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Bench-MR: A Motion Planning Benchmark
for Wheeled Mobile Robots
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Abstract—Planning smooth and energy-efficient paths for
wheeled mobile robots is a central task for applications ranging
from autonomous driving to service and intralogistic robotics.
Over the past decades, several sampling-based motion-planning
algorithms, extend functions and post-smoothing algorithms have
been introduced for such motion-planning systems. Choosing the
best combination of components for an application is a tedious
exercise, even for expert users. We therefore present Bench-MR,
the first open-source motion-planning benchmarking framework
designed for sampling-based motion planning for nonholonomic,
wheeled mobile robots. Unlike related software suites, Bench-MR
is an easy-to-use and comprehensive benchmarking framework
that provides a large variety of sampling-based motion-planning
algorithms, extend functions, collision checkers, post-smoothing
algorithms and optimization criteria. It aids practitioners and
researchers in designing, testing, and evaluating motion-planning
systems, and comparing them against the state of the art on com-
plex navigation scenarios through many performance metrics.
Through several experiments, we demonstrate how Bench-MR
can be used to gain extensive insights from the benchmarking
results it generates.

Index Terms—Nonholonomic Motion Planning; Wheeled
Robots; Software Tools for Benchmarking and Reproducibility.

I. INTRODUCTION

MOTION PLANNING is a central component for au-
tonomous navigation in various real-world domains,

such as autonomous driving, warehouse logistics and service
robotics [1]. Over the years, many different sampling-based
motion-planning algorithms and related components, such as
extend functions and post-smoothing algorithms, have been
introduced for such motion-planning systems. Choosing from
this plethora of components to create a motion-planning sys-
tem or to design a novel component for one is a complex
task that requires significant effort in testing. To reduce this
effort, we have created Bench-MR, the first open-source
benchmarking framework designed for sampling-based motion
planning for nonholonomic, wheeled mobile robots in complex
navigation scenarios resembling real-world applications.
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Fig. 1. Selection of environments provided by Bench-MR: City grid from the
Moving AI path-finding benchmark [2] (top left), polygon-based warehouse
environment (top right), and thresholded occupancy grid from the Freiburg
SLAM dataset [3] (bottom).

Bench-MR is based on two main pillars, namely the motion-
planning components (consisting of the sampling-based mo-
tion planning algorithms, extend functions, collision checkers,
post-smoothing algorithms and optimization criteria) and the
evaluation components (consisting of the navigation scenarios
and performance metrics), see Fig. 2. We chose all these
components carefully to match the application constraints.
For example, we focus on polygon-based collision checking
since it presents a challenge for motion-planning algorithms
which make inefficient use of collision checking. Furthermore,
we support the evaluation of motion-planning systems for
particular settings of navigation scenarios, such as varying
obstacle density. Overall, Bench-MR is a highly configurable
and expandable software suite with representative state-of-the-
art motion-planning and evaluation components. It helps one
to gain novel insights, such as i) how some combinations
of motion-planning and post-smoothing algorithms achieve
better performance than asymptotically (near) optimal motion-
planning algorithms or ii) how changes of the obstacle density
in navigation scenarios can affect the planning efficiency and
the resulting path quality.

Much of Bench-MR builds on the Open Motion Planning
Library (OMPL) [4], but we also provide interfaces to im-
plementations of motion-planning algorithms (such as SBPL
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planners [5]) and extend functions (such as POSQ [6] and
continuous-curvature steering [7]) outside of OMPL. Thus,
Bench-MR offers users access to state-of-the-art components
of sampling-based motion-planning systems for wheeled mo-
bile robots, while being less confined to particular implemen-
tations of these components.

II. RELATED WORK

Several researchers have recently introduced benchmarking
frameworks for analyzing motion-planning algorithms for dif-
ferent robotic systems. We discuss some of the most prominent
ones in the following.

Sturtevant [2] has introduced a benchmarking framework
for path-planning algorithms for robotic systems without kine-
matic constraints. The Moving AI path-finding benchmark
provides many navigation scenarios on different grid-based
environments, such as city grids. Bench-MR includes some of
their environments (and supports their format) but additionally
it provides many other environment classes, motion-planning
components and evaluation components for wheeled mobile
robots.

Luo et al. [8] have introduced a benchmarking framework
for asymptotically optimal motion-planning that supports only
straight-line connections and compares them only on four
navigation scenarios. Bench-MR, on the other hand, provides
many diverse navigation scenarios for wheeled mobile robots.

Moll et al. [9] have introduced a general benchmarking
framework for motion-planning algorithms that is highly cou-
pled with OMPL. It is highly customizable but lacks of specific
navigation scenarios for wheeled mobile robots. Bench-MR,
on the other hand, provides navigation scenarios, performance
metrics and extend functions for wheeled mobile robots and,
similar to Cohen et al. [10], different classes of motion-
planning algorithms, including lattice-based planners.

Althoff et al. [11] have introduced a benchmarking frame-
work for autonomous cars driving on roads. Bench-MR, on
the other hand, focuses on wheeled mobile robots in complex
and cluttered static (indoor and outdoor) environments.

Additionally the website [12] provides several benchmarks
for different robotic systems but contains only a small number
of navigation scenarios for wheeled mobile robots. Instead
PathBench [13] is a framework for testing recent machine
learning based algorithms for planning in 2D or 3D grid
environments without focusing on mobile robots.

A number of authors [14], [15], [16], [17] have introduced
benchmarking frameworks for motion-planning algorithms in
dynamic environments. Bench-MR, on the other hand, focuses
on motion planning in static environments, which is a funda-
mental operation often performed during robot navigation in
dynamic environments.

III. ARCHITECTURE OF BENCH-MR

Bench-MR is split into a Python front-end and a C++ back-
end, see Fig. 2. The front-end provides a flexible interface
for setting up and performing evaluations of motion-planning
systems through Jupyter notebooks. For example, the front-end
allows the user to select appropriate navigation scenarios (such
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Fig. 2. Architecture of Bench-MR. The components necessary for motion
planning are shown in the box on the left (turquoise), and the utilities used in
the evaluation are shown in the box on the right (orange). The implementation
is split into a C++ back-end for running the performance-critical motion-
planning components, and a Python front-end for providing a flexible interface
to the design and evaluation of the benchmark scenarios through Jupyter
notebooks.

as environment classes) and performance metrics related to the
planning efficiency and the resulting motion quality. It then
provides the user with extensive evaluation reports and plotting
capabilities. The back-end performs the (compute-intensive)
evaluations by using the motion-planning components in the
blue box and the evaluation components in the orange box.
We chose all components based on their scientific impact
and their popularity in the open-source community [4], [18],
[7]. Our choices are presented in Sec. IV-V. JSON files
are used for communicating both settings from the front-end
to the back-end and the evaluation results in the opposite
direction. The open-source code of Bench-MR is available at
https://github.com/robot-motion/bench-mr. This website also
contains extensive documentation, including tutorials and ex-
amples, and up-to-date benchmarking results, that are auto-
matically generated.

Bench-MR provides interfaces to two existing open-source
motion-planning libraries, namely OMPL [4] and SBPL [5],
enabling the user to utilize their components as part of Bench-
MR. We expose many settings from OMPL and SBPL through
the Python interface, to allow the user to change the parameters
of their components. Cross-component settings in Bench-MR
(such as the computation time limit) can be changed via a
common interface.

IV. BENCH-MR PLANNING COMPONENTS

In this section, we explain the Bench-MR motion-planning
components.

A. Sampling-Based Motion-Planning Algorithms

Bench-MR provides many different sampling-based motion-
planning algorithms that belong to to three different classes

https://github.com/robot-motion/bench-mr
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(as suggested by prior work, such as [19], [20], [21]): feasible
planners, asymptotically (near) optimal planners and lattice-
based planners.1 For feasible and asymptotically (near) opti-
mal planners, Bench-MR provides the option to use random
sampling with a uniform distribution and goal biasing or
deterministic Halton sampling [21], [19], [22]. We choose the
most prominent open-source implementation for each class.

1) Feasible Planners: Feasible planners eventually find a
path with probability one but not necessarily an optimal path.
Bench-MR currently provides feasible planners from OMPL
(such as RRT [23], PRM [24], SPARS [25], RRT [23], [26]
using random forward propagation, EST [27], SBL [28] and
STRIDE [29]).

2) Asymptotically (Near) Optimal Planners: Asymptot-
ically (near) optimal planners eventually find an optimal
path with probability one. Bench-MR currently provides
optimization-based planners from OMPL (such as RRT∗ and
PRM∗ [30], BFMT [31], RRT# [32]), informed search-based
planners (such as Informed RRT∗ [33], SORRT∗ [34] and
BIT∗ [35]), CForest [36] and near-optimal planners (such as
SST [37], an asymptotically near-optimal incremental version
of RRT, SPARS [25] and SPARS2 [38]).

3) Lattice-Based Planners: Lattice-based planners use state
lattices with predefined motion primitives that encode differ-
ential constraints [39]. Bench-MR currently provides lattice-
based planners from SBPL (such as ARA∗ [5], AD∗ [18],
MHA∗ [40] and ANA∗ [41]).

B. Extend Functions

Depending on the class of a sampling-based motion-
planning algorithm, Bench-MR provides two classes of extend
functions, namely those that use random forward propagation
for a given robot dynamical model and those that solve a two-
point boundary value problem [42] to connect two given robot
configurations exactly for a given steer function. We refer the
reader to [26] for an analysis of the properties of both classes.
We also include the predefined motion primitives for lattice-
based planners here since they can be understood as a discrete
set of predefined controls.

1) Robot Dynamics Models: Bench-MR provides two robot
dynamics models, namely a kinematic car (ẋ = vcosθ , ẏ =
vsinθ , θ̇ = v/L · tanδ ) and a kinematic single-track model (ẋ =
vcosθ , ẏ = vsinθ , θ̇ = v/L · tanδ , δ̇ = vδ ), where x and y are
the Cartesian coordinates according to a fixed world frame, L
is the length of the car, v is the tangential velocity, θ is the
heading, δ is the steering angle and δ̇ is its rate [1].

2) Steer Functions: Bench-MR provides common steer
functions, namely Dubins [43], Reeds-Shepp [44], Continuous
Curvature [45], [7] and POSQ [6], [46].

3) Motion Primitives: Bench-MR provides motion primi-
tives from SBPL but also supports changing them by means
of the primitive file interface of SBPL.

1For the sake of brevity, we do not list all included planners with detailed
explanations and instead direct the reader to the corresponding references.

C. Collision Checkers

Bench-MR provides a two-dimensional grid-based approach
to collision checking, which checks whether the robot (mod-
eled as a polygon or single point) collides with blocked cells.
It also includes a two-dimensional polygon-based approach
to collision checking, which uses the separating axis theo-
rem [47] to check whether the robot (modeled as a convex
polygon) intersects with obstacles (also modeled as convex
polygons). Finally, Bench-MR provides the distance field,
represented as a grid whose cells are annotated with the
distance to the closest obstacle, for all environment classes.

D. Post-Smoothing Algorithms

Bench-MR includes several post-smoothing algorithms from
OMPL, such as B-Spline, Shortcut and SimplifyMax [4].
It also includes the recently introduced GRradient-Informed
Post Smoothing (GRIPS) algorithm [48], a hybrid approach
that combines short-cutting with locally optimized waypoint
placement based on the distance field of the environment.

E. Optimization Criteria

Bench-MR provides optimization criteria by allowing user-
defined cost functions for several motion-planning algorithms.

V. BENCH-MR EVALUATION COMPONENTS

In this section, we explain the Bench-MR evaluation com-
ponents.

A. Navigation Scenarios

A navigation scenario consists of a specification of the
shapes of obstacles in an environment, the shape of a robot,
and its start and goal poses. Bench-MR provides the two com-
mon environment classes used by motion-planning systems,
namely grid-based and (convex) polygon-based environments.
It provides both predefined and procedurally-generated envi-
ronments for both classes.

1) Predefined Grid-Based Environments: Bench-MR pro-
vides two classes of predefined grid-based environments. It
includes a selection of city grids from the Moving AI path-
finding benchmark [2], consisting of city layouts of sizes
ranging from 256× 256 to 1024× 1024 cells. An example
is the Berlin_0_256 grid in Fig. 1 (top left). It also
provides image-based grids that can be created via an interface
from grey-scale images by thresholding with a user-defined
threshold (a common representation for maps generated by
SLAM algorithms [3]). Examples are shown in Fig. 1 (bottom)
and Fig. 3.

2) Procedurally-Generated Grid-Based Environments:
Bench-MR provides two classes of procedurally-generated
grid-based environments to allow the user to vary environment
characteristics (such as the environment complexity) in small
steps. It provides random outdoor-like environments (with
occasional small obstacles, such as trees) with a desired
percentage of blocked cells γ . These environments are gen-
erated by starting with only unblocked cells and repeatedly
sampling a cell with a uniform distribution and making it
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Fig. 3. Predefined grid-based environment obtained from a gray-scale image
of an Intel office building [3].

blocked. Examples are shown in Fig. 4 (top). It also provides
random indoor-like environments (with complex networks of
rectangular spaces, such as rooms and corridors) with a desired
minimum corridor width r. They are generated by starting
with only blocked cells and, for a predefined number of steps,
repeatedly sampling a cell with a uniform distribution and
applying a modified RRT exploration algorithm to connect
it to the nearest tree node with either horizontal or vertical
unblocked corridors of the desired minimum corridor width.
Examples are shown in Fig. 4 (bottom).

Fig. 4. Procedurally-generated grid-based environments, namely random
outdoor-like environments with different percentages of blocked cells (top),
and random indoor-like environments with different minimum corridor widths
(bottom).

3) Predefined Polygon-Based Environments: Bench-MR
provides five classes of predefined polygon-based environ-
ments, as shown in the left-most five subfigures of Fig. 5. It
provides three parking scenarios in street environments where
a car-like vehicle has to park between other cars, namely
by i) pulling forward into a parking space, iii) backing into
a parking space, and ii) parallel parking. Bench-MR also
provides two navigation scenarios in warehouse environments
where a square-shaped robot has to navigate among shelves
of various sizes and irregular orientations. Additional polygon-
based environments can be loaded from SVG files.

4) Procedurally-Generated Polygon-Based Environments:
Bench-MR allows the user to generate their own polygon-
based environments procedurally by placing (convex) polygo-
nal obstacles into the environment. An example resembling an
asteroid field is shown in the right-most subfigure of Fig. 5.

B. Performance Metrics

Bench-MR provides commonly used performance metrics
for evaluating motion-planning systems with respect to their
planning efficiency and resulting path quality.

1) The success statistics measure the percentage of found,
collision-free and exact paths. Whether a path is
collision-free is checked with a given collision checker.
The ratio of exact paths is included since some motion-
planning systems report approximate paths.

2) The path length measures the length in meters (m) of a
path in the workspace.

3) The maximum curvature (κmax), normalized curva-
ture (κnorm) and angle-over-length (AOL) measure the
smoothness of a path. Smoother paths result in less con-
trol effort and energy to steer a robot and more comfort
for the passengers. Since the maximum curvature is not
well-defined in the presence of cusps, we also use the
normalized curvature (which is the path-length-weighted
curvature along the path segments between the cusps),
defined as

κnorm = ∑
i

∫
σi

κ(σ̇i(t))||ṗσi(t)||2 dt, (1)

where σi are the path segments of path σ between the
cusps, κ(σ̇(t)) is the curvature at point σ(t) of the path
and pσ are the x and y components of σ . Since the nor-
malized curvature ignores cusps, we also use the angle-
over-length (AOL) as a combined metric that divides the
total heading change by the path length. The total head-
ing change is computed numerically by summing the
absolute angular difference between neighboring tangent
vectors along the path. Following this convention, the
heading change for each cusp is approximately π .

4) The computation times measure the time in seconds (s)
required for collision checking, for extend function eval-
uation (namely forward integration when using forward
propagation or solving the two-point boundary value
problems when using steer functions), and for finding
an initial path.

5) The mean clearing distance measures how close a path
is to obstacles (reported in meters, m).

6) The number of cusps [45] measures how often a robot
has to stop on a path and turns its wheels to abruptly
change its heading.

VI. EXPERIMENTS WITH BENCH-MR
The large variety of tools provided by Bench-MR allows the

user to compare various motion-planning systems on complex
navigation scenarios with many performance metrics and per-
form ablation studies, which is a key contribution of Bench-
MR that was often missing in prior work. We describe several
experiments performed with Bench-MR and their results to
provide examples of its use. These experiments are available as
Jupyter notebooks to help the user with developing their own
experiments. Our experiments with different post-smoothing
algorithms and different optimization criteria resulted in novel
scientific insights into the performance of sampling-based
motion-planning systems.



HEIDEN, PALMIERI et al.: BENCH-MR: A MOTION PLANNING BENCHMARK FOR WHEELED MOBILE ROBOTS 5

Fig. 5. Paths for polygon-based environments computed by the Bidirectional Asymptotically Optimal Fast Marching Tree (BFMT) motion-planning algorithm
using the Reeds-Shepp steer function. The first five environments are predefined, and the right-most environment is procedurally generated.

Fig. 6. Path length, normalized curvature and number of cusps of differ-
ent combinations of sampling-based motion-planning algorithms and extend
functions, namely RRT and SST using random forward propagation for the
kinematic car model (left and center) and RRT using the Reeds-Shepp steer
function (right). All performance metrics are reported with a computation time
limit of 30 seconds each in 50 random indoor-like grid-based environments
with a desired minimum corridor width of 5 cells.

A. Different Extend Functions

Bench-MR allows us to compare different combinations of
sampling-based motion-planning algorithms and extend func-
tions, which is important since it is often overlooked that the
performance of sampling-based motion-planning algorithms
depends on their extend functions [26], [6]. As an example,
we compare RRT using random forward propagation for the
kinematic car model, SST using random forward propagation
for the kinematic car model and RRT using the Reeds-
Shepp steer function. Fig. 6 shows that RRT with the Reeds-
Shepp steer function achieves smaller path length, normalized
curvature and number of cusps.

B. Different Post-Smoothing Algorithms

Bench-MR allows us to compare different combinations of
feasible motion-planning algorithms (that find initial paths
quickly) and post-smoothing algorithms (that improve the
quality of the initial paths), which is important since such
combinations have rarely been thoroughly evaluated [35], [37].
As an example, we compare the feasible motion-planning
algorithms RRT, EST, SBL and STRIDE using the post-
smoothing algorithms GRIPS, B-Spline, Shortcut and Sim-
plifyMax against the asymptotically (near) optimal motion-
planning algorithms RRT∗, Informed RRT∗, SORRT∗, PRM∗,
CForest, BIT∗ and SPARS. The comparison is performed
adopting the Reeds-Shepp extend function. Fig. 7 shows
that feasible motion-planning with post-smoothing can indeed
outperform asymptotically (near) optimal motion-planning al-
gorithms in both planning efficiency and the resulting path
quality. For example, RRT using the post-smoothing algorithm
SimplifyMax achieves a smaller path length and about the
same normalized curvature after less than one second than

Informed RRT∗ after 60 seconds. Fig. 8 shows that the post-
smoothing algorithms GRIPS and SimplifyMax often signifi-
cantly decrease the path length and maximum curvature, with
SimplifyMax typically running faster. The post-smoothing
algorithm B-spline does not always improve the path quality,
which might be due to the issue that B-splines do not translate
well to paths that can be followed by the Reeds-Shepp and
other steer functions, resulting in slight turns that increase the
curvature.

C. Different Sampling Strategies

Bench-MR allows us to compare different sampling strate-
gies, for example using random sampling and de-randomized
approaches, such as using deterministic sampling or state
lattices. As an example, we compare PRM∗ using random
uniform sampling against PRM∗ using deterministic Halton
sampling (both using the Reeds-Shepp extend function) and
the lattice-based motion-planning algorithm ARA∗. Fig. 9
shows that PRM∗ using deterministic Halton sampling slightly
outperforms PRM∗ using random uniform sampling with re-
spect to both the path length and curvature, while the lattice-
based motion-planning algorithm ARA∗ outperforms both of
them significantly.

D. Different Optimization Criteria

Bench-MR allows us to compare different optimization
criteria. As an example, we compare PRM∗ with different
cost functions, namely path length, minimum clearing distance
and normalized curvature (also for this example we use the
Reeds-Shepp extend function). Fig. 10 shows that maximizing
the minimum clearing distance indeed increases the clearance
compared to minimizing the path length or normalized cur-
vature but also increases the number of cusps substantially.
Minimizing the normalized curvature indeed decreases the
curvature slightly compared to minimizing the path length.
However, we found it difficult to minimize the normalized
curvature in OMPL since its cost interface does not allow one
to take the cusps into account that are created when connecting
two edges. The right-most subfigure in Fig. 10 (top) shows that
this limitation can create unexpected cusps.

E. Different Environment Complexities

Bench-MR allows us to compare motion-planning systems
in procedurally-generated environments of different complexi-
ties. As an example, we show how the number of cusps of the
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Fig. 7. Initial path of the the feasible motion-planning algorithm RRT using the Reeds-Shepp steer function after 0.45 seconds (left), its improvement using
the post-smoothing algorithm SimplifyMax after less than 1 millisecond (center) and the path of the asymptotically (near) optimal motion-planning algorithm
Informed RRT∗ using the Reeds-Sheep steer function after 60 seconds (right).

Fig. 8. Path length and normalized curvature of different combinations of the feasible motion-planning algorithms RRT, EST, SBL and STRIDE and post-
smoothing algorithms compared against the asymptotically (near) optimal motion-planning algorithms RRT∗, Informed RRT∗, SORRT∗, PRM∗, CForest, BIT∗
and SPARS. Both performance metrics are reported with computation time limits of 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 7.5 and 10.0 seconds each in random indoor-like
grid-based environments of size 150×150 cells and a desired minimum corridor width of 5 cells. The initial paths of the feasible motion-planning algorithms
are marked with H, and the paths of the post-smoothing algorithms are marked with l for GRIPS, 6 for B-Spline, : for Shortcut and t for SimplifyMax.
The paths of the asymptotically (near) optimal motion-planning algorithms are solid lines marked with ·.

Fig. 9. Path length, computation time and AOL for different sampling
strategies, namely PRM∗ using deterministic Halton sampling (left), PRM∗
using random uniform sampling (center) and the lattice-based motion-planning
algorithm ARA∗ (right). All performance metrics are reported with a com-
putation time limit of 0.3 seconds each (to be fair to the fast ARA∗) in 100
random indoor-like grid-based environments with a desired minimum corridor
width of 3 cells.

paths of different motion-planning algorithms using the Reeds-
Shepp steer function varies with the desired minimum corridor
width for random indoor-like grid-based environments and the
desired percentage of blocked cells for random outdoor-like
grid-based environments. Fig. 11 shows that the number of
cusps significantly decreases for almost all motion-planning al-
gorithms as the desired minimum corridor width increases. The
number of cusps significantly increases for almost all motion-
planning algorithms as the desired percentage of blocked cells
increases.

F. Different Components of the Computation Time

Bench-MR allows us to determine different components
of the computation time. As an example, we determine the
computation time needed for collision checking, Reeds-Shepp
extend function evaluation and the remaining phases of motion
planning. Fig. 12 shows the results for CForest, Informed
RRT∗, RRT and MHA∗.

VII. CONCLUSIONS

Following the need for more reproducible evaluations of
commonly used AI algorithms, and with the goal of comparing
a large set of state-of-the-art motion planning techniques, we
presented Bench-MR, the first open-source motion-planning
benchmarking framework designed for sampling-based motion
planning for nonholonomic, wheeled mobile robots. Unlike
related software suites, Bench-MR is an easy-to-use and com-
prehensive benchmarking framework that aids practitioners
and researchers in designing, testing and evaluating motion-
planning systems and comparing them against the state of the
art on complex navigation scenarios with many performance
metrics. We presented several experiments that showed how
Bench-MR can be used to understand the behavior of different
motion-planning systems. The large variation in experimental
results demonstrated that the performance of motion-planning
systems depends on their components and that benchmarking
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(a) Paths.

(b) Path length, normalized curvature, mean clearing distance and number of cusps.

Fig. 10. Results for different optimization criteria, namely PRM∗ with minimizing path length (left), maximizing minimum clearing distance (center) and
minimizing normalized curvature (right). The colors of the paths (top) correspond to the colors of the optimization criteria (bottom). All metrics have been
computed with a time limit of 2 seconds each in 100 random indoor-like grid-based environments with a desired minimum corridor width of 5 cells.

Fig. 11. Number of cusps for BFMT, BIT∗, CForest, Informated RTT∗,
PRM, PRM∗, RRT#, RRT∗, MHA∗ and SPARS2 using the Reeds-Shepp steer
function with a computation time limit of 15 seconds each in 5 random indoor-
like grid-based environments of size 100× 100 cells and desired minimum
corridor widths ranging from 3 to 8 cells in increments of 1 cell (left) and
5 random outdoor-like grid-based environments of size 100 cells and desired
percentages of blocked cells ranging from 1.0 to 3.0 percent in increments of
0.5 percent (right).

Fig. 12. Total computation time and its components for collision checking
and extend function evaluation (that is, steering) for CForest, Informed RRT∗,
RRT and MHA∗.

frameworks like Bench-MR are therefore vital for designing
them for given applications and for guiding further research on
motion planning. In future work, we plan to extend Bench-MR
to dynamic environments.
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J. M. Zöllner, “Hybrid curvature steer: A novel extend function for
sampling-based nonholonomic motion planning in tight environments,”
in International Conference on Intelligent Transportation Systems, 2017,
pp. 1–8.

[46] L. Palmieri, S. Koenig, and K. O. Arras, “RRT-based nonholonomic
motion planning using any-angle path biasing,” in IEEE International
Conference on Robotics and Automation, 2016, pp. 2775–2781.

[47] S. Gottschalk, “Separating axis theorem,” Department of Computer
Science, UNC Chapel Hill, Tech. Rep. TR96-024, 1996.

[48] E. Heiden, L. Palmieri, S. Koenig, K. O. Arras, and G. S. Sukhatme,
“Gradient-informed path smoothing for wheeled mobile robots,” in IEEE
International Conference on Robotics and Automation, 2018, pp. 1710–
1717.

https://parasollab.web.illinois.edu/resources/mpbenchmarks/
https://github.com/perfectly-balanced/PathBench

	Introduction
	Related Work
	Architecture of Bench-MR
	Bench-MR Planning Components
	Sampling-Based Motion-Planning Algorithms
	Feasible Planners
	Asymptotically (Near) Optimal Planners
	Lattice-Based Planners

	Extend Functions
	Robot Dynamics Models
	Steer Functions
	Motion Primitives

	Collision Checkers
	Post-Smoothing Algorithms
	Optimization Criteria

	Bench-MR Evaluation Components
	Navigation Scenarios
	Predefined Grid-Based Environments
	Procedurally-Generated Grid-Based Environments
	Predefined Polygon-Based Environments
	Procedurally-Generated Polygon-Based Environments

	Performance Metrics

	Experiments with Bench-MR
	Different Extend Functions
	Different Post-Smoothing Algorithms
	Different Sampling Strategies
	Different Optimization Criteria
	Different Environment Complexities
	Different Components of the Computation Time

	Conclusions
	References

