective team objectives and compare favorably to the optimal per-
formance. In the future, we intend to adapt our methodology to other
multi-robot coordination tasks. For example, we intend to study multi-
robot coordination with auction-based coordination systems in the pres-
ence of additional constraints, such as compatibility constraints which
dictate that certain targets can only be visited by certain robots.

References

Berhault, M., Huang, H., Keskinocak, P., Koenig, S., Elmaghraby, W., Griffin, P.,
and Kleywegt, A. (2003). Robot exploration with combinatorial auctions. In Pro-

ceedings of the International Conference on Intelligent Robots and Systems, pages
1957–1962.

Dias, M. and Stentz, A. (2000). A free market architecture for distributed control of
a multirobot system. In Proceedings of the International Conference on Intelligent

Autonomous Systems, pages 115–122.

Dias, M. and Stentz, A. (2002). Enhanced negotiation and opportunistic optimization
for market-based multirobot coordination. Technical Report CMU-RI-TR-02-18,
Robotics Institute, Carnegie Mellon University, Pittsburgh (Pennsylvania).
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