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Abstract. We introduce the Constraint Composite Graph (CCG) for
Distributed Constraint Optimization Problems (DCOPs), a popular
paradigm used for the description and resolution of cooperative multi-
agent problems. The CCG is a novel graphical representation of DCOPs
on which agents can coordinate their assignments to solve the distributed
problem suboptimally. By leveraging this representation, agents are able
to reduce the size of the problem. We propose a novel variant of Max-
Sum—a popular DCOP incomplete algorithm—called CCG-Max-Sum,
which is applied to CCGs, and demonstrate its efficiency and effective-
ness on DCOP benchmarks based on several network topologies.

1 Introduction

In a cooperative multiagent system, multiple autonomous agents interact to pur-
sue personal goals and to achieve shared objectives. The Distributed Constraint
Optimization Problem (DCOP) model [17, 6] is an elegant formalism to describe
cooperative multiagent problems that are distributed in nature. In this model,
a collection of agents coordinate a value assignment to the problem variables
with the goal of optimizing a global objective within the confines of localized
communication. DCOPs have been used to solve a variety of problems in the
context of coordination and resource allocation [30, 9], sensor networks [5], and
device coordination in smart homes [22, 8].

DCOP algorithms are either complete or incomplete. Complete algorithms
find an optimal solution to the problem employing one of two broad modus
operandi: distributed search-based techniques [17, 26] or distributed inference-
based techniques [20, 24]. In search-based techniques, agents traverse the search
space by selecting value assignments and communicating them to other agents.
Inference-based techniques rely instead on the notion of agent belief, describing
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Fig. 1: DCOP constraint graph (a), pseudotree (b), factor graph (c), and a con-
straint (d).

the best cost an agent can achieve for each value assignment to its variables.
These beliefs drive the value-selection process of the agents to find an optimal
solution to the problem. Since finding an optimal DCOP solution is NP-hard
[17], optimally solving a DCOP requires exponential time or space in the worst
case. Thus, there is growing interest in the development of incomplete algo-
rithms, which trade off solution quality for better runtimes. Similar to complete
algorithms, incomplete algorithms can be classified as local search-based [16,
27] and inference-based [5]. Some incomplete algorithms have been used in dif-
ferent multiagent applications. For instance, Max-Sum [5] is an inference-based
incomplete algorithm which has been successfully used to solve sensor networks
problems [5] and smart home coordination problems [22].

In both complete and incomplete DCOP algorithms, the problem resolu-
tion process is characterized by the graphical representation of the problem.
The three most important problem representations are the constraint graph, the
pseudo-tree, and the factor graph. The first one represents a problem as a graph
whose nodes describe the variables and whose edges describe the constraints.
The second one is a rearrangement of the constraint graph, where a subset of
edges forms a rooted tree and where two variables participating in the same
constraint appear in the same branch of the tree. The third one represents the
problem as a bipartite graph where nodes represent both variables and con-
straints, and edges link the constraint nodes to the variables participating in the
associated constraint. In many local search algorithms, such as MGM [16], DSA
[27], or the region-optimal algorithm family [19], agents operate directly on the
constraint graph and perform distributed local searches by exchanging informa-
tion with their neighbors in the constraint graph. In the main inference-based
algorithms, the agents operate on either a pseudo-tree (e.g., P-DCOP [21]) or
a factor graph (e.g., Max-Sum). In the former case, agents exchange messages
following the structure of the pseudo-tree, typically alternating between a phase
in which messages are propagated up from the leaf agents to the root agent of
the pseudo-tree, and one in which information is propagated down. In the latter
case, there are two types of entities, which represent variables and constraints.
Both of them participate in the message-exchange process to solve the problem.
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All these representations allow agents to exploit the graphical structure of
the problem. However, they hide the numerical structure of the problem’s con-
straints. Thus, in this paper, we introduce the Constraint Composite Graph
(CCG) for DCOPs, a lifted graphical representation that provides a framework
for exploiting simultaneously the graphical structure of the agent-coordination
process as well as the numerical structure of the constraints involving the vari-
ables controlled by the agents. CCGs have recently been introduced in the con-
text of Weighted Constraint Satisfaction Problems (WCSPs) [13, 15], and shown
to be highly effective in solving a wide range of problems [25]. We contribute
to the development of inference-based DCOP algorithms by presenting a novel
framework for solving DCOPs sub-optimally whose agent interactions are driven
by the structure of the CCG representation. We analyze the behavior of our
framework on federated social network problems (introduced in Section 5) and
random Boolean problems on different graph topologies and show its effective-
ness on several important classes of graphs, including grid networks and scale-free
networks, which are used to model many applications in distributed settings.

To the best of our knowledge, this work describes the first proposal of a
distributed message-passing algorithm based on the CCG representation. We
refer to our algorithm as a “lifted” message passing algorithm since it works on
the CCG representation of a DCOP.

2 Background

We now review the distributed constraint optimization framework, the graphical
models commonly adopted to represent a DCOP, and the CCG model.

Distributed Constraint Optimization A Distributed Constraint Optimiza-
tion Problem (DCOP) is a tuple P =〈X,D,F,A, α〉, where: X={x1, . . . , xn} is
a set of variables; D={Dx1 , . . . , Dxn} is a set of finite domains for the variables
in X; F= {f1, . . . , fe} is a set of constraints (also called cost functions), where
f :

∏
x∈xf Dx → R+ ∪ {∞} and xf ⊆X is the set of the variables (also called

the scope) of f ; A={a1, . . . , ap} is a set of agents; and α : X→ A is a function
that maps each variable to one agent. Fig. 1(d) shows an example constraint.
It specifies the costs of all combinations of values for the variables x1, x2 in its
scope. For a variable x ∈ X, we use fx to denote the set of constraints that
involve x in their scopes.

A partial assignment σX is an assignment of values to a set of variables
X ⊆ X that is consistent with their domains; i.e., it is a partial function
θ : X → ∪ni=1Dxi such that, for each xj ∈ X, if θ(xj) is defined (i.e.,
xj ∈ X), then θ(xj) ∈ Dxj . For a set of variables V = {xi1 , . . . , xih} ⊆ X,
πV (σX) = 〈θ(xi1), . . . , θ(xih)〉 is the projection of σX onto the variables in V ,
where i1 < . . . < ih. When V = {xi} is a singleton, we write πxi

(σX) to denote
the projection of σX onto xi. The cost F(σX) =

∑
f∈F:xf⊆X f(πxf (σX)) of an

assignment σX is the sum of the evaluation of the constraints involving all vari-
ables in X. A solution is a partial assignment σX (written σ for shorthand) for all
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variables of the problem, i.e., with X=X, whose cost is finite (i.e., F(σ) 6=∞).
The goal is to find an optimal solution σ∗ = argminσ F(σ). In this paper, we
restrict our attention to Boolean DCOPs (i.e., DCOPs where all domains are
{0, 1}). Despite our focus on Boolean DCOPs, the concepts introduced in the
next sections are generalizable, as discussed in Section 6.

Given a DCOP P , its constraint graph is GP = (X, EC), where an undirected
edge {x, y}∈EC exists if and only if there exists an f ∈F such that {x, y} ⊆ xf .
The constraint graph provides a standard representation of a DCOP instance. It
highlights the locality of interactions among agents and therefore is commonly
adopted by DCOP algorithms. Fig. 1(a) shows an example constraint graph of
a DCOP instance with three agents a1, a2, and a3, each controlling one variable
with domain {0,1}. There are three constraints: f1 with scope xf1 = {x1, x2},
f2 with scope xf2 = {x2, x3}, and f3 with scope xf3 = {x1, x3}.

A pseudo-tree for P is a spanning tree TP =〈X, ET 〉 of GP , i.e., a connected
subgraph of GP that contains all nodes and is a rooted tree, with the following
additional condition: for each x, y∈X, if {x, y} ⊆ xf for some f ∈F, then x and
y appear in the same branch of TP (i.e., x is an ancestor of y in TP or vice versa).
Figure 1(b) shows one possible pseudo-tree for our example DCOP, where the
solid lines represent tree edges and the dotted line represents a backedge that
connects an agent with one of its ancestors.

A factor graph [12] is a bipartite graph used to represent the factorization
of a function. Given a DCOP instance P , the corresponding factor graph FP =
〈X,F, EF 〉 is composed of variable nodes x∈X, function nodes f ∈F, and edges
EF such that there is an undirected edge between function node f and variable
node x if and only if x∈xf . Fig. 1(c) illustrates the factor graph of our example
DCOP instance, where each agent ai controls its variable xi and, in addition, a1
controls the constraints f1 and f3, and a2 controls the constraint f2.

Max-Sum Max-Sum [5] is a popular incomplete DCOP algorithm. Its agents
operate on a factor graph FP through a synchronous iterative process. Albeit
the logic of each variable node and each function node is executed within an
agent, to ease exposition, in what follows, we treat them as entities that are able
to send and receive messages. In each iteration, each function node f exchanges
messages with the nodes of variables in its scope xf , and each variable node x
exchanges messages with the nodes of constraints which involve x in their scopes
fx. Thus, each node exchanges messages with its neighbors in the factor graph.

The content of the messages sent by each function (variable) node is based ex-
clusively on the information received from neighboring variable (function) nodes.
The message qix→f sent by a variable node x to a function node f in fx in itera-
tion i contains, for each value d ∈ Dx, the aggregated costs for d received from
all neighboring function nodes in iteration i − 1, excluding f . It is defined as a
function qix→f : Dx→R+ ∪ {∞}, whose value is 0 for all d∈Dx when i=0 and

qix→f (d) = αixf +
∑

f ′∈fx\{f}

ri−1f ′→x(d) (1)
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when i > 0. Here, ri−1f ′→x is the message received by variable node x from function

node f ′ in iteration i−1 and αixf is a normalizing constant used to prevent the
values of the transmitted messages from growing arbitrarily and chosen so that∑
d∈Dx

qix→f (d) = 0 holds. The message rif→x sent by a function node f to a

variable node x∈xf in iteration i contains, for each d∈Dx, the minimum cost
of any assignments of values to the variables in xf in which x takes value d. It
is defined as a function rif→x : Dx →R+∪{∞}, whose value is 0 when i=0 and

rif→x(d) = min
σ
xf : πx(σxf )=d

f(σxf ) +
∑

x′∈xf\{x}

qix′→f (πx′(σxf )) (2)

when i > 0. Here, σxf is a possible assignment of values to all variables in
the scope xf of the constraint f , given that variable x ∈ xf takes value d.
The agent controlling a variable node x decides its value assignment at the
end of each iteration i > 0 by computing its associated belief bix(d) for each
d ∈ Dx: bix(d) =

∑
f∈fx r

i−1
f→x(d) and choosing the assignment d∗i such that,

d∗i = argmind∈Dx
bix(d). This form of message passing allows for an inference-

based method: Max-Sum agents initialize all their messages to 0 and, in each
iteration i > 0, retain only the most recent messages, overwriting the messages
received in previous iterations.

Max-Sum is an incomplete DCOP algorithm. However, on acyclic problems,
it is guaranteed to converge to an optimal solution [5].

3 The Constraint Composite Graph

We now describe the constraint composite graph (CCG), a graphical structure
that can be used to represent DCOPs. Its goal is to exploit simultaneously the
graphical structure of the agent interactions as well as the numerical structure of
the cost functions. It is a node-weighted tripartite graph GCCG = 〈V =X ∪Y ∪
Z, E, w〉, where X, Y, and Z are a partition of V . The nodes in X correspond
to the DCOP variables, while the nodes in Y and Z correspond to auxiliary
variables introduced to model a reformulation of the original problem into a
Minimum Weighted Vertex Cover (MWVC).

The concept of a CCG was first proposed by Kumar [13] as a combinatorial
structure associated with a Weighted Constraint Satisfaction Problem (WCSP).
WCSPs are similar to DCOPs, except that all computations are centralized. In
that proposal, it was shown that the task of solving a WCSP can be reformulated
as the task of finding a MWVC on its associated CCG [13–15]. A desirable
property of the CCG is that it can be constructed in polynomial time and is
always tripartite [13–15]. CCGs also enable the use of kernelization methods for
solving WCSPs [25], which are polynomial-time procedures that can simplify a
problem to a smaller one, called the kernel. The Nemhauser-Trotter reduction
(NT reduction) [18, 2] is one such kernelization method and uses a maxflow
procedure to find the kernel.

In the next section, we introduce an extension of the Max-Sum algorithm,
called CCG-Max-Sum, which can be used directly on CCGs.
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Algorithm 1: CCG-Max-Sum

// CCG Construction Phase

1 foreach fi ∈ Fi do
2 pi ← construct-polynomial(fi);
3 GCCGi =〈Vi = Xi ∪ Yi ∪ Zi,Ei,wi〉 ← decompose-polynomial(pi) ;

4 foreach f ∈ FCCGi involving variable vj with α(vj) 6=ai do
5 ai sends f to aα(vj);

6 When agent ai receives f involving vi ∈ Xi from neighboring agent aj :
fvi(1)← fvi(1) + f(1) ;

// Message Passing Phase

7 µvi→vj ← 0 (∀vi ∈ Vi, ∀vj ∈ N(vi));
8 while termination condition is not met do
9 Wait for all messages µvj→vi from vj ∈N(vi) (∀vi∈Vi);

10 foreach vi ∈ Vi do
11 Update µvi→vj according to Eq. (5);

12 for vi ∈ Xi do
13 if wvi <

∑
vj∈N(vi)

µvj→vi then vi ← 1 else vi ← 0;

4 CCG-Max-Sum

CCG-Max-Sum is an incomplete, iterative DCOP algorithm which works in two
phases, namely, the CCG construction and the message passing, which are ex-
ecuted sequentially and summarized in Algorithm 1. In the CCG construction
phase, the agents coordinate in the construction of a CCG and take ownership
of the auxiliary variables and constraints introduced by this lifted graphical rep-
resentation. Afterwards, in the message passing phase, the agents execute the
iterative synchronous process which extends the Max-Sum algorithm.

In what follows, we useGi = 〈Xi,Fi〉 to denote the subgraph of the constraint
graph controlled by agent ai, where the sets Xi ⊆ X form a partition of the set
of variables X, and the sets Fi ⊆ F form a partition for the constraint set F.

4.1 CCG Construction Phase

The CCG construction proceeds in 3 stages:

1. Expressing Constraints as Polynomials In this stage, each agent ai transforms
the constraints fi ∈ Fi it controls into polynomials pi (line 2 of Algorithm 1)
using standard Gaussian Elimination. We use GCCGi =〈Vi=Xi ∪Yi ∪Zi, Ei, wi〉
to denote the portion of the CCG obtained from constraint fi. Consider the
example constraint f1 in Fig. 1(d), which involves the variables x1 and x2.
It can be written as a polynomial p1(x1, x2) in x1 and x2 of degree 1 each:
p1(x1, x2) = c00 + c01x1 + c10x2 + c11x1x2. The coefficients c00, c01, c10, and c11
of the polynomial can be computed by solving a system of linear equations, where
each equation corresponds to an entry in the constraint table, using standard
Gaussian Elimination. In our example:

p1(0, 0) = 0.5 p1(0, 1) = 0.6 p1(1, 0) = 0.7 p1(1, 1) = 0.3
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In (a), w1 and w2 satisfy w1 − w2 = w.

c00 = 0.5 c01 = 0.1 c10 = 0.2 c11 = −0.5.

2. Decomposing the Terms of the Polynomials In this stage, for each fi ∈ Fi,
the agent that controls it constructs a subgraph GCCGi

of the CCG (line 3
of Algorithm 1). At the end of this stage, each agent introduces new sets of
auxiliary variables Yi and Zi and replaces its constraints with a new set FCCGi of
constraints that involve the decision variables and its newly introduced auxiliary
variables. Before describing this procedure, we review the concept of the MWVC,
a cornerstone concept for the notion of the CCG.

A minimum node cover of G = 〈V,E〉 is the smallest set of nodes S ⊆ V
such that every edge in E has at least one of its nodes in S. When G is node-
weighted, (i.e., each node vi ∈ V has a non-negative weight wi associated with
it), its MWVC is defined as a node cover of minimum total weight of its nodes.

For a given graph G, one can project MWVCs on a given independent set
(IS) U ⊆ V . (An IS is a set of nodes in which no two nodes are connected
by an edge.) The input to such a projection is the graph G as well as an IS
U = {u1, u2, . . . , uk} on G. The output is a table of 2k numbers. Each entry in
this table corresponds to a k-bit vector. We say that a k-bit vector t imposes
the following restrictions: (a) If the ith bit ti is 0, then node ui has to be
excluded from the MWVC; and (b) if the ith bit ti is 1, then the node ui has
to be included in the MWVC. The projection of an MWVC on the IS U is then
defined to be a table with entries corresponding to each of the 2k possible k-bit
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vectors t(1), t(2), . . . , t(2
k). The value of the entry that corresponds to t(j) is the

weight of the MWVC conditioned on the restrictions imposed by t(j).
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Fig. 4: (a)-(c): CCG gadget graph construction in the “Decomposing the Terms of
Polynomials” stage for the example DCOP of Fig. 1. The original constraint, the
associated CCG gadget, and the new constraint are shown on the left, middle,
and right of each panel, respectively. (d): CCG construction in the “Merging
Gadget Graphs into a CCG” stage for the example DCOP of Fig. 1. It is obtained
by merging the CCG gadget graphs in (a)–(c).

Figure 2 illustrates this projection for the subgraph of our example DCOP
problem of Fig. 1(a) that involves variables x1 and x2 and constraint f1, whose
costs are shown in Fig. 1(d).

The table produced by projecting an MWVC on the IS U can be viewed as a
constraint over |U | Boolean variables. Conversely, given a (Boolean) constraint,
we can design a lifted representation for it so as to be able to view it as the pro-
jection of an MWVC on an IS for some intelligently constructed node-weighted
undirected graph [13, 14]. The lifted graphical representation of a constraint de-
pends on the nature of the terms in the polynomial that describes the constraint.
We distinguish three classes of terms: linear terms, negative nonlinear terms, and
positive nonlinear terms. We can construct a lifted graphical representation, i.e.,
a gadget graph, for each term in the polynomial of each constraint as follows.

• A linear term is represented with the two-node graph shown in Fig. 3(a) by
connecting the variable node with an auxiliary node.

• A negative nonlinear term is represented with the “flower” structure as
depicted in Fig. 3(b). Consider the term −w · (xi · xj · xk) where w > 0. Pro-
jecting an MWVC on the “flower” structure on the variable nodes represents
w−w · (xi ·xj ·xk). The constant term w does not affect the optimality of the
solution.

• A positive nonlinear term is represented using the “flower+thorn” struc-
ture as depicted in Fig. 3(c). Consider the term w ·(xi ·xj ·xk) where w > 0.
The projection of an MWVC on the “flower+thorn” structure on the variable
nodes represents L ·(1 − xk) + w − w ·(xi ·xj ·(1 − xk)), where L > w + 1 is
a large real number. By constructing gadget graphs that cancel out the lower
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order terms as shown before, we arrive at a lifted graphical representation of
the positive nonlinear term.

Procedure decompose-polynomial on line 3 of Algorithm 1 takes as input the
polynomial pi associated with a constraint fi, constructed in stage 1, and returns
its lifted representation GCCGi

, where Xi = xfi , Yi and Zi are the set of auxiliary
variables introduced by the procedure, Ei is the set of edges between the GCCGi

graph nodes, and wi is the set of weights associated with the variables in Xi, Yi,
and Zi. For a variable vi ∈ Xi ∪ Yi ∪ Zi, a unary constraint fvi in FCCGi is

fvi(vi) =

{
wi, if vi = 1,

0, if vi = 0.
(3)

For each edge {vi, vj} in Ei, a constraint f{vi,vj} in FCCGi
is defined as

f{vi,vj}(vi, vj) =

{
∞, if vi = vj = 0,

0, otherwise.
(4)

For a CCG gadget graph GCCGi
, Xi contains nodes that correspond to decision

variables, Zi contains the nodes with weight L (if any), and Yi contains the
other nodes. At the end of this stage, each agent ai ∈ A controls the set of
decision variables in Xi and the set of auxiliary variables ∪fj∈Fi

(Yj ∪Zj) for all
constraints fj ∈ Fi controlled by agent ai.

3. Merging Gadget Graphs into a CCG Finally, the CCG-Max-Sum agents con-
struct the CCG by merging their gadget graphs GCCGi

. This stage is done in-
crementally. Every time an agent builds a new gadget graph, it (1) updates its
internal graphical representation to include the auxiliary variables introduced
by the construction, and (2) increases the weight associated with the agent’s
variables. Each agent ai sends to its neighbor aj all unary constraints in FCCGi

involving variable vj controlled by agent aj (i.e., α(vj) = aj) (lines 4–5). When
an agent receives a new unary constraint f which involves one of its decision
variables vi, it increases the weight associated with the constraint (fvi(vi)) by
the value fvi(1) (line 6). The communication structure of the underlying DCOP
does not vary after the CCG construction. If an agent ai is a neighbor of an
agent aj in the constraint graph of the original DCOP, then ai is also a neighbor
of aj in the lifted DCOP representation.

Figure 4 shows the construction of the CCG associated with our example
DCOP of Fig. 1. There are three unary and three binary constraints. Their
lifted graphical representations are shown next to them. Every node in the CCG
is given a weight equal to the sum of the individual weights of the nodes in
the CCG gadget graphs. Computing the MWVC for the CCG yields an optimal
solution for the DCOP: If variable xi ∈ X is in the MWVC, then it is assigned
the value 1 in the DCOP, otherwise it is assigned the value 0.

4.2 Message-Passing Phase

Once the CCG has been constructed, the agents start the message-passing phase
to find a node cover with a small total weight. The message-passing scheme is
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similar to that of Max-Sum: During each iteration, each agent waits to receive
all messages from its neighbors, updates the current values (beliefs) for the vari-
ables it controls, computes the messages to send to its neighbors based on its
new beliefs, and sends these to all of its neighbors. Here, we adapt the algo-
rithm presented in [25] (see Algorithm 1). Differently from Max-Sum, where
each function node exchanges messages with its neighboring variable nodes, and
each variable node exchanges messages with its neighboring function nodes, in
CCG-Max-Sum, the messages are exchanged between (decision and auxiliary)
variables nodes in the CCG. The message µu→v sent by a variable u to a variable
v in iteration i is:

µiu→v = max

wu − ∑
t∈N(u)\{v}

µi−1t→u, 0

 , (5)

where wu is the weight associated with variable u, and N(u) is the set of neigh-
boring variables of variable u in the CCG. Equation (5) is derived from Eqs. (1)
and (2) using an approach similar to that in [25]. These steps are shown on lines
7–11 of Algorithm 1. When the termination condition (e.g., a convergence criteria
or a maximum number of iteration) is met, for a node v, if wv <

∑
u∈N(v) µ

i
u→v,

with i being the last iteration of the algorithm, then v is selected into the MWVC;
otherwise it is not. A variable is assigned value 1 if its corresponding decision
variable node in the CCG is selected into the MWVC; otherwise it is assigned
value 0 (lines 12–13).

5 Experimental Evaluation

In this section, we compare the solution costs of CCG-Max-Sum, Max-Sum (ex-
ecuted on the factor graph), and DSA [27], a local search DCOP algorithm. DSA
has been shown to outperform several other incomplete DCOP algorithms [3, 10]
and performs similarly to several Max-Sum variants, including Max-Sum ADVP
[29], which has been shown not to benefit from damping [3], where message values
are modified to follow a weighted moving average process. We also analyze the
effect of using the NT reduction [18], which solves a polynomial-time relaxation
of the MWVC to expose optimal assignments to sets of variables, in conjunction
with CCG-Max-Sum (denoted by CCG-Max-Sum-k). The NT reduction is exe-
cuted as a preprocessing centralized step.3 We use DSA-C with p = 0.6, where
agents decide probabilistically if to select a local-non-worsening assignment, and
adopt a damping strategy with weight 0.7 in all Max-Sum variants [3].

We evaluate all algorithms on federated social network problems—an appli-
cation domain that we introduce below—and on random minimization Boolean
DCOPs over three classical networks topologies [11]: grid networks, scale-free
networks, and random networks, to cover both structured and unstructured prob-
lems. We implement all algorithms within an anytime framework, as proposed

3 Its runtime is comparable to that of one iteration of CCG-Max-Sum, which in turn
takes 0.035 seconds on average in our experiments.



Solving DCOPs on the CCG 11

Max-Sum CCG-Max-Sum CCG-Max-Sum-k DSA

100 101 102 103

Iterations

1000

1200

1400

1600

1800

2000

2200
Av

er
ag

e 
Co

st

100 101 102 103

Iterations

1000

1500

2000

2500

3000

Av
er

ag
e 

Co
st

100 101 102 103

Iterations

1000

2000

3000

4000

5000

6000

Av
er

ag
e 

Co
st

Fig. 5: FSN based on Twitter network data: 100 agents (left), 500 agents (center),
and 1000 agents (right).

in [28], where the agents memorize the best solution found up to the current
iteration. All results are averages of 30 runs.

Federated Social Networks To address the privacy concerns raised in modern
centralized social networks, open-source communities have developed decentral-
ized social networks, such as Diaspora, GNU Social, and pump.io [23]. A federated
social network (FSN) adopts a decentralized structure by allowing each user or
group of users to maintain its server and communicating using a common inter-
server protocol. In an FSN, multiple servers are used to store the information
of the social network users. A server ai fetches information from a server aj if a
user in ai follows a user in aj [23]. Qualitatively speaking, there are two fetching
strategies: freq-fetch, that fetches frequently and caches less information, and
more-cache, that fetches less frequently and caches more fetched information.
Each strategy has its own advantages and disadvantages: freq-fetch incurs
higher bandwidth costs but lower storage costs, while more-cache incurs lower
bandwidth costs but higher storage costs. Since freq-fetch incurs bandwidth
costs for both servers, this strategy takes effect between two servers only if both
have the strategy freq-fetch.

We model the relationship between the costs and fetching strategies as a
DCOP. The choice of strategy of each server ai (which is modeled as an agent)
is a variable xi. xi = 1 implies freq-fetch, and xi = 0 implies more-cache.

The binary f(xi, xj) cost functions capture the storage and bandwidth costs
for servers ai and aj . A user in ai following a user in aj and a user in ai and one
in aj following each other are modeled, respectively, as{

αij(c
b
i + cbj), if xi=xj=1

αijc
s
i , otherwise

{
(αij + αji)(c

b
i + cbj), if xi=xj=1

αijc
s
i + αjic

s
j , otherwise,

where cbi and csi denote the unit bandwidth and unit storage costs of agent ai,
respectively, and αij is the amount of information that ai fetches from aj .

We model an FSN based on Twitter network data [4], which describe a graph
whose nodes model Twitter users. There is a link between two nodes if at least
one of the corresponding users follows the other one. The graph contains 456,626
nodes and 14,855,842 edges. We map the Twitter network to an FSN graph G.
Its nodes represent the FSN servers and are constructed as follows. We first
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randomly assign one distinct Twitter user to each node in G. Then, we associate
each remaining user u to a node of G with a probability proportional to the
number of followers user u has in the corresponding server. We add an edge
(ai, aj) to G if there exist a user in ai and a user in aj such that at least one of
them follows the other one. The costs cbi and csi are generated by sampling from
the discrete uniform distribution U(1, 10), and all weights αij are the number of
users in ai following users in aj .

Figure 5 illustrates the anytime behavior of the algorithms on FSN problems
with 100 (left), 500 (center), and 1000 (right) agents. The shaded region around
each line describes the confidence interval of the solution costs reported by each
algorithm. The plots use a log-10 scale for the x-axis. The algorithms in order
of their solution costs (from highest to lowest) tend to be: Max-Sum, DSA,
and both CCG-Max-Sum variants. In particular, CCG-Max-Sum-k dominates
all other algorithms from the very first iteration.

Random DCOPs We now discuss the solution cost of the algorithms on random
minimization Boolean DCOPs. The costs of each assignment to the variables
involved in a constraint are generated by sampling from the discrete uniform
distribution U(1, 100). For grid networks, we generate two-dimensional 10 ×
10 grids and connect each node with its four nearest neighbors. For scale-free
networks, we create an n-node network based on the Barabasi-Albert model
[1]. Starting from a connected 2-node network, we repeatedly add a new node,
randomly connecting it to two existing nodes. These two nodes are selected with
probabilities that are proportional to the numbers of their incident edges. Finally,
for random networks, we create an n-node network whose density p1 produces
bn(n − 1)p1c edges. We report experiments on low-density problems (p1 = 0.2)
and high density problems (p1 = 0.6) and fix the maximum constraint arity to
4. Constraints of arity 4 and 3, respectively, are generated by merging first all
cliques of size 4 and then those of size 3. The other edges are used to generate
binary constraints. In each configuration, we verify that the resulting constraint
graph is connected and set the number of agents to 100.

The results are similar to the ones on FSN problems: The algorithms in order
of their solution costs (from highest to lowest) tend to be: Max-Sum, DSA, and
both CCG-Max-Sum variants, except on high-density random networks, where
the solution costs of DSA are slightly lower than the ones of the CCG-Max-
Sum variants. On grid, scale-free, and low-density random networks, CCG-Max-
Sum-k dominates all other algorithms from the first ten iterations. On random
networks (Figure 6 (bottom)), the effect of kernelization is negligible and both
CCG-Max-Sum variants are thus almost indistinguishable, meaning that both
of them dominate all other algorithms on low-density random networks.

Thus, our experiments suggest that CCG-Max-Sum has strong advantages
on grid and scale-free networks, which are important for a large variety of DCOP
applications [5, 8, 22].
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Fig. 6: Grid networks (top left), scale-free networks (top right), low-density
random networks (p1 = 0.2) (bottom left), and high-density random networks
(p1 =0.6) (bottom right). The blue and red curves overlap in the last two plots.

x1 0 0 0 1 1 1
x2 0 1 2 0 1 2
f1 0.5 0.6 0.2 0.7 0.3 0.5

Fig. 7: A cost function with a non-Boolean variable. This cost function extends
the Boolean cost function in Fig. 1(d) with x2 being able to take 3 values 0, 1,
and 2. The tuples highlighted in red are the parts additional to Fig. 1(d).

6 Discussion: Non-Boolean DCOPs

The construction of the CCG for CCG-Max-Sum can be extended to DCOPs
with non-Boolean domains [14] as outlined in the following.

1. Expressing Constraints as Polynomials For a cost function with non-Boolean
variables, this step outputs polynomials of degrees at least 2 instead of polyno-
mials of degree 1. The degree of each variable equals its domain size - 1. Fig. 7
shows an example cost function. Similar to Boolean DCOPs, a polynomial of the
following form can be used to characterize this cost function:

p1(x1, x2) = c00 + c01x1 + c10x2 + c11x1x2 + c20x
2
2 + c21x1x

2
2.

Here, the coefficients c00, c01, c10, c11, c20, and c21 can be computed by solving a
system of linear equations, where each equation corresponds to an entry in the
constraint table, using standard Gaussian Elimination. In our example:

p1(0, 0) = 0.5 p1(0, 1) = 0.6 p1(0, 2) = 0.2

p1(1, 0) = 0.7 p1(1, 1) = 0.3 p1(1, 2) = 0.5.
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Fig. 9. The lifted graphical representation of terms in a polynomial for linear (a),
negative nonlinear (b), and positive nonlinear (c) terms. Here, xi and xj have domain

sizes 3 and 2, respectively. x
(1)
i and x

(2)
i are the two vertices representing xi. We assume

w > 0 in (b) and (c). A node has a zero weight if no weight is explicitly shown. In (a),
w1 and w2 satisfy w1 � w2 = w.

vertices representing xi in the computed MWVC. Figure 9 illustrates the lifted
representation of linear terms, negative non-linear terms and positive non-linear
terms. It is not hard to verify that Sections 6 and 6 and ?? represent w · xi,
2w � w · (xi · xj) and L · (1 � xj) + 2w � w · (xi · (1 � xj)), respectively.

3. Merging Gadget Graphs into a CCG Similar to Boolean DCOPs, A CCG can
be constructed by merging corresponding vertices of every variable.

We note that, by following the procedure above for DCOPs with non-Boolean
variables, the size of the CCG only increases polynomially with respect to domain
sizes. This may imply that CCG-Max-sum may still be e�cient for DCOPs with
non-Boolean variables.

7 Conclusions

In this paper we adapted the Constraint Composite Graph (CCG) graphi-
cal representation encoding for Distributed Constraint Optimization Problems
(DCOPs). The CCG provides a framework for exploiting simultaneously the
graphical structure of the agent interaction process as well as the numerical
structure of the constraints of a DCOP instance. We use this representation to
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2. Decomposing the Terms of the Polynomials The procedure to construct
graph gadgets is similar to Boolean DCOPs, except that each variable xi with
domain Dxi = {0, 1, . . . , |Dxi | − 1} is now represented by |Dxi | − 1 nodes in the
gadget graph. The value of xi in the to-be-determined optimal solution equals
the number of nodes representing xi in the computed MWVC. Fig. 8 illustrates
the lifted representation of linear terms, negative non-linear terms, and positive
non-linear terms. It is not hard to verify that Fig. 8 (a-c) represent w · xi,
2w − w · (xi · xj) and L · (1− xj) + 2w − w · (xi · (1− xj)), respectively.

3. Merging Gadget Graphs into a CCG Similar to Boolean DCOPs, a CCG can
be constructed by merging all nodes corresponding to the same variable. The
size of the CCG increases only polynomially in the domain sizes.

Since the agents need to control the value of several CCG nodes, the local
solving process, in which an agent decide the value assignments for each of the
variables it controls, can be handled with a framework similar to that presented
in [7], which was shown highly effective for solving multi-variable agent DCOPs.

7 Conclusions

In this paper, we adapted the Constraint Composite Graph (CCG) graphi-
cal representation encoding for Distributed Constraint Optimization Problems
(DCOPs). The CCG provides a framework for exploiting simultaneously the
graphical structure of the agent interaction process as well as the numerical
structure of the constraints of a DCOP instance. We use this representation to
introduce CCG-Max-Sum, a novel incomplete DCOP algorithm which extends
Max-Sum by executing the distributed message passing phase on the CCG.

Compared to a version of Max-Sum which is executed on factor graphs and
other incomplete DCOP algorithms, CCG-Max-Sum finds solutions of better
quality within fewer iterations on several DCOP benchmarks. While this paper
introduced an inference-based algorithm operating on the CCG of a DCOP, we
believe that CCGs can also be exploited with other classes of DCOP algorithms.

Future directions include extending the experiments evaluation to DCOPs
with non-Boolean variables and applying CCG-Max-Sum to problems with hard
constraints (e.g., constraints whose costs are either 0 or∞), since many types of
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hard constraints can be simplified during the construction of the CCG, resulting
in smaller problems.
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