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Abstract— Recently, auction methods have been investigated
as effective, decentralized methods for multi-robot coordination.
Experimental research has shown great potential, but has not
been complemented yet by theoretical analysis. In this paper we
contribute a theoretical analysis of the performance of auction
methods for multi-robot routing. We suggest a generic framework
for auction-based multi-robot routing and analyze a variety of
bidding rules for different team objectives. This is the first time
that auction methods are shown to offer theoretical guarantees
for such a variety of bidding rules and team objectives.

I. I NTRODUCTION

Robot teams are increasingly becoming a popular alternative
to single robots for a variety of difficult robotic tasks, such as
planetary exploration or planetary base assembly. Robot teams
offer many advantages over single robots: robustness (due to
redundancy), efficiency (due to parallelism), and flexibility
(due to reconfigurability). However, an important factor for
the success of a robot team is the ability to coordinate the
team members in an effective way. Coordination involves
the allocation and execution of individual tasks through an
efficient (preferably decentralized) mechanism.

In this paper, we focus on multi-robot routing, a class of
problems where a team of mobile robots must visit a set
of locations for some purpose (e.g., delivery or acquisition)
with routes that optimize certain criteria (e.g., minimization
of consumed energy, completion time, or average latency).
Examples include search-and-rescue in areas hit by disasters,
surveillance of a facility, placement of sensors, deliveryof
parts, and localized measurements. Such routing problems,in-
cluding Vehicle Routing Problems (VRPs) and several variants
of the Traveling Salesman Problem (TSP), have been studied
from a centralized point of view in operations research, and
recently in robotics with a focus on decentralized approaches.

Even in decentralized multi-robot coordination, some infor-
mation exchange is necessary; it is desirable to enable good
decision making while communicating as little information
as possible. One promising approach of this type is the
use of market-based mechanisms, in particular, auction-based
methods, where the communicated information consists of bids
robots place on various tasks, and coordination is achievedby
a process similar to winner determination in auctions.

The efficiency of auction-based methods has been demon-
strated experimentally [1]–[7], but there has been little the-
oretical study [6]. In this paper, we make the following
contributions: (1) we suggest a generic framework for auction-
based multi-robot routing, and (2) we derive and analyze
six bidding rules for three team objectives (minimizing total
cost, maximum cost, or average service cost), specifically,we
provide lower and upper bounds on their performance relative
to optimal performance. This is the first time that auction
methods are shown to offer theoretical guarantees for such
a variety of bidding rules and team objectives.

II. M ULTI -ROBOT ROUTING

A multi-robot routing problem is specified by a set of robots,
R = {r1, r2, . . . , rn}, a set of targets,T = {t1, t2, . . . , tm},
their locations, and a non-negative cost functionc(i, j), i, j ∈
R ∪ T , which denotes the cost of moving between locations
i and j. We assume that these costs are symmetric,c(i, j) =
c(j, i), are the same for all robots, and satisfy the triangle
inequality. Travel distances and travel times between locations
satisfy these assumptions in any typical environment. The
objective of multi-robot routing is to find an allocation of
targets to robots and a path for each robot that visits all targets
allocated to it so that a team objective is optimized. In this
paper, we study three intuitive team objectives:

M INI SUM: Minimize the sum of the robot path costs over all robots.
M INI MAX : Minimize the maximum robot path cost over all robots.
M INI AVE: Minimize the average target path cost over all targets.

The robot path cost of a robotr is the sum of the costs along
its entire path, from its initial location to the last targeton its
path. Thetarget path cost of a targett is the total cost of the
path traversed by robotr from its initial location up to target
t, wherer is the unique robot visitingt.

III. O PTIMAL SOLUTIONS

Optimizing performance for any of the three team objectives
is NP-hard, as shown by the following theorem.

Theorem 1: There is no polynomial time algorithm for
solving multi-robot routing optimally with the MINI SUM, the
M INI MAX , or the MINI AVE objective, unless P= NP.



Proof: We show that a polynomial-time algorithm for
multi-robot routing with any of the three objectives implies
a polynomial time algorithm for Hamiltonian Path, a well
known NP-complete problem. An instance of Hamiltonian
Path consists of a graphG = (V,E) and a vertexv, and
we are asked to decide if there exists a path starting fromv
that visits all the vertices exactly once. We reduce it to an
instance of multi-robot routing as follows. LetG′ = (V, c) be
the complete weighted graph onV with weightsc(u,w) = 1,
if (u,w) ∈ E, and c(u,w) = 2, otherwise. One robot is
placed at vertexv and the remaining|V | − 1 vertices are
designated as targets. The costs (weights) inG′ satisfy the
triangle inequality.

We claim thatG has a Hamiltonian path if and only if an
optimal MINI SUM solution in G′ has a cost of|V | − 1. A
Hamiltonian path inG is also an optimal MINI SUM solution
in G′ with cost |V | − 1 (this is the least possible cost for
visiting |V | − 1 targets). Conversely, ifG does not have a
Hamiltonian path, then any path inG′ that starts fromv and
visits all the vertices exactly once has to use some edge of
cost 2 in G′. Hence, the cost of an optimal solution will be
at least|V |. Similarly, G has a Hamiltonian path if and only
if an optimal MINI MAX solution inG′ has a cost of|V | − 1.
Finally, G has a Hamiltonian path if and only if an optimal
M INI AVE solution inG′ has a cost of

(

1 + 2 + . . . + (|V | −
2) + (|V | − 1)

)

/
(

|V | − 1
)

= |V |/2.
Given this hardness result, we focus on efficient approxima-

tion algorithms for solving large-scale instances of multi-robot
routing. However, optimal solutions for small instances can be
obtained through a mixed integer programming formulation.

IV. A UCTION FRAMEWORK

Our auction-based coordination system for multi-robot rout-
ing considers the robots as bidders and the targets as goods,
and operates as follows. All targets are initially unallocated.
During each round of bidding, all robots bid on all unallocated
targets. The robot that places the overall lowest bid on any
target wins and is allocated that particular target. A new round
of bidding begins, and all robots bid again on all unallocated
targets, and so on, until all targets have been allocated. Note
that each robot needs to bid only on a single target in each
round, namely on a target for which its bid is the lowest, since
all other bids from the same robot have no chance of winning.
Upon allocation of all targets, each robot computes a path for
visiting the targets allocated to it and then moves along that
path. Bid selection and path computation are the key factors
that affect team performance.

The main advantage of this multi-round auction mechanism
is its simplicity and the fact that it allows for a decentralized
implementation on real robots. Initially, each robot needsto
know its own location, the location of all targets, and the
number of robots (the number of bids in each round), but not
the locations of the other robots. In each round, each robot
computes its single bid locally and in parallel with the other
robots, broadcasts the bid to the other robots, receives thebids
of the other robots, and then locally determines the winning

bid. This procedure is repeated in every round of the auction.
Broadcasting can be achieved by means of relaying messages
from robot to robot. Clearly, there is no need for a central
auctioneer, and therefore, there is no single point of global
failure in the system. Notice also the low communication
complexity; each robot needs to receiven numbers (bids) in
each of them rounds, thereforeO(nm) numbers need to be
communicated over any single link.

V. PATHS VERSUSTREES

We explore two ways of obtaining approximate solutions
to multi-robot routing within our auction framework: paths
and trees. In particular, during the auction, one can consider
constructing paths that collectively span all targets (onepath
for each robot), or constructing trees that span all targets
(a forest with one tree rooted at each robot). Considering
paths is a direct method, whereas considering trees is an
indirect method, since the trees must be converted to paths
to obtain a solution to the original problem. This extra stepis
relatively easy and does not significantly affect the quality of
the solution.

The choice of paths versus trees depends on how efficiency
and performance are affected. The rationale behind the ideaof
constructing trees rather than paths is that trees with certain
properties might be readily computable compared to paths with
similar properties. For example, given any weighted graph,a
minimum-cost spanning tree can be obtained in polynomial
time, whereas a finding a minimum-cost path through all nodes
is an NP-hard problem. Therefore, instead of directly seeking
paths that achieve a team objective, one may seek to find trees
that achieve an analogous objective, and then convert the trees
to paths that approximate the original team objective.

For MINI SUM, the analogous objective is to find a minimum
spanning forest (MSF), that is, a collection of trees rooted
at the robots that span all targets with minimum total cost.
Such a forest is computable in polynomial time by a variant of
Prim’s algorithm [8]. For MINI MAX , the analogous objective
is to find a minimax spanning forest, which is a collection
of trees rooted at the robots that span all targets such that
the cost of the most expensive tree is minimized. Computing
the minimax tree is an NP-hard problem [9]. Finally, for
M INI AVE, the analogous objective is to find a minimum
average-cost spanning forest which is a collection of trees
rooted at the robots that span all targets such that the average
root-target cost over all targets is minimized. Such a forest can
be trivially computed by connecting each target to the closest
root, and consists of stars.

A tree can be easily turned into a path using shortcut-
ting [10], as commonly used in TSP algorithms. Shortcutting
constructs a path from a tree by performing a depth-first search
on the tree to derive the ordering of nodes in the path while
skipping previously visited nodes. It is well-known that the
total cost of the resulting path is no more than twice the cost
of the tree [10]. Alternatively, one could use any sophisticated
TSP algorithm on the nodes of each tree to obtain a good
path for each robot. The specific method used does not affect



the results in this paper as long as the total cost of each path
is at most twice the cost of the corresponding tree, which
can be guaranteed through shortcutting. Thus, in our auction
framework and analysis, we assume that the final step of
converting trees into paths incurs an approximation factorof
at most2 (in M INI SUM cost).

VI. B IDDING RULES

In every round of the auction, the robots use a bidding rule
to determine the appropriate (according to the team objective)
bid for each target. We suggest a generic methodology for
deriving such rules for any given team objective, and we derive
six bidding rules for the three team objectives we consider.We
divide the bidding rules into two classes depending on whether
they aim to build paths or trees.

Suppose that the team objective is expressed as

min
A

f
(

g(r1, A1), . . . , g(rn, An)
)

where functiong measures the performance of each robot,
function f measures the performance of the team, andA =
{A1, A2, . . . , An} is a partition of the set of targets, where
targets inAi are allocated to robotri. The three team objec-
tives we consider fit this structure. LetRPC(ri, Ai) denote
the minimumrobot path cost for robot ri to visit all targets
in Ai from its current location. Similarly, letCTPC(ri, Ai)
denote the minimumcumulative target path cost of all targets
in Ai, again, if robotri visits all targets inAi from its current
location. Then, the three team objectives can be expressed as

M INI SUM : min
A

∑

j

RPC(rj , Aj),

M INI MAX : min
A

max
j

RPC(rj , Aj),

M INI AVE : min
A

1

m

∑

j

CTPC(rj , Aj).

Let (S1, S2, . . . , Sn) be the current partial allocation of
targets to robots in some round of the auction, and lett be
an unallocated target. We propose the following bidding rule,
which is directly derived from the team objective.

Bidding Rule Robot r bids on unallocated target
t the difference in performance for the given team
objective between the current allocation of targets to
robots and the allocation that results from the current
one if robotr is additionally allocated targett.

Consequently, robotri should bid on targett the difference

f
(

g(r1, S
′
1), . . . , g(rn, S′

n)
)

− f
(

g(r1, S1), . . . , g(rn, Sn)
)

,

where S′
i = Si ∪ {t} and S′

j = Sj for i 6= j. This
generic bidding rule thus performs some sort of hill climbing,
aiming to find a good, but not necessarily optimal, allocation.
Note that this generic bidding rule may require additional
communication for computing the bids. However, for the
objectives we consider, bid computation can be done locally.

For the MINI SUM team objective, robotri bids on targett
∑

j

RPC(rj , S
′
j) −

∑

j

RPC(rj , Sj)

= RPC(ri, Si ∪ {t}) − RPC(ri, Si).

For the MINI MAX team objective, robotri bids on targett

max
j

RPC(rj , S
′
j) − max

j
RPC(rj , Sj)

= RPC(ri, Si ∪ {t}) − max
j

RPC(rj , Sj).

This derivation uses the fact thatmaxj RPC(rj , S
′
j) =

RPC(ri, S
′
i); otherwise, targett would have already been

allocated in a previous round of bidding. The term
maxj RPC(rj , Sj) can be dropped since the outcome of the
auction remains unchanged if all bids change by a constant.
Thus, robotri can just bidRPC(ri, Si∪{t}) on targett. Last,
for the MINI AVE team objective, robotri bids on targett

1

m

∑

j

CTPC(rj , S
′
j) −

1

m

∑

j

CTPC(rj , Sj)

=
1

m

(

CTPC(ri, Si ∪ {t}) − CTPC(ri, Si)
)

.

The factor 1/m can be dropped since the outcome of the
auction remains unchanged if all bids are multiplied by a
positive constant. Thus, robotri can bid justCTPC(ri, Si ∪
{t}) − CTPC(ri, Si) on targett.

Thus, the bidding rules for the three team objectives are

• BIDSUMPATH: RPC(ri, Si ∪ {t}) − RPC(ri, Si),
• BIDMAX PATH: RPC(ri, Si ∪ {t}), and
• BIDAVEPATH: CTPC(ri, Si ∪ {t}) − CTPC(ri, Si).

The robots need to be able to calculate their bids efficiently, but
computingRPC or CTPC is NP-hard. Therefore, we assume
that each robotri uses a heuristic method to approximate these
functions. In particular, we make use of the insertion heuristic
for TSP: given a path that visits the targets inSi, evaluate all
insertions of targett into all possible positions on the existing
path, and choose the one that minimizes the cost of the new
path. Our results are not affected if other methods are used,as
long as the resulting bids are not worse than the bids computed
using the insertion heuristic.

A similar analysis can be used to derive bidding rules for
the case of constructing trees. For any robotri and any set
of targets Si, let RTC(ri, Si) denote the minimumrobot
tree cost, that is, the cost of a minimum spanning tree over
the nodes{ri} ∪ Si. Similarly, let CTTC(ri, Si) denote the
minimumcumulative target tree cost which is the sum of root-
target costs for all targets inSi in a spanning tree over{ri}∪Si

with root ri. Without going through details, the bidding rules
for the three team objectives in this case are

• BIDSUMTREE: RTC(ri, Si ∪ {t}) − RTC(ri, Si),
• BIDMAX TREE: RTC(ri, Si ∪ {t}), and
• BIDAVETREE: CTTC(ri, Si ∪ {t}) − CTTC(ri, Si).

Given the sequential nature of allocation, the TREE bidding
rules can be further simplified. In particular, a tree overSi



remains unchanged within a tree overSi ∪ {t} under any of
the three objectives. This is true because targett was not
allocated in earlier rounds (even though it was present and
available), and hence it does not offer a better way to connect
nodes inSi. For the BIDSUMTREE and BIDMAX TREE rules,
targett is connected toSi through the cheapest edge, whereas
for the BIDAVETREE rule, it is connected directly to the
root ri because of the triangle inequality assumption. In other
words, RTC(ri, Si ∪ {t}) = RTC(ri, Si) + c(Si ∪ {ri}, t),
wherec(Si ∪{ri}, t) is the cost of the cheapest edge between
any node inSi ∪ {ri} and t, and CTTC(ri, Si ∪ {t}) =
CTTC(ri, Si) + c(ri, t). Thus, the rules can be expressed as:

• BIDSUMTREE: c(Si ∪ {ri}, t),
• BIDMAX TREE: RTC(ri, Si) + c(Si ∪ {ri}, t), and
• BIDAVETREE: c(ri, t).

Bids for the TREE rules are computable in polynomial time.

VII. SUMMARY OF RESULTS

We assess the performance of each bidding rule theoretically
in comparison to optimal performance and with respect to each
of the three team objectives. This is done in terms of upper
and lower bounds on the performance ratio (maximum ratio
of rule performance over optimal performance).

If I(n,m) is the class of all instances of multi-robot
routing with n robots andm targets, an upper bound on the
performance ratio for a ruleR and an objectiveX is a function
UB(n,m,R,X) such that for anyn andm:

max
I∈I(n,m)

R(I,X)

O(I,X)
≤ UB(n,m,R,X) ,

whereR(I,X) is the cost of the solution under objectiveX
for instanceI ∈ I(n,m) obtained using ruleR andO(I,X) is
the optimal cost under objectiveX for instanceI. The perfor-
mance ratio is lower bounded by a functionLB(n,m,R,X)
if there exists some infinite family of instancesF such that
for eachI ∈ F :

LB(nI ,mI , R,X) ≤
R(I,X)

O(I,X)
,

where nI and mI are the number of robots and targets in
instanceI. Therefore, the performance ratio cannot be less
than LB(n,m,R,X). An upper bound provides a guarantee
on the performance of the corresponding rule for the corre-
sponding objective, whereas a lower bound usually represents
pathological cases that demonstrate worst-case behavior.

It should be pointed out that each bidding rule essentially
represents a family of rules. For the PATH rules, we do
not specify a particular choice for the computation of the
functions RPC and CTPC. This choice can be anything
between computing them optimaly (NP-hard) and computing
them approximately through the insertion heuristic (polyno-
mial). However, we assume that whatever the choice, the
approximation will not be worse than the insertion heuristic
approximation. Similarly, for the TREE rules we do not specify
a particular choice for the conversion of trees to paths, which
can range from computing optimal paths (NP-hard) to using

TABLE I

BOUNDS ON PERFORMANCE RATIO(RULE PERFORMANCE OVER OPTIMAL

PERFORMANCE) WITH n ROBOTS ANDm TARGETS.

Bidding Team Objective
Rule M INI SUM M INI MAX M INI AVE

Lower Upper Lower Upper Lower Upper

BIDSUMPATH 1.5 2 n 2n
m + 1

2
2m

BIDMAX PATH n 2n
n + 1

2
2n Ω(m1/3) 2m

BIDAVEPATH m 2m2
n + 1

2
2m2n Ω(m1/3) 2m2

BIDSUMTREE 1.5 2 n 2n
m + 1

2
2m

BIDMAX TREE n 2n
n + 1

2
2n Ω(m1/3) 2m

BIDAVETREE m 2m
n + 1

2
2mn Ω(m1/3) 2m2

shortcutting (polynomial). Once again, we only assume that,
whatever the choice, the cost of each path is at most twice the
cost of the corresponding tree as guaranteed by shortcutting.
Our bounds apply to the entire family of rules. In deriving
the upper bounds, we do not assume any better heuristic
than the insertion heuristic or shortcutting. In addition,the
lower bounds hold even ifRPC andCTPC, as well as the
conversion of trees to paths, are computed optimally.

Table I summarizes our results. The PATH and the TREE

rules offer almost identical guarantees, which implies that
they are not fundamentally different from a theoretical point
of view. In practice, the PATH rules yield somewhat better
solutions, as they build paths directly, whereas the TREE

rules are computationally more efficient, since bid computation
for the TREE rules is much faster than for the PATH rules.
Given that oftenn ¿ m, it is clear that the best guarantees
are offered for the MINI SUM and the MINI MAX objectives,
whereas there are only loose guarantees for the MINI AVE

objective. Independently of the objective, the BIDSUMPATH

and BIDSUMTREE rules provide uniformly the best guaran-
tees. Overall, our results show that our auction-based methods
constitute a principled, viable approach to multi-robot routing.

VIII. A NALYSIS

In this section we prove the bounds in Table I. We make
the following notational conventions. The solution found by
using any of the bidding rules is marked with the name
of the rule, e.g. BIDSUMTREE. An optimal solution for
each team objective is denoted by OPTSUM, OPTMAX , and
OPTAVE, respectively, and the cost of a solutionS according
to each team objective by SUM(S), MAX(S), and AVE(S),
respectively. With a slight abuse of notation, ifF is a forest, we
also use SUM(F ) for the total cost of the forest, MAX(F ) for
the cost of the most expensive tree in the forest, and AVE(F )
for the average of all root-target costs in the forest.

The following lemma on the relationship of the various
objective functions is used repeatedly.

Lemma 1: Let F be a spanning forest rooted at the robots,
that spans all targets in an instance of multi-robot routingwith
n robots andm targets. Then, it holds that

AVE(F) ≤ MAX (F) ≤ SUM(F) ≤ n MAX (F),

SUM(F) ≤ m AVE(F).



Proof: The maximum root-target cost of any target can
be at most equal to the cost of the most expensive tree in the
forest. Therefore, the average of the root-target costs cannot
be more than the cost of the most expensive tree in the forest.
Furthermore, the cost of the most expensive tree in the forest
cannot exceed the total cost of the forest. The total cost of
the forest cannot exceed ann-multiple of the cost of the most
expensive tree, since there are at mostn trees in the forest.
Finally, there arem targets in the forest and the contribution
of each target to the total cost of the forest is no more than its
root-target cost. Therefore, the total cost of the forest cannot
exceed the sum of all root-target costs, which can be expressed
as anm-multiple of the average root-target cost.
Note that Lemma 1 holds even ifF is a collection of disjoint
robot paths which span all targets.

A. Upper Bounds for BIDSUMPATH

Theorem 2: The performance ratio of the BIDSUMPATH

bidding rule for the MINI SUM team objective is at most2.
Proof: Let G = (R ∪ T, c) be the weighted graph over

all robot and target nodes. In each roundk of the auction,
k = 0, . . . ,m − 1, let Vk be the set of robot nodes and
allocated target nodes and̄Vk the set of unallocated target
nodes. The setsVk andV̄k define a cut overG, and, obviously,
V0 = R, V̄0 = T , Vm = R ∪ T , and V̄m = ∅. In each round
k, BIDSUMPATH selects a targett ∈ V̄k that can be added
to one of the paths inVk with the least additional cost. Let
this cost beb(Vk, V̄k), which is exactly the bid placed by the
winning robot. Therefore, the SUM cost of the solution found
by BIDSUMPATH at the end of the auction is:

SUM(BIDSUMPATH) =

m−1
∑

k=0

b(Vk, V̄k)

Let c(Vk, V̄k) be the cost of a cheapest edge across the cut
(Vk, V̄k). A target in V̄k corresponding to a cheapest edge
can be inserted into some path inVk with a cost increase
of at most2c(Vk, V̄k) in SUM cost (because of the triangle
inequality assumption). Since the BIDSUMPATH rule identifies
an insertion with minimum increase in SUM cost, it must be
the case thatb(Vk, V̄k) ≤ 2c(Vk, V̄k). Hence,

SUM(BIDSUMPATH) ≤ 2

m−1
∑

k=0

c(Vk, V̄k)

Consider another graphG′ which is identical toG except that
exactly m edges have their costs lowered. In particular, for
every cut(Vk, V̄k) the cost of a cheapest edge connectingt (the
target selected by BIDSUMPATH) to Vk is lowered toc(Vk, V̄k)
(the cost of a cheapest edge across the cut) inG′. Clearly, those
m edges inG′ form an MSF inG′ (it is equivalent to running
Prim’s algorithm starting with the robot nodes connected to
each other with zero cost). An MSF inG cannot have less
SUM cost than any MSF inG′, since we have only lowered
costs while constructingG′ from G. Therefore, we obtain:

m−1
∑

k=0

c(Vk, V̄k) = SUM
(

MSF(G′)
)

≤ SUM
(

MSF(G)
)

.

which implies that

SUM(BIDSUMPATH) ≤ 2 SUM
(

MSF(G)
)

. (1)

An optimal solution OPTSUM for the MINI SUM team objec-
tive is also a spanning forest inG, therefore it is true that

SUM
(

MSF(G)
)

≤ SUM(OPTSUM).

Thus, we conclude that

SUM(BIDSUMPATH) ≤ 2 SUM(OPTSUM).

Using Equation (1), Lemma 1, and the fact that both OPT-
MAX and OPTAVE are spanning forests, we also conclude:

Corollary 1: The performance ratio of the BIDSUMPATH

bidding rule for the MINI MAX team objective is at most2n.
Corollary 2: The performance ratio of the BIDSUMPATH

bidding rule for the MINI AVE team objective is at most2m.

B. Upper Bounds for BIDMAX PATH

Theorem 3: The performance ratio of the BIDMAX PATH

bidding rule for the MINI SUM team objective is at most2n.
Proof: As in Theorem 2, consider the cuts(Vk, V̄k) in

each roundk of the auction. Letc(Vk, V̄k) be the cost of a
cheapest edge across the cut(Vk, V̄k) and P k

i , i = 1, . . . , n,
be the robot paths inVk. We establish by induction that in any
roundk, the SUM cost of each pathP k

i is bounded by:

SUM(P k
i ) ≤ 2

k−1
∑

j=0

c(Vj , V̄j)

The base case is certainly true asP 0
i = {ri} (a single node),

SUM(P 0
i ) = 0. Assume that the assertion holds fork. In

the next round, BIDMAX PATH allocates a targett ∈ V̄k that
minimizes the cost of the most expensive path inVk+1. The
path P k+1

r where t was added must be the most expensive
path inVk+1, otherwiset would have been allocated in some
previous round. Therefore, for any pathP k+1

i in Vk+1 it is
true that

SUM(P k+1
i ) ≤ SUM(P k+1

r ).

Let (t′′, t′) be the cheapest edge across the cut(Vk, V̄k), with
t′ ∈ V̄k. Also, let P k

r′ ⊆ Vk be the path containingt′′. Target
t′ can be inserted into pathP k

r′ with an increase of at most
2c(Vk, V̄k) in the SUM cost of P k

r′ (because of the triangle
inequality assumption). Since BIDMAX PATH chose to insertt
in P k

r in roundk, it must be the case that

SUM(P k+1
r ) ≤ SUM(P k

r′) + 2 c(Vk, V̄k)

Finally, by the inductive hypothesis we have

SUM(P k+1
i ) ≤ 2

k−1
∑

j=0

c(Vj , V̄j)+2 c(Vk, V̄k) = 2

k
∑

j=0

c(Vj , V̄j).

Since the MAX cost of the BIDMAX PATH solution is the SUM

cost of the most expensive path, we conclude that

MAX (BIDMAX PATH) ≤ 2

m−1
∑

j=0

c(Vj , V̄j).



Using the construction for graphG′ as in Theorem 2, we have

MAX (BIDMAX PATH) ≤ 2 SUM(MSF). (2)

An optimal solution OPTSUM for the MINI SUM team objec-
tive is also a spanning forest, so by Lemma 1 we have

SUM(BIDMAX PATH) ≤ 2n SUM(OPTSUM).

Using Equation (2), Lemma 1, and the fact that both OPT-
MAX and OPTAVE are spanning forests, we also conclude:

Corollary 3: The performance ratio of the BIDMAX PATH

bidding rule for the MINI MAX team objective is at most2n.
Corollary 4: The performance ratio of the BIDMAX PATH

bidding rule for the MINI AVE team objective is at most2m.

C. Upper Bounds for BIDAVEPATH

Theorem 4: The performance ratio of the BIDAVEPATH

bidding rule for the MINI SUM team objective is at most2m2.
Proof: As in Theorem 2, consider the cuts(Vk, V̄k) in

each roundk of the auction. In each roundk, BIDAVEPATH

selects a targett ∈ V̄k that is added to one of the paths in
Vk with the least increase in the AVE team objective. Let this
increase beb(Vk, V̄k) which corresponds to the bid placed by
the winning robot. Therefore, the AVE cost of the solution
found by BIDAVEPATH at the end of the auction is:

AVE(BIDAVEPATH) =

m−1
∑

k=0

b(Vk, V̄k)

Let c(R, V̄k) be the cost of a cheapest edge across the sets
R and V̄k, that is, the cost of a cheapest edge between some
unallocated targett′ and some robotr′. Targett′ can always
be inserted as the first target in the path ofr′ in Vk. Such
an insertion causes an increase of at most2c(R, V̄k) in the
robot-target cost of each target in the path because of the
triangle inequality assumption, while the robot-target cost of
t′ is c(R, V̄k). In the worst case, this insertion occurs at a path
that contains all other targets. Since the increase of the robot-
target cost for each of them targets is at most2c(R, V̄k),
so is the increase in AVE cost. Since the BIDAVEPATH rule
identifies the insertion with the least increase in each round,
it must be the case thatb(Vk, V̄k) ≤ 2c(R, V̄k), and therefore

AVE(BIDAVEPATH) ≤ 2
m−1
∑

k=0

c(R, V̄k).

It holds thatc(R, V̄k) ≤ SUM(MSF), since in an MSF, no
robot can reach a target with cost less than the cheapest direct
edge from any robot to that target. Therefore,

AVE(BIDAVEPATH) ≤ 2m SUM(MSF). (3)

An optimal solution OPTSUM for the MINI SUM team objec-
tive is also a spanning forest, so by Lemma 1 we have that

SUM(BIDAVEPATH) ≤ 2m2 SUM(OPTSUM).

Using Equation (3), Lemma 1, and the fact that both OPT-
MAX and OPTAVE are spanning forests, we also conclude:

Corollary 5: The performance ratio of the BIDAVEPATH

bidding rule for the MINI MAX team objective is at most
2m2n.

Corollary 6: The performance ratio of the BIDAVEPATH

bidding rule for the MINI AVE team objective is at most2m2.

D. Upper Bounds for BIDSUMTREE

Theorem 5: The performance ratio of the BIDSUMTREE

bidding rule for the MINI SUM team objective is at most 2 [6].
Proof: The bid placed by each robot in each round is

equal to the cost of adding the closest unallocated target toits
own subtree. Considering all robot nodes as connected with
each other with zero cost, the auction with the BIDSUMTREE

rule is identical to Prim’s algorithm for MST [8]. Therefore,
the tree found by this rule is indeed an MSF. Converting the
trees of an MSF to paths incurs a factor of 2, therefore:

SUM(BIDSUMTREE) ≤ 2 SUM(MSF). (4)

An optimal solution OPTSUM for the MINI SUM team objec-
tive is also a spanning forest, therefore we conclude that

SUM(BIDSUMTREE) ≤ 2 SUM(OPTSUM).

Using Equation (4), Lemma 1, and the fact that both OPT-
MAX and OPTAVE are spanning forests, we also conclude:

Corollary 7: The performance ratio of the BIDSUMTREE

bidding rule for the MINI MAX team objective is at most2n.
Corollary 8: The performance ratio of the BIDSUMTREE

bidding rule for the MINI AVE team objective is at most2m.

E. Upper Bounds for BIDMAX TREE

Theorem 6: The performance ratio of the BIDMAX TREE

bidding rule for the MINI SUM team objective is at most2n.
Proof: As in Theorem 2, consider the cuts(Vk, V̄k) in

each roundk of the auction. Letc(Vk, V̄k) be the cost of
the cheapest edge across the cut(Vk, V̄k). We establish by
induction that in any round of the auction, the SUM cost of
any treeT k

i , i = 1, . . . , n, in Vk is bounded as follows:

SUM(T k
i ) ≤

k−1
∑

j=0

c(Vj , V̄j)

The base case is certainly true asT 0
i = {ri} (a single node),

SUM(T 0
i ) = 0. Assume that the assertion holds fork. In

the next round, BIDMAX TREE allocates a targett ∈ V̄k that
minimizes the cost of the most expensive tree inVk+1. The
tree T k+1

r where t was added must be the most expensive
tree inVk+1; otherwise,t would have been allocated in some
previous round. Therefore, for any treeT k+1

i in Vk+1 it is true
that

SUM(T k+1
i ) ≤ SUM(T k

r ) + c(T k
r , t)

Let (t′′, t′) be the cheapest edge across the cut(Vk, V̄k), with
t′ ∈ V̄k. Also, let T k

r′ ⊆ Vk be the tree containingt′′. Since
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Fig. 1. A simple instance with 2 robots (squares) and two targets (circles).

BIDMAX TREE chose to attacht to T k
r in roundk, it must be

the case that

SUM(T k
r ) + c(T k

r , t) ≤ SUM(T k
r′) + c(T k

r′ , t′) ,

or, using the fact thatc(T k
r′ , t′) = c(Vk, V̄k):

SUM(T k+1
i ) ≤ SUM(T k

r′) + c(Vk, V̄k).

Finally, by the inductive hypothesis

SUM(T k+1
i ) ≤

k−1
∑

j=0

c(Vj , V̄j) + c(Vk, V̄k) =

k
∑

j=0

c(Vj , V̄j).

Since the MAX cost of the BIDMAX TREE solution is at most
twice the SUM cost of the most expensive tree (taking into
account the conversion of trees to paths), we conclude that

MAX (BIDMAX TREE) ≤ 2

m−1
∑

j=0

c(Vj , V̄j).

Using the construction for graphG′ as in Theorem 2, we have

MAX (BIDMAX TREE) ≤ 2 SUM(MSF), (5)

An optimal solution OPTSUM for the MINI SUM team objec-
tive is also a spanning forest, so by Lemma 1 we have

SUM(BIDMAX TREE) ≤ 2n SUM(OPTSUM).

Using Equation (5), Lemma 1, and the fact that both OPT-
MAX and OPTAVE are spanning forests, we also conclude:

Corollary 9: The performance ratio of the BIDMAX TREE

bidding rule for the MINI MAX team objective is at most2n.
Corollary 10: The performance ratio of the BIDMAX TREE

bidding rule for the MINI AVE team objective is at most2m.

F. Upper Bounds for BIDAVETREE

Theorem 7: The performance ratio of the BIDAVETREE

bidding rule for the MINI SUM team objective is at most2m.
Proof: Under the BIDAVETREE rule, the intermediate

spanning forest at the end of the auction will consist of stars,
one for each robot, where each target is connected directly to
the closest (in terms of cost) robot. Because of the triangle
inequality assumption, direct connections minimize the robot-
target costs, and therefore the average.

Let c∗ be the cost of the most expensive robot-target edge
in the forest. It holds thatc∗ ≤ SUM(MSF), since in an MSF,
no robot can reach a target with cost less than the cheapest
direct edge from any robot to that target. Since there arem
targets in total, the SUM cost of the forest is at mostmc∗, and
thus, the SUM cost of BIDAVETREE can be at most2mc∗,

SUM(BIDAVETREE) ≤ 2mc∗ ≤ 2m SUM(MSF), (6)
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Fig. 2. Parallel lines construction:n robots andm = n targets spaced
evenly (distance ofβ) on two parallel lines (one for robots, one for targets).
The distance between the two lines is1, except for the left-most robot which
is a little closer to its corresponding target.

where the factor of2 comes from the conversion of stars to
paths. Thus, given that any optimal solution OPTSUM is also
a spanning forest, we conclude that

SUM(BIDAVETREE) ≤ 2m SUM(OPTSUM).

Using Equation (6), Lemma 1, and the fact that both OPT-
MAX and OPTAVE are spanning forests, we also conclude:

Corollary 11: The performance ratio of the BIDAVETREE

bidding rule for the MINI MAX team objective is at most2mn.
Corollary 12: The performance ratio of the BIDAVETREE

bidding rule for the MINI AVE team objective is at most2m2.

G. Lower bounds

In all example instances, robots are shown as squares, single
targets as open circles, clusters of targets as solid circles, andε
represents an arbitrarily small positive number. The examples
that yield lower bounds for the TREE rules are identical to
those for the PATH rules, and therefore, they are omitted.

BIDSUMPATH applied to the instance in Figure 1 allocates
both targets to the robot on the right with a SUM cost of
3+ ε ≈ 3, as opposed to the OPTSUM cost of2+2ε ≈ 2 (one
target to each robot). By replicating the construction, we obtain
an infinite family of such instances, thus a lower bound for
the performance ratio of BIDSUMPATH for M INI SUM is 1.5.

Applying the BIDSUMPATH rule to the example in Figure 2
with β = 1 − ε yields a solution that allocates all targets to
the left-most robot, and a path that runs through all targets
left to right. Obviously, MAX (BIDSUMPATH) ≈ n, whereas
MAX (OPTMAX ) = 1 (each robot visits its corresponding
target). Therefore, a lower bound for the performance ra-
tio of BIDSUMPATH for M INI MAX is n = m. Similarly,
AVE(BIDSUMPATH) ≈ (1 + 2 + . . . + n)/n = (n + 1)/2,
whereas AVE(OPTAVE) = 1 (each robot visits its correspond-
ing target). Therefore, a lower bound for the performance ratio
of BIDSUMPATH for M INI AVE is (n + 1)/2 = (m + 1)/2.

Applying BIDMAX PATH to the instance in Figure 2 with
β = ε yields a solution that allocates one target to each robot.
Thus, SUM(BIDMAX PATH) = n, whereas SUM(OPTSUM) =
1 + nε ≈ 1 (the left most robot takes all targets) for
ε = o(1/n). Thus, a lower bound for the performance
ratio of BIDMAX PATH for M INI SUM is n = m. Similarly,
SUM(BIDAVEPATH) = n, whereas SUM(OPTSUM) ≈ 1 (the
left-most robot takes all targets). Thus, a lower bound for the
performance ratio of BIDAVEPATH for M INI SUM is n = m.

Applying BIDMAX PATH (or BIDAVEPATH) to the instance
in Figure 3 yields a solution that allocates one target per
cluster to each robot. The path of each robot traverses the grid
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Fig. 3. Grid construction:n robots at(1, 1) and m = n3 targets on a
(n × n) rectangular grid; each of then2 gridpoints is a cluster ofn targets.
The intra-row distance isβ, whereas the intra-column distance isβ + 1.

alternating left-to-right and right-to-left, and also from bottom
to top. Figure 4 shows the necessary adjustments to make this
possible. Thus, MAX (BIDMAX PATH) = n(n − 1)β + (β +
1)(n−1) = (nβ+β+1)(n−1), whereas MAX (OPTMAX ) ≤
(n−1)β +(β +1)(n−1) = (2β +1)(n−1) (each robot takes
one row of the grid). Thus, a lower bound for the performance
ratio of BIDMAX PATH for M INI MAX is (n+1)/2 = (m1/3+
1)/2 for large β. In addition, without going into a detailed
analysis, it is obvious that AVE(BIDMAX PATH) = Ω(n2),
whereas AVE(OPTAVE) = O(n) (each robot takes one row
of the grid). Thus, a lower bound for the performance ratio
of BIDMAX PATH for M INI AVE is Ω(n) or Ω(m1/3) since
m = n3. The same bounds hold for BIDAVEPATH.

IX. RELATED WORK

Multi-robot routing falls into the class of Location Routing
problems [11]. There has been a tremendous amount of work
on centralized algorithms for solving such problems optimally
or approximately. The MINI SUM objective has been studied
in the context ofk-TSP problems and can be approximated by
a constant factor [12], [13]. The MINI MAX objective appears
also in the Nurse Location Problem for which there exists an
8-approximation [9]. This objective has also been studied in
the context of job scheduling on unrelated parallel machines
(makespan) [14]. Finally, the MINI AVE objective (also known
as the Traveling Repairman Problem) is approximable to a
constant factor [15]. Robotics researchers have studied the
M INI SUM [2], [5]–[7] objective extensively, but only occa-
sionally the MINI MAX [1], [7] and MINI AVE [7] objectives.

A variety of auction methods have been used for multi-
robot routing. Berhault et. al. [5] have used combinatorial
auctions; however, the complexity of these auctions makes
them impractical for large problems. Dias and Stentz [2] have
proposed a single-item auction similar to BIDSUMPATH which
has been implemented on real robots for exploration tasks. Our
PATH rules have been tested experimentally [7], and have been
shown to perform best for their corresponding team objective.
Also, their actual performance is well below the theoretical
upper bounds.

X. CONCLUSION

We presented a theoretical analysis of auction-based meth-
ods for multi-robot routing and established for the first time
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Fig. 4. Cluster arrangement in grid construction: example with 2 clusters
of 5 targets each and 5 robots clustered on the left. Targets in clusterT1 are
arranged evenly on a line of slope -45◦ within a small cost from each other.
Each of the 5 robots visits one target inT1, since the straight line is the
shortest path. Targets inT2 have the same arrangement, but are shifted up by
ε to ensure that the cost between corresponding targets inT1 andT2 is less
than any other inter-cluster cost. The robot that visits thefirst target inT1

will also visit the first target inT2, and so on. This pattern repeats along the
horizontal axis, but it can also be used for clusters arranged vertically.

performance guarantees. We are currently conducting exten-
sive experimentation to assess the actual performance of our
bidding rules and their effectiveness in solving large problems.
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