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Abstract. Facility Location Problems (FLPs) involve the placement of facilities
in a shared environment for serving multiple customers while minimizing trans-
portation and other costs. FLPs defined on graphs are very general and broadly
applicable. Two such fundamental FLPs are the Vertex K-Center (VKC) and the
Vertex K-Median (VKM) problems. Although both these problems are NP-hard,
many heuristic and approximation algorithms have been developed for solving
them in practice. However, state-of-the-art heuristic algorithms require the input
graph G to be complete, in which the edge joining two vertices is also the shortest
path between them. When G doesn’t satisfy this property, these heuristic algo-
rithms have to be invoked only after computing the metric closure of G, which
in turn requires the computation of all-pairs shortest-path (APSP) distances. Ex-
isting APSP algorithms, such as the Floyd-Warshall algorithm, have a poor time
complexity, making APSP computations a bottleneck for deploying the heuristic
algorithms on large VKC and VKM instances. To remedy this, we propose the
use of a novel algorithmic pipeline based on a graph embedding algorithm called
FastMap. FastMap is a near-linear-time algorithm that embeds the vertices of G
in a Euclidean space while approximately preserving the shortest-path distances
as Euclidean distances for all pairs of vertices. The FastMap embedding can be
used to circumvent the barrier of APSP computations, creating a very efficient
pipeline for solving FLPs. On the empirical front, we provide test results that
demonstrate the efficiency and effectiveness of our novel approach.

1 Introduction

Facility Location Problems (FLPs) are constrained optimization problems that seek the
optimal placement of facilities for providing resources and services to multiple cus-
tomers in a shared environment. They are used to model decision problems related to
transportation, warehousing, polling, and healthcare, among many other tasks, for max-
imizing efficiency, impact, and/or profit. From an agent-centric perspective, FLPs serve
the purpose of orchestrating shared resources between multiple agents. FLPs can be
defined on geometric spaces or on graphs, on continuous or discrete spaces, and with a
variety of distance metrics and objectives. A compendium of FLPs along with various
algorithms and case studies can be found in [24].

FLPs defined on graphs are very general and broadly applicable. The Vertex K-
Center (VKC) problem and the Vertex K-Median (VKM) problem are two such fun-
damental FLPs defined on graphs. The VKC (VKM) problem seeks K vertices on the



2 O. Thakoor et al.

1

A

I

C

D J

F
G H

E

B

1
11

1

5

5
100 100

1

I

J

F
G H

E

1
11

1

5

5
100

AC

D

B
100

A

E

B

1

I

C

D J

F
G H

1
11

1

5

5
100 100

Fig. 1. Examples of the VKC and the VKM problems on the same input graph: The two problems
have different optimal solutions for the same value of K. The left panel shows the input graph.
The middle panel shows the optimal solution in red for the VKC problem with K = 3. The right
panel shows the optimal solution in blue for the VKM problem with K = 3.

input graph for the placement of facilities so as to minimize the farthest (aggregate) dis-
tance of all vertices to their nearest facility. Both the VKC and the VKM problems have
many real-world applications—often in the same domain but with slightly different ob-
jective functions. For example, in urban development, they can be used to optimally
place various public service centers within a city. In communication networks, they can
be used to determine the optimal placement of computation sites for critical multiplex-
ing and the optimal placement of traffic merging sites while deploying network coding.

Formally, in both the VKC and the VKM problems, we are given an undirected
edge-weighted graph G = (V,E) and seek a subset of vertices S ⊆ V of cardi-
nality K. In the VKC problem, we are required to minimize maxv∈V minu∈S d(v, u)
while, in the VKM problem, we are required to minimize

∑
v∈V minu∈S d(v, u). Here,

d(u, v) = d(v, u) is the shortest-path distance between u and v in G. Figure 1 shows
examples of both these problems posed on the same graph for K = 3.

Both the VKC and the VKM problems are computationally NP-hard to solve op-
timally [33]. However, many heuristic and approximation algorithms have been devel-
oped for solving them in practice. For example, the Gonzalez (GON) algorithm [21,31]
is among the fastest algorithms proposed to solve the VKC problem in O(K|V |) time,
achieving a factor-2 approximation. Similarly, Partition Around Medoids (PAM) [55],
a local search procedure proposed for the VKM problem [5] arrives at a near-optimal
solution by repeatedly swapping a vertex from its current solution S with a vertex in
V \ S. It converges very quickly; and by restricting the number of swaps to a large
enough constant, it terminates in O(K2|V |2) time. We discuss more algorithms for
these two problems in the Related Work section.

Despite the existence of many previous works, one of the drawbacks of the existing
heuristic algorithms for the VKC and the VKM problems is that they require the input
graph G to be complete, in which the edge joining two vertices is also the shortest
path between them. This assumption is primarily made so that the heuristic algorithms
can focus on the combinatorially hard part of the problem. If G doesn’t satisfy this
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property, these heuristic algorithms can still be effective but should be invoked only
after computing the metric closure of G.

Technically, the metric closure of G can be computed in polynomial time by cal-
culating the all-pairs shortest-path (APSP) distances. However, APSP algorithms, such
as the Floyd-Warshall algorithm [25], are computationally expensive with their running
time complexity typically being cubic in |V |. Because of these limitations, APSP algo-
rithms quickly become a computational bottleneck for deploying heuristic algorithms
on large VKC and VKM instances.

Some APSP algorithms are based on fast matrix multiplication and achieve sub-
cubic running time complexities, but these are better than the Floyd-Warshall algorithm
only for very large values of |V |. There also exist several other algorithms with better
running time complexities [3,35], but these are much more complicated than the Floyd-
Warshall algorithm and rely on complicated data structures. Hence, in most cases, the
Floyd-Warshall algorithm is still the APSP algorithm of choice, notwithstanding the
issue of being the bottleneck for solving large VKC and VKM instances.

In this paper, we address this issue by using a novel algorithmic pipeline based
on a graph embedding algorithm called FastMap. In general, graph embeddings have
been used in many different contexts such as for shortest-path computations [15], multi-
agent meeting problems [46], community detection and block modeling [45], and social
network analysis [51]. They are useful as they facilitate geometric interpretations and
algebraic manipulations in vector spaces. FastMap [15,46] is a recently developed graph
embedding algorithm that runs in near-linear time3. It embeds the vertices of a given
undirected graph into a Euclidean space such that the pairwise Euclidean distances
between vertices approximate the shortest-path distances between them in the graph.

We use the FastMap embedding as an alternative to APSP algorithms, creating a
very efficient pipeline for solving FLPs on graphs. We provide empirical results demon-
strating the efficiency and effectiveness of our proposed FastMap pipeline for the VKC
and the VKM problems. We show that, for the same or similar qualities of solutions,
the FastMap pipeline is significantly faster than the Floyd-Warshall pipeline.

2 FastMap

FastMap [23] was introduced in the Data Mining community for automatically gener-
ating Euclidean embeddings of abstract objects. For many real-world objects such as
DNA strings, multi-media datasets like voice excerpts or images, medical datasets like
ECGs or MRIs, there is no geometric space in which they can be naturally visualized.
However, there is often a well-defined distance function for every pair of objects in the
problem domain. For example, the edit distance4 between two DNA strings is well de-
fined although an individual DNA string cannot be conceptualized in geometric space.

FastMap embeds a collection of abstract objects in an artificially created Euclidean
space to enable geometric interpretations, algebraic manipulations, and downstream
Machine Learning algorithms. It gets as input a collection of abstract objects O, where

3 linear time after ignoring logarithmic factors
4 The edit distance between two strings is the minimum number of insertions, deletions, or

substitutions that are needed to transform one to the other.
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Fig. 2. Illustration of how coordinates are computed in FastMap, borrowed from [15]: The left
panel illustrates the “cosine law” projection in a triangle. The right panel illustrates the process
of projecting onto a hyperplane that is perpendicular to OaOb.

D(Oi, Oj) represents the domain-specific distance between objects Oi, Oj ∈ O. A
Euclidean embedding assigns a κ-dimensional point pi ∈ Rκ to each object Oi. A
good Euclidean embedding is one in which the Euclidean distance χij between any
two points pi and pj closely approximates D(Oi, Oj). For pi = ([pi]1, [pi]2 . . . [pi]κ)

and pj = ([pj ]1, [pj ]2 . . . [pj ]κ), χij =
√∑κ

r=1([pj ]r − [pi]r)2.
FastMap creates a κ-dimensional Euclidean embedding of the abstract objects in

O, for a user-specified value κ. In the very first iteration, it heuristically identifies the
farthest pair of objects Oa and Ob in linear time. Once Oa and Ob are determined,
every other object Oi defines a triangle with sides of lengths dai = D(Oa, Oi), dab =
D(Oa, Ob), and dib = D(Oi, Ob), as shown in Figure 2 (left panel). The sides of the
triangle define its entire geometry, and the projection of Oi onto the line OaOb is given
by

xi = (d2ai + d2ab − d2ib)/(2dab). (1)

FastMap sets the first coordinate of pi, the embedding of Oi, to xi. In the subse-
quent κ − 1 iterations, the same procedure is followed for computing the remaining
κ − 1 coordinates of each object. However, the distance function is adapted for differ-
ent iterations. For example, for the first iteration, the coordinates of Oa and Ob are 0
and dab, respectively. Because these coordinates fully explain the true domain-specific
distance between these two objects, from the second iteration onward, the rest of pa
and pb’s coordinates should be identical. Intuitively, this means that the second itera-
tion should mimic the first one on a hyperplane that is perpendicular to the line OaOb,
as shown in Figure 2 (right panel). Although the hyperplane is never constructed ex-
plicitly, its conceptualization implies that the distance function for the second iteration
should be changed for all i and j in the following way:

Dnew(O
′
i, O

′
j)

2 = D(Oi, Oj)
2 − (xi − xj)

2. (2)

Here, O′
i and O′

j are the projections of Oi and Oj , respectively, onto this hyperplane,
and Dnew(·, ·) is the new distance function.
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Algorithm 1: FastMap: A near-linear-time graph embedding algorithm.
Input: G = (V,E), κ, and ϵ.
Output: pi ∈ Rr for all vi ∈ V .

1 for r = 1, 2 . . . κ do
2 Choose va ∈ V randomly and let vb = va;
3 for t = 1, 2 . . . C do // C is a constant.
4 {dai : vi ∈ V } ← ShortestPathTree(G, va);
5 vc ← argmaxvi

{d2ai −
∑r−1

j=1([pa]j − [pi]j)
2};

6 if vc == vb then
7 Break;

8 else
9 vb ← va; va ← vc;

10 {dai : vi ∈ V } ← ShortestPathTree(G, va);
11 {dib : vi ∈ V } ← ShortestPathTree(G, vb);
12 d′ab ← d2ab −

∑r−1
j=1([pa]j − [pb]j)

2;
13 if d′ab < ϵ then
14 Break;

15 for each vi ∈ V do
16 d′ai ← d2ai −

∑r−1
j=1([pa]j − [pi]j)

2;
17 d′ib ← d2ib −

∑r−1
j=1([pi]j − [pb]j)

2;
18 [pi]r ← (d′ai + d′ab − d′ib)/(2

√
d′ab);

19 return pi for all vi ∈ V .

FastMap can also be used to embed the vertices of a graph in a Euclidean space
to preserve the pairwise shortest-path distances between them. The idea is to view the
vertices of a given graph G = (V,E) as the objects to be embedded. As such, the
Data Mining FastMap algorithm cannot be directly used for generating an embedding
in linear time. This is because it assumes that the distance dij between any two objects
Oi and Oj can be computed in constant time, independent of the number of objects
in the problem domain. However, computing the shortest-path distance between two
vertices depends on the size of the graph.

The issue of having to retain (near-)linear time complexity can be addressed as
follows: In each iteration, after we heuristically identify the farthest pair of vertices
Oa and Ob, the distances dai and dib need to be computed for all other vertices Oi.
Computing dai and dib for any single vertex Oi can no longer be done in constant time
but requires O(|E|+ |V | log |V |) time instead [27]. However, since we need to compute
these distances for all vertices, computing two shortest-path trees rooted at each of the
vertices Oa and Ob yields all necessary distances in one shot. The complexity of doing
so is also O(|E| + |V | log |V |), which is only linear in the size of the graph5. The

5 unless |E| = O(|V |), in which case the complexity is near-linear in the size of the input
because of the log |V | factor



6 O. Thakoor et al.

4

5

2

8

10

9

3

4

A

B

C D

E

G

F

SolutionDistance Matrix

Input Graph Euclidean Embedding

FastMap

Gon

GonFloyd-
Warshall

4

5

2

8

10

9

3

4

B

C

G

F

A

D

E

Fig. 3. The FastMap pipeline and its comparison with the Floyd-Warshall pipeline: The FastMap
pipeline uses a Euclidean embedding instead of an APSP distance matrix (left). The distortion in
the APSP distances implicitly produced by FastMap (right) rarely affects the quality of the final
solution.

amortized complexity for computing dai and dib for any single vertex Oi is therefore
near-constant time.

The foregoing observations are used in [46] to build a graph-based version of FastMap
that embeds the vertices of a given undirected graph in a Euclidean space in near-
linear time. The Euclidean distances approximate the pairwise shortest-path distances
between vertices. Algorithm 1 presents the pseudocode for this algorithm.

A slight modification of this FastMap algorithm, presented in [15], can also be used
to preserve consistency and admissibility of the Euclidean distance approximation used
as a heuristic in A* search for shortest-path computations. In both [15] and [46], κ
is user-specified, but a threshold parameter ϵ is introduced to detect large values of κ
that have diminishing returns on the accuracy of approximating pairwise shortest-path
distances.

3 The FastMap Pipeline

We will now exploit the efficiency of the FastMap algorithm towards APSP computa-
tions. After FastMap computes the Euclidean embedding of the given graph in near-
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Fig. 4. Efficiency of the FastMap pipeline for solving the VKC (top) and VKM (bottom) prob-
lems: For the same quality of the final VKC solution, FastMap+GON takes 0.34 s, while Floyd-
Warshall+GON takes 520 s. Here, the FastMap pipeline yields a 1529× speedup. For the same
quality of the final VKM solution, FastMap+PAM takes 360 s, while Floyd-Warshall+PAM
takes 680 s. Here, the FastMap pipeline yields a 1.887× speedup. The final solutions are marked
by the green vertices.

linear time, the Euclidean distance between any pair of its vertices serves to approxi-
mate the shortest-path distance between them. Since Euclidean distances can be com-
puted in O(κ) time, independent of the size of the graph, FastMap efficiently sets up
the groundwork for solving the VKC and VKM problems.

Figures 3 and 4 show the FastMap pipeline in comparison with the Floyd-Warshall
pipeline for solving the VKC and VKM problems. While both pipelines can invoke the
same heuristic algorithm of choice for solving the VKC or VKM problem, the FastMap
pipeline is much faster because of its efficiency in the APSP computations.

For the VKC problem, we can use the GON algorithm [21, 31]. It is simple to im-
plement, has a low running time complexity, and yields a factor-2 approximation. In the
first iteration, it picks a random vertex and nominates it as a center. In each subsequent
iteration, it picks a vertex that is farthest away from any of the existing centers and
nominates it as an additional new center. Thus, a solution is obtained after K iterations.
GON runs in O(K|V |) time and produces a factor-2 approximation.

For the VKM problem, we can use the PAM algorithm [55]. Although PAM has
several variants, a simple version of it with a naive implementation suffices for demon-
strating the effectiveness of our FastMap pipeline. In fact, improved versions of PAM
increase the benefits of the FastMap pipeline since the bottleneck of APSP computations



8 O. Thakoor et al.

K Instance Vertices Edges Quality Factor Speedup

5

queen7_7 49 476 0.800 3.483
myciel7 191 2360 0.889 50.328

queen16_16 256 6320 1.167 60.620
le450_25b 450 8263 1.333 254.702

10

queen8_8 64 728 1.000 3.585
games120 120 638 0.750 16.598
myciel7 191 2360 1.500 24.973
le450_5c 450 9803 1.333 98.959

20

myciel6 95 755 1.000 5.887
miles1000 128 3216 1.333 4.728

queen14_14 196 4186 1.500 13.760
le450_5d 450 9757 1.250 59.687

40

queen10_10 100 1470 1.500 3.348
games120 120 638 1.167 7.991

queen12_12 144 2596 1.333 6.263
queen16_16 256 6320 1.000 13.227
Table 1. Results for VKC on DIMACS.

K Instance Vertices Edges Quality Factor Speedup

5

n0100k6p0.6 100 483 1 22.704
n0300k4p0.3 300 776 1 290.837
n0600k6p0.6 600 2865 1 810.219
n0600k4p0.3 600 1564 1 1197.670

10

n0100k4p0.6 100 315 1 12.446
n0400k4p0.6 400 1277 1.333 267.190
n0700k6p0.6 700 3355 1 537.126
n0700k4p0.3 700 1832 1 771.443

20

n0100k4p0.3 100 262 1 9.831
n0200k4p0.6 200 651 1.5 40.005
n0600k6p0.6 600 2865 1 278.556
n0700k6p0.3 700 2705 1.333 472.860

40

n0100k4p0.6 100 315 2 6.049
n0400k6p0.6 400 1951 1 88.304
n0600k4p0.3 600 1564 1.333 268.690
n0700k4p0.6 700 2244 1.333 209.628

Table 2. Results for VKC on Small World.

becomes more pronounced. PAM constructs an initial solution greedily. It then invokes
local search to improve the quality of the solution by repeatedly swapping a vertex from
its current solution S with a vertex in V \ S. While a non-trivial bound on the number
of iterations required for convergence is not known, fewer than K iterations are usually
observed in practice [57, 63]. In addition, with slightly modified swapping conditions,
convergence within a polynomial number of iterations can be guaranteed [5].

Of course, the FastMap pipeline introduces some intermediate distortion in the
APSP distances. But this distortion is usually not much and is a very small price to
pay for huge benefits in running times, both complexity-wise and in actual wall-clock
times. In fact, for the examples chosen in Figures 3 and 4, the FastMap pipeline does not
change the qualities of the final solutions. But it runs several orders of magnitude faster
than the Floyd-Warshall pipeline. The running time of the GON or PAM algorithm is
slightly higher in the FastMap pipeline compared to that in the Floyd-Warshall pipeline.
This is because, in the FastMap pipeline, the pairwise distances cannot be looked up in
a distance matrix but should now be computed using the Euclidean coordinates, requir-
ing O(κ) time. However, since κ is a small number, usually less than 5, the enormous
savings in the APSP computations continue to be the dominant factor benefiting the
FastMap pipeline.

The same patterns in the benefits of the FastMap pipeline are also observed on
several kinds of benchmark problem instances, as reported in the next section.

4 Experimental Results

In this section, we present experimental results comparing the FastMap pipeline and
the Floyd-Warshall pipeline for solving VKC and VKM problem instances. For solving
the VKC problem instances, the FastMap pipeline uses FastMap+GON and the Floyd-
Warshall pipeline uses Floyd-Warshall+GON. For solving the VKM problem instances,
the FastMap pipeline uses FastMap+PAM and the Floyd-Warshall pipeline uses Floyd-
Warshall+PAM. We implemented all algorithms and experimentation procedures using
Python3 with the NetworkX library. For the Floyd-Warshall algorithm, several state-of-
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K Instance Vertices Edges Quality Factor Speedup

5

pmed2 100 193 0.859 5.550
pmed9 200 785 1.018 11.435
pmed29 600 7042 0.943 33.606
pmed39 900 15896 – –

10

pmed5 100 196 0.865 3.189
pmed13 300 1760 1.174 10.573
pmed21 500 4909 0.962 14.950
pmed38 900 15898 – –

20

pmed10 200 786 0.971 3.633
pmed17 400 3142 1.020 7.908
pmed29 600 7042 1.105 11.721
pmed39 900 15896 – –

40

pmed6 200 786 1.460 2.813
pmed14 300 1771 1.204 4.100
pmed28 600 7054 1.129 6.985
pmed40 900 15879 – –
Table 3. Results for VKC on ORLib.

K Instance Vertices Edges Quality Factor Speedup

5

n0100 100 99 0.981 36.152
n0300 300 299 1.168 346.328
n0600 600 599 1.036 1437.121
n1000 1000 999 – –

10

n0200 200 199 0.841 83.738
n0500 500 499 1.027 495.447
n0700 700 699 0.974 1008.908
n1000 1000 999 – –

20

n0300 300 299 1.020 110.636
n0400 400 399 1.217 200.612
n0600 600 599 0.888 301.079
n1000 1000 999 – –

40

n0300 300 299 1.452 76.859
n0500 500 499 1.549 220.077
n0700 700 699 1.051 446.138
n1000 1000 999 – –
Table 4. Results for VKC on Tree.
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K Instance Vertices Edges Quality Factor Speedup

5

orz106d 335 602 0.846 316.146
lak102d 519 920 1.000 839.839
hrt002d 754 1300 1.192 2093.917
lak526d 954 1715 – –

10

orz203d 244 442 1.000 106.603
den404d 358 632 0.889 219.150
orz105d 679 1245 1.000 733.192
lak526d 954 1715 – –

20

ost102d 249 447 1.000 65.042
lak105d 443 766 1.167 222.258
lak104d 851 1570 1.125 822.030
den009d 1003 1863 – –

40

den404d 358 632 1.333 97.559
den408d 548 991 1.250 226.418
lak104d 851 1570 1.200 582.540
den009d 1003 1863 – –

Table 5. Results for VKC on MovingAI.

K Instance Vertices Edges Quality Factor Speedup

5

queen7_7 49 476 1.244 0.647
queen10_10 100 1470 1.064 1.625
queen14_14 196 4186 1.153 2.116
queen16_16 256 6320 1.194 2.302
le450_15c 450 16680 1.178 3.947
p-hat700-1 700 60999 1.213 5.905

10

queen5_5 25 160 1.136 0.686
miles500 128 1170 1.208 0.805

queen14_14 196 4186 1.193 1.199
le450_5d 450 9757 1.159 1.036
le450_5a 450 5714 1.183 1.776

p-hat700-1 700 60999 – –
Table 6. Results for VKM on DIMACS.

the-art implementations with code-level optimizations are available. They work partic-
ularly well for certain classes of graphs. However, due to the inherent difference in the
asymptotic complexities of the two pipelines, on large enough instances with no special
properties, the Floyd-Warshall pipeline can be shown to be significantly slower than
the FastMap pipeline. Hence, for a fair comparison of the two pipelines on benchmark
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K Instance Vertices Edges Quality Factor Speedup

5

n0300k6p0.3 300 1168 1.133 1.691
n0400k6p0.3 400 1562 1.120 2.244
n0500k4p0.3 500 1281 1.241 2.107
n0600k4p0.3 600 1564 1.253 2.912
n0700k6p0.3 700 2705 1.173 3.157
n0800k4p0.6 800 2561 – –

10

n0200k6p0.3 200 787 1.187 0.971
n0300k6p0.6 300 1440 1.124 1.008
n0400k6p0.6 400 1951 1.211 1.492
n0700k6p0.3 700 2705 1.157 2.200
n0800k4p0.3 800 2062 1.214 1.781
n0800k4p0.6 800 2561 – –

Table 7. Results for VKM on Small World.

K Instance Vertices Edges Quality Factor Speedup

5

pmed8 200 792 1.242 0.853
pmed14 300 1771 1.236 1.139
pmed20 400 3144 1.410 1.200
pmed22 500 4896 1.153 1.350
pmed28 600 7054 1.411 3.035
pmed39 900 15896 – –

10

pmed2 100 193 1.162 1.020
pmed14 300 1771 1.195 1.206
pmed15 300 1754 1.197 1.152
pmed17 400 3142 1.261 1.204
pmed28 600 7054 1.279 1.894
pmed39 900 15896 – –

Table 8. Results for VKM on ORLib.

K Instance Vertices Edges Quality Factor Speedup

5

n0100 100 99 1.287 1.140
n0200 200 199 1.398 2.469
n0300 300 299 1.393 1.624
n0500 500 499 1.447 3.398
n0700 700 699 1.361 4.695
n0900 900 899 – –

10

n0100 100 99 1.435 1.160
n0200 200 199 1.484 0.971
n0300 300 299 1.593 1.354
n0400 400 399 1.511 1.301
n0500 500 499 1.405 1.515
n0800 800 799 – –
Table 9. Results for VKM on Tree.

K Instance Vertices Edges Quality Factor Speedup

5

lak110d 168 290 1.070 1.452
orz203d 244 442 1.037 2.013
den404d 358 632 0.988 1.239
ht_store 490 910 1.030 4.428
orz105d 679 1245 1.027 4.059
den405d 925 – –

10

lak110d 168 290 1.018 1.342
orz203d 244 442 1.041 1.688
den404d 358 632 1.004 1.716
lak107d 393 710 1.038 2.272
den408d 548 991 1.025 1.476
orz102d 738 1359 – –

Table 10. Results for VKM on MovingAI.

problem instances, while focusing on the quality of the solutions produced, we used a
vanilla implementation of the Floyd-Warshall algorithm meant for general graphs. For
the FastMap algorithm in Algorithm 1, we used κ = 4 and ϵ = 10−4. All experiments
were conducted on a laptop with a 1.6GHz Intel Core i5 processor and 8GB 1600MHz
DDR3 memory.

We used both VKC and VKM problem instances derived from different benchmark
datasets. These include the DIMACS6, Small World, ORLib7, Tree, and MovingAI8

datasets. For the DIMACS instances, each edge was assigned an integer weight chosen
uniformly at random from the interval [1, 10]. The Small World instances were gener-
ated using the Newman-Watts-Strogatz graph generator in NetworkX. All edges were
assigned a unit weight. The names of these instances indicate the parameter values for
n (the number of vertices), k (the number of neighbors in a ring), and p (the probability
of adding a new edge). The original ORLib graphs already have weights on the edges,
although different values of K were chosen for the experiments. The Tree instances
were generated using NetworkX. Each edge was assigned an integer weight chosen

6 The DIMACS instances were generated using the DIMACS graphs from http://networ
krepository.com/dimacs.php and https://mat.tepper.cmu.edu/COLOR
/instances.html.

7 The ORLib instances were generated using the ORLib graphs from http://people.bru
nel.ac.uk/~mastjjb/jeb/orlib/pmedinfo.html.

8 The MovingAI instances were generated using the MovingAI graphs from https://movi
ngai.com/benchmarks.
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uniformly at random from the interval [1, 10]. For the MovingAI instances, all edges
were assigned a unit weight.

Because various components of the two pipelines use randomization, we used 5
trials for each pipeline on each problem instance and compared the best solutions found
by them. This comparison is reported as a “Quality Factor”. In essence, the Quality
Factor is the cost of the solution found by the FastMap pipeline divided by the cost
of the solution found by the Floyd-Warshall pipeline. If the Quality Factor = 1, the
FastMap pipeline retains the same quality of the final solution as the Floyd-Warshall
pipeline. If it is > 1, the FastMap distortion in the APSP distances produces a costlier
solution compared to the Floyd-Warshall pipeline. Sometimes, the Quality Factor can
even be < 1, indicating that the FastMap pipeline produces a better solution compared
to the Floyd-Warshall pipeline. This can happen because of randomization and other
heuristic components in the two pipelines. We also report a “Speedup” factor, which is
the time taken by the Floyd-Warshall pipeline in the 5 trials divided by the time taken
by the FastMap pipeline in the 5 trials.

Tables 1, 2, 3, 4, and 5 show the results on some representative VKC problem in-
stances derived from the DIMACS, Small World, ORLib, Tree, and MovingAI datasets,
respectively. In these tables, a “–” indicates that the Floyd-Warshall pipeline timed out
after 1000 s on each of the 5 trials. In such cases, the FastMap pipeline still generated
a solution. The FastMap pipeline yields significant speedup on all the datasets for only
marginal compromises on the solution qualities. In fact, the FastMap pipeline is orders
of magnitude faster than the Floyd-Warshall pipeline for larger problem instances. Fig-
ure 5 visualizes and compares the running times of the two pipelines on all the problems
instances, barring the ones on which the Floyd-Warshall pipeline timed out.

Tables 6, 7, 8, 9, and 10 show the results on some representative VKM problem in-
stances derived from the DIMACS, Small World, ORLib, Tree, and MovingAI datasets,
respectively. In these tables, a “–” indicates that the Floyd-Warshall pipeline timed out
after 1000 s on each of the 5 trials. In such cases, the FastMap pipeline still generated
a solution. The FastMap pipeline yields significant speedup on all the datasets for only
marginal compromises on the solution qualities. Figure 6 visualizes and compares the
running times of the two pipelines on all the problems instances, barring the ones on
which the Floyd-Warshall pipeline timed out. The speedup for VKM problem instances
is less than that for VKC problem instances since the PAM algorithm is not as efficient
as the GON algorithm.

5 Related Work

The VKC problem we considered in this paper is the uncapacitated unweighted ver-
sion. Several other variants have been studied. These include the capacitated VKC
problem [43], where each center can serve only a fixed number of vertices, the het-
erogeneous capacitated VKC problem [8], which is similar to the capacitated VKC
problem, except that the capacities of different centers may be different, the aligned K-
center problem in Euclidean space [6], where the centers must be selected from a line
or a polygon, the edge-dilation VKC problem [44], where the goal is to minimize the
maximum ratio of the distance between two vertices via their respective centers to their
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shortest-path distance, the fault-tolerant VKC problem [42], where each selected center
must have a set of α ≤ K centers close to it, the p-neighbor VKC problem [12], where,
given an integer p, the goal is to minimize the maximum distance of any non-center
vertex to its pth closest center, among many other variants.

Several exact algorithms have been proposed for the VKC problem considered in
this paper. They are primarily based on Integer Programming or Mixed Integer Pro-
gramming formulations [1, 7, 13, 16, 18, 22, 49]. None of them run in polynomial time
since the VKC problem is NP-hard to solve optimally. Several meta-heuristic algo-
rithms have also been proposed, such as Tabu Search [48], Variable Neighborhood
Search [37, 48], Scatter Search [50], GRASP [50], Memetic Genetic Algorithms [53],
Harmony Search [41], and Bee Colony Optimization [19]. While these algorithms may
provide better performance in practice, they are not guaranteed to converge quickly or
to find optimal solutions. The VKC problem is factor-2 approximable in polynomial
time. The polynomial-time algorithms that guarantee this approximation include the
SH algorithm [52, 59], and its refinements—the GON algorithm [21, 31], and the HS
algorithm [36, 52]. The greedy GR algorithm [54, 56], the SCR algorithm [56], and the
CDSH algorithm [30] are among the polynomial-time heuristic algorithms that yield the
best empirical performance. However, these algorithms are significantly slower than the
GON algorithm. In this paper, we used the GON algorithm because of its lower runtime.

The VKM problem is closely related to the general uncapacitated facility location
problem [17], with a restriction on the number of facilities (centers) that can be opened,
but with no costs for opening them. One of the early proposals for solving the VKM
problem was a reverse greedy algorithm [14]. It starts by opening all vertices as centers
and, in each iteration, closes a center that increases the total cost by the least amount,
until K of them remain. It achieves an O(log |V |) approximation factor. A frequently
used local search algorithm is the PAM algorithm [55]. It iteratively finds cost-lowering
swaps of vertices into and out of the current candidate solution, until convergence to a
local optimum is achieved. While we used a simple version of PAM in this paper, a
more generalized version with p swaps allowed in each iteration, along with a slight
modification in the swapping condition, is presented in [5]. This generalized version of
PAM expends O(|V |O(p)) time in each iteration but is guaranteed to converge after a
polynomial number of iterations, achieving an approximation factor of 3+2/p. Another
polynomial-time algorithm that yields a factor-6 2

3 approximation is based on a Linear
Programming relaxation and rounding scheme [10]. Similar techniques have also been
proposed by others. A factor-4 polynomial-time approximation algorithm is presented
in [38, 39]. An algorithm that achieves an approximation factor of 3.25(1 + δ) with
running time O(K3|V |2/δ2) is presented in [11]. This algorithm outperforms PAM
empirically [20]. However, PAM is still very competitive and is used in this paper for
its simplicity. Another algorithm that achieves an approximation factor of 1 +

√
3 + ϵ

with running time |V |O(1/ϵ2) is presented in [47].

A classical algorithm for APSP computations is the Floyd-Warshall algorithm [25].
It uses dynamic programming and runs in O(|V |3) time. Johnson’s algorithm [40] runs
in O(|V ||E|+ |V |2 log |V |) time, but it assumes the absence of negative-cost cycles in
the graph. For directed graphs with non-negative weights on the edges, APSP compu-
tations are closely related to the distance product of two matrices. A popular algorithm
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that exploits this connection has running time O(|V |3(log log |V |/ log |V |)1/2) [26,60].
For graphs with integer weights on the edges, [34] presents an algorithm that runs in
O(|V ||E| + |V |2 log log |V |) time. For undirected graphs with integer weights on the
edges, the running time can be improved to O(|V ||E|) [61, 62]. For general graphs,
several algorithms have improved logarithmic factors in their running times. For exam-
ple, [35] achieves a running time of O(|V |3 log log |V |/ log2 |V |). Algorithms for fast
matrix multiplication can also be invoked to obtain sub-cubic-time APSP algorithms
for a large class of “geometrically weighted” graphs [9]. For graphs embedded in a 2D
Euclidean space, such an algorithm has running time O(|V |2.922). Several other works,
such as [3,4,28,29,58] have shown that APSP computations can be done in Õ(M(|V |))
time for unweighted graphs and in Õ(

√
|V |3M(|V |)) time for weighted graphs, where

M(n) is the time complexity of n × n matrix multiplication, currently known to be
O(n2.37286) [2].

6 Conclusions and Future Work

FastMap is a near-linear-time algorithm that embeds the vertices of a graph in a Eu-
clidean space while approximately preserving the shortest-path distances as Euclidean
distances for all pairs of its vertices. In this paper, we presented a FastMap-based ap-
proach for solving FLPs, adding to the list of FastMap’s previous applications in multi-
agent domains. We demonstrated the efficiency and effectiveness of our novel FastMap
pipeline on two fundamental and vital FLPs defined on graphs: the VKC and the VKM
problems. Both these problems are NP-hard to solve optimally; but enabling efficient
heuristics and approximation algorithms is the key to solving them well in practice.
Existing state-of-the-art heuristic algorithms rely on the input being a complete graph
with edges representing shortest paths. Consequently, an input graph that doesn’t sat-
isfy this property has to be first rendered amenable by computing its metric closure via
APSP algorithms like the Floyd-Warshall algorithm, which becomes a critical bottle-
neck when deploying fast heuristics on large VKC and VKM instances. Our proposed
FastMap pipeline circumvents this barrier of APSP computations. Through empirical
results on a wide variety of VKC and VKM instances, we showed that the distortion
of pairwise distances in the FastMap embedding does not affect the quality of the final
output by much: For the same or similar qualities of solutions, the FastMap pipeline is
significantly faster than the Floyd-Warshall pipeline.

In future work, we will consider reducing the distortion of APSP distances caused
by the FastMap embedding using Machine Learning techniques to learn the correction
factors. In fact, the FastMap coordinates can themselves be used as features for the
learning, as illustrated in [32]. The key challenge for such a self-supervised approach is
to minimize the number of training samples and retain the end-to-end efficiency of the
pipeline. Another direction of future work is to apply our efficient FastMap pipeline to
other kinds of FLPs.
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