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Abstract— Recently, auction methods have been investigated The efficiency of auction-based methods has been demon-
as effective, decentralized methods for multi-robot coordinatia.  strated experimentally [1]-[7], but there has been little-t
Experimental research has shown great potential, but has not oretical study [6]. In this paper, we make the following

been complemented yet by theoretical analysis. In this paper we tributi (1 t ic f Kf fi
contribute a theoretical analysis of the performance of auction contributions: (1) we suggest a generic framework for aueti

methods for multi-robot routing. We suggest a generic framework based multi-robot routing, and (2) we derive and analyze
for auction-based multi-robot routing and analyze a variety of six bidding rules for three team objectives (minimizingalot

bidding rules for different team objectives. This is the first time cost, maximum cost, or average service cost), specifioaby,
that auction methods are shown to offer theoretical guarante® ,qyide lower and upper bounds on their performance relativ
for such a variety of bidding rules and team objectives. . . . . .

to optimal performance. This is the first time that auction
methods are shown to offer theoretical guarantees for such
a variety of bidding rules and team objectives.
Robot teams are increasingly becoming a popular alteenativ

I. INTRODUCTION

to single robots for a variety of difficult robotic tasks, Bugs Il. MULTI-ROBOT ROUTING
planetary exploration or planetary base assembly. Rohatse A myiti-robot routing problem is specified by a set of robots,
offer many advantages over single robots: robustness @uert — (. r, ... 7.}, a set of targets] = {t1,to,... ,tm}

redundancy), efficiency (due to parallelism), and flexiili thejr |ocations, and a non-negative cost function j), i, j €
(due to reconfigurability). However, an important factor for |, 7, which denotes the cost of moving between locations
the success of a robot team is the ability to coordinate they,q j. We assume that these costs are symmettic,j) =
team members in an effective way. Coordination involvetsgj,i), are the same for all robots, and satisfy the triangle
the allocation and execution of individual tasks through 3Requality. Travel distances and travel times betweentioga
efficient (preferably decentralized) mechanism. satisfy these assumptions in any typical environment. The
In this paper, we focus on multi-robot routing, a class pjective of multi-robot routing is to find an allocation of
problems where a team of mobile robots must visit a sgirgets to robots and a path for each robot that visits ajetar
of locations for some purpose (e.g., delivery or acquistio allocated to it so that a team objective is optimized. In this
with routes that optimize certain criteria (e.g., minimtiaa  paper, we study three intuitive team objectives:
of consumed energy, completion time, or average Iatencm
Examples include search-and-rescue in areas hit by disast
surveillance of a facility, placement of sensors, delivefy
parts, and localized measurements. Such routing probiems,
cluding Vehicle Routing Problems (VRPs) and several vasian! he robot path cost of a robotr is the sum of the costs along
of the Traveling Salesman Problem (TSP), have been studitsdentire path, from its initial location to the last target its
from a centralized point of view in operations research, am@th. Thetarget path cost of a targett is the total cost of the
recently in robotics with a focus on decentralized appreach path traversed by robot from its initial location up to target
Even in decentralized multi-robot coordination, some iinfot, wherer is the unique robot visiting.
mation exchange is necessary; it is desirable to enable good
decision making while communicating as little information
as possible. One promising approach of this type is theOptimizing performance for any of the three team objectives
use of market-based mechanisms, in particular, auctiseebais NP-hard, as shown by the following theorem.
methods, where the communicated information consistsdsf bi  Theorem 1: There is no polynomial time algorithm for
robots place on various tasks, and coordination is achibyedsolving multi-robot routing optimally with the MiISum, the
a process similar to winner determination in auctions. MINIMAX, or the MINIAVE objective, unless P= NP.

iNISUM: Minimize the sum of the robot path costs over all robots.
%IINII\/IAX: Minimize the maximum robot path cost over all robots.
MINIAVE: Minimize the average target path cost over all targets.

IIl. OPTIMAL SOLUTIONS



Proof: We show that a polynomial-time algorithm forbid. This procedure is repeated in every round of the auction
multi-robot routing with any of the three objectives impglie Broadcasting can be achieved by means of relaying messages
a polynomial time algorithm for Hamiltonian Path, a welfrom robot to robot. Clearly, there is no need for a central
known NP-complete problem. An instance of Hamiltoniaauctioneer, and therefore, there is no single point of dloba
Path consists of a grap = (V, E) and a vertexv, and failure in the system. Notice also the low communication
we are asked to decide if there exists a path starting fromcomplexity; each robot needs to receiwenumbers (bids) in
that visits all the vertices exactly once. We reduce it to aach of them rounds, therefore&(nm) numbers need to be
instance of multi-robot routing as follows. L&' = (V,¢) be communicated over any single link.
the complete weighted graph an with weightsc(u, w) = 1,
if (u,w) € E, and ¢(u,w) = 2, otherwise. One robot is
placed at vertexo and the remainindV’| — 1 vertices are  We explore two ways of obtaining approximate solutions
designated as targets. The costs (weightsizinsatisfy the to multi-robot routing within our auction framework: paths
triangle inequality. and trees. In particular, during the auction, one can censid

We claim thatG has a Hamiltonian path if and only if anconstructing paths that collectively span all targets (path
optimal MINISUM solution in G’ has a cost of V| — 1. A for each robot), or constructing trees that span all targets
Hamiltonian path inG is also an optimal MNISum solution (a forest with one tree rooted at each robot). Considering
in G" with cost |V| — 1 (this is the least possible cost forpaths is a direct method, whereas considering trees is an
visiting |V| — 1 targets). Conversely, it7 does not have a indirect method, since the trees must be converted to paths
Hamiltonian path, then any path &’ that starts fromv and to obtain a solution to the original problem. This extra sgep
visits all the vertices exactly once has to use some edgerefatively easy and does not significantly affect the quadit
cost2 in G’. Hence, the cost of an optimal solution will bethe solution.
at least|V|. Similarly, G has a Hamiltonian path if and only The choice of paths versus trees depends on how efficiency
if an optimal MINIMAX solution inG’ has a cost of V| — 1. and performance are affected. The rationale behind theaflea
Finally, G has a Hamiltonian path if and only if an optimalconstructing trees rather than paths is that trees withaicert
MINIAVE solution inG’ has a cost 0(1 +2+4+...+(]V|— properties might be readily computable compared to patts wi
2)+ ([VI-1)/(IVI-1) =|V|/2. m similar properties. For example, given any weighted graph,

Given this hardness result, we focus on efficient approximesinimum-cost spanning tree can be obtained in polynomial
tion algorithms for solving large-scale instances of mrdtiot time, whereas a finding a minimum-cost path through all nodes
routing. However, optimal solutions for small instances ba is an NP-hard problem. Therefore, instead of directly segki
obtained through a mixed integer programming formulationpaths that achieve a team objective, one may seek to find trees
that achieve an analogous objective, and then convertdls tr
to paths that approximate the original team objective.

Our auction-based coordination system for multi-robot+ou For MiNISuM, the analogous objective is to find a minimum
ing considers the robots as bidders and the targets as gosgsnning forest (MSF), that is, a collection of trees rooted
and operates as follows. All targets are initially unaltech at the robots that span all targets with minimum total cost.
During each round of bidding, all robots bid on all unall@zht Such a forest is computable in polynomial time by a variant of
targets. The robot that places the overall lowest bid on aRyim’s algorithm [8]. For MNIMAX, the analogous objective
target wins and is allocated that particular target. A newntb is to find a minimax spanning forest, which is a collection
of bidding begins, and all robots bid again on all unallodateof trees rooted at the robots that span all targets such that
targets, and so on, until all targets have been allocatete Nthe cost of the most expensive tree is minimized. Computing
that each robot needs to bid only on a single target in eatte minimax tree is an NP-hard problem [9]. Finally, for
round, namely on a target for which its bid is the lowest, sindMINIAVE, the analogous objective is to find a minimum
all other bids from the same robot have no chance of winningverage-cost spanning forest which is a collection of trees
Upon allocation of all targets, each robot computes a path fmoted at the robots that span all targets such that the gevera
visiting the targets allocated to it and then moves along thapot-target cost over all targets is minimized. Such a fores
path. Bid selection and path computation are the key factdys trivially computed by connecting each target to the cdbse
that affect team performance. root, and consists of stars.

The main advantage of this multi-round auction mechanismA tree can be easily turned into a path using shortcut-
is its simplicity and the fact that it allows for a decentzeli ting [10], as commonly used in TSP algorithms. Shortcutting
implementation on real robots. Initially, each robot neg&als constructs a path from a tree by performing a depth-firsichear
know its own location, the location of all targets, and then the tree to derive the ordering of nodes in the path while
number of robots (the number of bids in each round), but nekipping previously visited nodes. It is well-known thaeth
the locations of the other robots. In each round, each roliotal cost of the resulting path is no more than twice the cost
computes its single bid locally and in parallel with the atheof the tree [10]. Alternatively, one could use any sophétd
robots, broadcasts the bid to the other robots, receiveitlse TSP algorithm on the nodes of each tree to obtain a good
of the other robots, and then locally determines the winnirgath for each robot. The specific method used does not affect

V. PATHS VERSUSTREES

IV. AUCTION FRAMEWORK



the results in this paper as long as the total cost of each patliror the MNISumM team objective, robot; bids on target
is at most twice the cost of the corresponding tree, which

can be guaranteed through shortcutting. Thus, in our auctio ZRPC(WSJ/‘) - ZRPC(TJ’SJ)
framework and analysis, we assume that the final step of J
converting trees into paths incurs an approximation faofor = RPC(ri,5; U{t}) — RPC(r;, S;).

at most2 (in MINISUM cost). For the MNIMAX team objective, robot; bids on target

VI. BIDDING RULES max RPC(rj, S%) — max RPC(r;, S;)
J J

In every round of the auction, the robots use a bidding rule  — RpC(r;, S; U {t}) — max RPC(r;,S;).
to determine the appropriate (according to the team obgcti
bid for each target. We suggest a generic methodology fphis derivation uses the fact thahax; RPC(r;,S]) =
deriving such rules for any given team objective, and We/éel’lRPC(r“S’), otherwise, target would have already been
six bidding rules for the three team objectives we consMer. allocated in a previous round of bidding. The term
divide the bidding rules into two classes depending on V\éTeﬂ}naXJ RPC(rJ, S;) can be dropped since the outcome of the
they aim to build paths or trees. auction remains unchanged if all bids change by a constant.

Suppose that the team objective is expressed as Thus, robotr; can just bidRPC(r;, S;U{t}) on targett. Last,

for the MINIAVE team objective, robot; bids on target
mfi‘nf(g(rl,Al),...,g(rn,An)) ) g

where functiong measures the performance of each robot, ZCTPC (rj, S ZCTPC (75,55
function f measures the performance of the team, ahe J
{Al,Ag2 ..., An} is a partition of the set of targets, Where _ i(CTPC(n-,Si u{t)) - CTPC(rZ-,Si)).
targets inA; are allocated to robat;. The three team objec- m

tives we consider fit this structure. L&tPC(r;, A;) denote The factor1/m can be dropped since the outcome of the
the minimumrobot path cost for robot r; to visit all targets auction remains unchanged if all bids are multiplied by a
in A; from its current location. Similarly, le€T"PC(r;, A;) positive constant. Thus, robet can bid justCT PC(r;, S; U
denote the minimuneumulative target path cost of all targets {t}) — CTPC(r;, S;) on targett.

in A;, again, if robotr; visits all targets in4; from its current  Thus, the bidding rules for the three team objectives are
location. Then, the three team objectives can be expressed a BIDSUMPATH: RPC(ry, S; U {t}) — RPC(r;, S;)

o BIDMAXPATH: RPC(r;, S; U{t}), and
- e BIDAVEPATH: CTPC(r;, S; U{t}) — CTPC(r;,S;).
MINIMAX : minmax RPC(r;, A;) The robots need to be able to calculate their bids efficiehtly
A g computingRPC or CT PC' is NP-hard. Therefore, we assume

that each robot; uses a heuristic method to approximate these
functions. In particular, we make use of the insertion hetidri
for TSP: given a path that visits the targetsdp evaluate all

Let (S1,S,...,S,) be the current partial allocation ofinsertions of target into all possible positions on the existing
targets to robots in some round of the auction, and: lbe path, and choose the one that minimizes the cost of the new
an unallocated target. We propose the following bidding rulpath. Our results are not affected if other methods are wesed,
which is directly derived from the team objective. long as the resulting bids are not worse than the bids cordpute
using the insertion heuristic.

A similar analysis can be used to derive bidding rules for
the case of constructing trees. For any robptand any set
of targetsS;, let RTC(r;,S;) denote the minimunrobot
tree cost, that is, the cost of a minimum spanning tree over
; . the nodes{r;} U S;. Similarly, let CTTC(r;, S;) denote the
Consequently, robot; should bid on target the difference minimumi{unLIative target tree cost Which(is the sum of root-

y y target costs for all targets if}; in a spanning tree ovdr-; }US;

f(g(rl’sl)’ SR S”)) B f(g(rl,Sl), "' ’g(T”’S"))’ with root ;. Without going through details, the biidiig rules
where S! = S; U {t} and S, = S; for i # j. This for the three team objectives in this case are

generic bidding rule thus performs some sort of hill clinthin  ® BIDSUMTREE RT'C(r;, S; U {t}) — RTC(r;,S;),
aiming to find a good, but not necessarily optimal, allogatio * BIDMAXTREE RT'C(r;, S; U {t}), and

Note that this generic bidding rule may require additional * BIDAVETREE CTTC(r;, S; U{t}) — CTTC(r;, S;).
communication for computing the bids. However, for th&iven the sequential nature of allocation, theeE bidding
objectives we consider, bid computation can be done lacalljules can be further simplified. In particular, a tree owgr

MINISUM  : mfi\nZRPO(rj, Aj),

1
MINIAVE m)‘n%z CTPC(r;, A;).
J

Bidding Rule Robot » bids on unallocated target
t the difference in performance for the given team
objective between the current allocation of targets to
robots and the allocation that results from the current
one if robotr is additionally allocated target



TABLE |
BOUNDS ON PERFORMANCE RATIRULE PERFORMANCE OVER OPTIMAL
PERFORMANCEH WITH n ROBOTS ANDm TARGETS.

remains unchanged within a tree ovgrU {t} under any of
the three objectives. This is true because targetas not
allocated in earlier rounds (even though it was present and

Bidding Team Objective

available), and hence it does not offer a better way to cannec  Rrule MINISUM MINIMAX MINIAVE

nodes inS;. For the BDSUMTREE and BDMAX TREE rules, Lower Upper | Lower  Upper LO"J"Fe; Upper
. m

targett is connected t&; through the cheapest edge, wheregsBioSumpPatH | 1.5 2 n 2n 5 2m

for the BIDAVETREE rule, it is connected directly to the| g vaxparn | n on | "L a0 | am ) 2m

-
N

root r; because of the triangle inequality assumption. In othe

n+1
words, RTC(r;, 8; U {t}) = RTC(r;, Si) + c(Si U {r;}, 1), | PRAVERTH | m  2of | 75 2wfn | Qni)  2m?
wherec(S; U {r;},t) is the cost of the cheapest edge betweensipsumTree | 1.5 2 n 2n ’”;’ Lo
any node inS; U {r;} andt¢, and CTTC(r;,S; U {t}) = nt 1 s
BIDMAXT n n n Q(m m
CTTC(ri, Si) + c(ri, t). Thus, the rules can be expressed as: PIAREE ? 2 ? (m7) 2
e« BIDSUMTREE C(SZ U {’I"i},t), BIDAVETREE m 2m 5 2mn Q(ml/s) 2m?

o BIDMAXTREE RTC(r;, i) + ¢(S; U{ri},t), and shortcutting (polynomial). Once again, we only assume, that

« BIDAVETREE ¢(ry, 1). whatever the choice, the cost of each path is at most twice the
Bids for the TREE rules are computable in polynomial time. cost of the corresponding tree as guaranteed by shoriguttin
Our bounds apply to the entire family of rules. In deriving

VIl. SUMMARY OF RESULTS e
o . the upper bounds, we do not assume any better heuristic
We assess the performance of each bidding rule theorticaj{ap, the insertion heuristic or shortcutting. In additidhe

in comparison to optimal performance and with respect theag,,er bounds hold even iRPC and CTPC. as well as the
of the three team objectives. This is done in terms of UPPELLversion of trees to paths, are computed optimally.
and lower bounds on the performance ratio (maximum ratio tapje | summarizes our results. ThaTR and the REE

of rule performance over optimal performance). _ rules offer almost identical guarantees, which impliest tha
If I(n,m) is the class of all instances of multi-robotpey are not fundamentally different from a theoreticalnpoi
routing with n robots andm targets, an upper bound on the yiew. In practice, the ArH rules yield somewhat better
performance ratio for a rul® and an objectiveX is a function solutions, as they build paths directly, whereas theed
UB(n,m, R, X) such that for any. andm: rules are computationally more efficient, since bid comiiorna
R(I,X) for the TREE rules is much faster than for theaf rules.
X O X) <UB(n,m,R,X), Given that oftenn < m, it is clear that the best guarantees
are offered for the MNISum and the MNIMAX objectives,
where R(1, X) is the cost of the solution under objectivé \yhereas there are only loose guarantees for theil MVE
for instancel € I(n,m) obtained using rul&k andO(I, X)is  gpjective. Independently of the objective, theDBumPATH
the optimal cost under objectivE for instancel. The perfor- 5nd BpSUMTREE rules provide uniformly the best guaran-
mance ratio is lower bounded by a functidi(n,m, R, X)  tees. Overall, our results show that our auction-basedadsth

if there exists some infinite family of instancés such that constitute a principled, viable approach to multi-robaiting.

f hl :
or eachl € F VIII. A NALYSIS
R(I, X)

LB(n;,mr, R, X) < ———, In this section we prove the bounds in Table I. We make
O(1, X) the following notational conventions. The solution fourd b

wheren; and m; are the number of robots and targets imsing any of the bidding rules is marked with the name
instancel. Therefore, the performance ratio cannot be lesd the rule, e.g. BODSUMTREE. An optimal solution for
than LB(n, m, R, X). An upper bound provides a guaranteeach team objective is denoted by tdum, OPTMAX, and
on the performance of the corresponding rule for the corr®PTAVE, respectively, and the cost of a solutiShaccording
sponding objective, whereas a lower bound usually repteseto each team objective byum(S), Max(S), and A/E(S),
pathological cases that demonstrate worst-case behavior. respectively. With a slight abuse of notationFifis a forest, we

It should be pointed out that each bidding rule essentialfyso use 8m(F') for the total cost of the forest, Mx (F’) for
represents a family of rules. For theam® rules, we do the cost of the most expensive tree in the forest, and (&)
not specify a particular choice for the computation of thfor the average of all root-target costs in the forest.
functions RPC and CTPC. This choice can be anything The following lemma on the relationship of the various
between computing them optimaly (NP-hard) and computirapjective functions is used repeatedly.
them approximately through the insertion heuristic (polyn Lemma 1: Let F' be a spanning forest rooted at the robots,
mial). However, we assume that whatever the choice, thHwat spans all targets in an instance of multi-robot routifitty
approximation will not be worse than the insertion heuristin robots andn targets. Then, it holds that
approximation. Similarly, for the Ree rules we do not specify
a particular choice for the conversion of trees to pathsciwhi AVE(F) < MAX(F) < SumM(F) < n Max(F),
can range from computing optimal paths (NP-hard) to using SuM(F) < m AVE(F).



Proof: The maximum root-target cost of any target cawhich implies that
be at most equal to the cost of the most expensive tree in the
forest. Therefore, the average of the root-target costaatan SUM(BIDSUMPATH) < 2 SUM(MSF(G))' (1)
be more than the cost of the most expensive tree in the forgsi. optimal solution @TSum for the MINISUM team objec-
Furthermore, the cost of the most expensive tree in the tforéige is also a spanning forest i@, therefore it is true that
cannot exceed the total cost of the forest. The total cost of
the forest cannot exceed anmultiple of the cost of the most SUM(MSF(G)) < SUM(GPTSUM).
expensive tree, since there are at modtrees in the forest. Thus, we conclude that
Finally, there aren targets in the forest anq the contribution SUM(BIDSUMPATH) < 2 SUM(OPTSUM).
of each target to the total cost of the forest is no more than it
root-target cost. Therefore, the total cost of the foresinoa u
exceed the sum of all root-target costs, which can be exguess Using Equation (1), Lemma 1, and the fact that bothtO
as anm-multiple of the average root-target cost. m MAaAx and OPTAVE are spanning forests, we also conclude:
Note that Lemma 1 holds even i is a collection of disjoint ~ Corollary 1: The performance ratio of theIBSUMPATH
robot paths which span all targets. bidding rule for the MNIMAX team objective is at mon.
Corollary 2: The performance ratio of the I BSUMPATH

A. Upper Bounds for BIDSUMPATH bidding rule for the MNIAVE team objective is at moSm.

Theorem 2: The performance ratio of the IBSUMPATH

bidding rule for the MNISUM team objective is at mogt B. Upper Bounds for BIDMAXPATH

Proof: Let G = (RUT,c) be the weighted graph over Theorem 3: The performance ratio of the IBMAXPATH
all robot and target nodes. In each rouhdof the auction, bidding rule for the MNISuM team objective is at mo2n.
k =10,...,m — 1, let v}, be the set of robot nodes and Proof: As in Theorem 2, consider the cut¥}, V) in
allocated target nodes anld, the set of unallocated targeteach roundk of the auction. Lete(Vi, V;) be the cost of a
nodes. The setl, andV, define a cut ove€, and, obviously, cheapest edge across the ¢ut, Vi) and PF, i = 1,...,n,
Vo=R Vo=T,V, =RUT, andV,, = 0. In each round be the robot paths i#,. We establish by induction that in any
k, BIDSUMPATH selects a target € V,, that can be added roundk, the Sim cost of each patiP* is bounded by:

to one of the paths iV, with the least additional cost. Let k—1

this cost beb(Vy, Vi), which is exactly the bid placed by the SuM(P}F) < 2 Z (V;, V)
winning robot. Therefore, the® cost of the solution found =0

by BIDSUMPATH at the end of the auction is:

The base case is certainly true BS = {r;} (a single node),

m—1 .
— SuM(P?) = 0. Assume that the assertion holds fbr In
SUM(BIDSUMPATH) = kz_o b(Vie, Vi) the next round, BDMAXPATH allocates a target € V;, that

_ minimizes the cost of the most expensive patb/in ;. The
Let ¢(V, Vi) be the cost of a cheapest edge across the Gith pi+! wheret was added must be the most expensive
(Vk, Vi). A target in V; corresponding to a cheapest edggath inV;,,,, otherwiset would have been allocated in some
can be inserted into some path ¥ with a cost increase previous round. Therefore, for any paftf 1 in Vi, it is

of at most2¢(Vy, V;) in SuM cost (because of the trianglege that

inequality assumption). Since thedBSUMPATH rule identifies SuM(PF) < Sum(PrT).
an insertion with minimum increase inus cost, it must be _ )
the case thab(Vi, Vi) < 2¢(Vi, 7). Hence, Let (¢, ) be the cheapest edge across the(&ut Vi), with
1 t' € Vi. Also, let P C Vj, be the path containing’. Target
SUM(BIDSUMPATH) < 2 Z c(Vi, Vi) t' can be inserted into patR* with an increase of at most

2¢(Vy, V) in the SUM cost of P,’ﬁ (because of the triangle

k=0 : : . . .
. P . inequality assumption). SincelBMAX PATH chose to insert
Consider another grapR’ which is identical toG except that in P* in round, it must be the case that

exactly m edges have their costs lowered. In particular, for -
every cut(Vy, V}) the cost of a cheapest edge connectiipe SUM(P*1) < SUM(PE) + 2 ¢(Vi, Vi)
target selected by iIB SUMPATH) to V;, is lowered tac(Vy, Vi) Fi . . .
. ) nally, by the inductive hypothesis we have

(the cost of a cheapest edge across the cuf) irClearly, those naty, By nductive hyp IS W v
m edges inG’ form an MSF inG’ (it is equivalent to running ol it _ _ k _
Prim’s algorithm starting with the robot nodes connected l.%UM(Pi )< ZZC(VJWVJ'HQ (Vi, Vi) = QZC(VJ" Vi)
each other with zero cost). An MSF i@ cannot have less g=0 =0
SuM cost than any MSF i/, since we have only lowered Since the Mx cost of the BDMAXPATH solution is the 8m
costs while constructing”’ from G. Therefore, we obtain: ~ cost of the most expensive path, we conclude that

m—1 m—1

> Vi, Vi) = SUM(MSF(G')) < SuM(MSF(G)). MAX(BIDMAXPATH) <2 > c(V;, V;).

k=0 j=0



Using the construction for grapi’ as in Theorem 2, we have Using Equation (3), Lemma 1, and the fact that bothTO
M BIBMAXP < 2 SUM(MSE 5 MaAXx and QPTAVE are spanning forests, we also conclude:
AX(BIDMAXPATH) < um( ) @ Corollary 5: The performance ratio of the IBAVEPATH

An optimal solution @TSum for the MiNISum team objec- bidding rule for the MNIMAX team objective is at most

tive is also a spanning forest, so by Lemma 1 we have 2m?n.
Corollary 6: The performance ratio of the IBAVEPATH

SUM(BIDMAXPATH) < 2n SUM(OPTSUM). bidding rule for the MNIAVE team objective is at mogim?.

. _ ® D Upper Bounds for BIDSUMTREE
Using Equation (2), Lemma 1, and the fact that bothTO

Max and CPTAVE are spanning forests, we also conclude:
Corollary 3: The performance ratio of theiIBMAXPATH

bidding rule for the MNIMAX team objective is at mon.
Corollary 4: The performance ratio of theiIBMAX PATH

bidding rule for the MNIAVE team objective is at mo2m.

Theorem 5: The performance ratio of the  BSUMTREE

bidding rule for the MNISuM team objective is at most 2 [6].
Proof: The bid placed by each robot in each round is

equal to the cost of adding the closest unallocated targiét to
own subtree. Considering all robot nodes as connected with
each other with zero cost, the auction with th®BuMTREE
C. Upper Bounds for BIDAVEPATH rule is identical to Prim’s algorithm for MST [8]. Therefgre
the tree found by this rule is indeed an MSF. Converting the

Theorem 4: The performance ratio of the IBAVEPATH .
trees of an MSF to paths incurs a factor of 2, therefore:

bidding rule for the MN1SuM team objective is at mogtm?.
Proof: As in Theorem 2, consider the cut$, Vi) in SUM(BIDSUMTREE) < 2 SUM(MSF). (4)

each roundk of the auction. In each rounk, BIDAVEPATH -

selects a target € V. that is added to one of the paths irAn optimal solution @TSum for the MiNISUM team objec-

V;, with the least increase in thevA team objective. Let this tive is also a spanning forest, therefore we conclude that

increase bé(Vy, Vi) which corresponds to the bid placed by

the Winning(robot.)Therefore, thev& cost of the solution SUM(BIDSUMTREE) < 2 SUM(OPTSUM).

found by BDAVEPATH at the end of the auction is: ]
m—1 Using Equation (4), Lemma 1, and the fact that bothTO
AVE(BIDAVEPATH) = Z b(Vi, Vi) Max and QPTAVE are spanning forests, we also conclude:

k=0 Corollary 7: The performance ratio of theIBSUMTREE

ding rule for the MNIMAX team objective is at mogn.
orollary 8: The performance ratio of the I BSUMTREE
ding rule for the MNIAVE team objective is at mogm.

Let c(R, Vi) be the cost of a cheapest edge across the sgl[
R andV}, that is, the cost of a cheapest edge between sog}g
unallocated target’ and some robot’. Targett’ can always

be inserted as the first target in the pathr6fin Vi.. Such g ypper Bounds for BIDMAX TREE
an insertion causes an increase of at musgiR, Vi) in the

robot-target cost of each target in the path because of the .. S
triangle inequality assumption, while the robot-targestcof tm%dmg ru.le for .the MNI SUM team quecuve IS at mpsm.
t"is ¢(R, V4). In the worst case, this insertion occurs at a path Proof: As in Theorem 2, consider the cut§}, V) in

that contains all other targets. Since the increase of thetro teh?it:g:ngit %f dti‘e ail:gggnfh:etﬁc;v%w)vye € etgt(;bﬁ'c; it t? f
target cost for each of the: targets is at mosc(R, V), P 9 CU, V). ! y

<o is the increase in V& cost. Since the BAVEPATH rule induction that in any round of the auction, th&$ cost of

k . . . .
identifies the insertion with t_he least inc_rease in each alounany reeT, i =1,...,n, in Vi is bounded as follows:
it must be the case tha{Vy, Vi) < 2¢(R, V%), and therefore

Theorem 6: The performance ratio of theIBMAXTREE

>~
-

SUM(TE) < 3 e(V;, 1)

m—1
AVE(BIDAVEPATH) < 2 Z (R, Vi). =0
k=0 The base case is certainly true B8 = {r;} (a single node),

It holds thate(R, Vi) < SuM(MSF), since in an MSF, no SuM(T?) = 0. Assume that the assertion holds fbr In

robot can reach a target with cost less than the cheapest dif8® next round, BEMAXTREE allocates a target € V;, that
edge from any robot to that target. Therefore minimizes the cost of the most expensive treeVin ;. The
tree TF+! wheret was added must be the most expensive

AVE(BIDAVEPATH) < 2m SUM(MSF). (3) tree inV;1; otherwise,t would have been allocated in some
previous round. Therefore, for any tr@éJr1 in Vi1 itis true

An optimal solution @TSuM for the MINISUM team objec- {hat
a

tive is also a spanning forest, so by Lemma 1 we have th
P ¢ y SUM(TF) < SUM(TF) 4 ¢(TF, t)

S BIDAVEP <2m? S OPTSI . _
UM(BIDAVEPATH) < 2m™ SUM(OPTSUM) Let (t”,t") be the cheapest edge across the(&{t V%), with

m t' €V, Also, letT% C Vj be the tree containing’. Since
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Fig. 1. A simple instance with 2 robots (squares) and two tar(rcles). 1 I} 1 n
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BIDMAX TREE chose to attach to 7% in roundk, it must be
the case that Fig. 2. Parallel lines constructiom robots andm = n targets spaced
evenly (distance of3) on two parallel lines (one for robots, one for targets).
SUM(Tk) + C(Tk t) < SUM(Tk) + c(Tk t') The distance between the two lineslisexcept for the left-most robot which
r T = r! r’ ’

is a little closer to its corresponding target.

H k 41\ __ VA
or, using the fact that(T,%, ¢') = c(Vi, Vi ): where the factor o2 comes from the conversion of stars to
SUM(TF) < SUM(TE) + ¢(Vi, V). paths. Thus, given that any optimal solutio®T3uM is also
a spanning forest, we conclude that

Finally, by the inductive hypothesis
SUM(BIDAVETREE) < 2m SUM(OPTSUM).
k

Sum(Tf*) < eV, Vi) + c(Vi, Vi) =
J

|
—

k
c(V;,Vj). Using Equation (6), Lemma 1, and the fact that bothTO
§=0 Max and QPTAVE are spanning forests, we also conclude:
Corollary 11: The performance ratio of theIBAVETREE
idding rule for the MNIMAX team objective is at mo&inn.
Corollary 12: The performance ratio of theiIBAVETREE
dding rule for the MNIAVE team objective is at mogm?.

Il
=

Since the M\x cost of the BDMAX TREE solution is at most
twice the SyM cost of the most expensive tree (taking int(?
account the conversion of trees to paths), we conclude thaEJi

m—1
MAX(BIDMAXTREE) <2 Y c(V;,V}). G. Lower bounds
J=0 In all example instances, robots are shown as squaresesing|

Using the construction for grapf’ as in Theorem 2, we have targets as open circles, clusters of targets as solid sjralede
represents an arbitrarily small positive number. The examp

MAX (BIDMAXTREE) < 2 SUM(MSF), (5) that yield lower bounds for the REE rules are identical to
those for the RrH rules, and therefore, they are omitted.
BIDSUMPATH applied to the instance in Figure 1 allocates
both targets to the robot on the right with au% cost of
SUM(BIDMAXTREE) < 2n SUM(OPTSUM). 3+¢€ = 3, as opposed to the_FCfS_UM cost of2+2€_z 2 (0r_1e
target to each robot). By replicating the construction, Weam
m an infinite family of such instances, thus a lower bound for
Using Equation (5), Lemma 1, and the fact that bothtO the performance ratio of IBSuUMPATH for MINISUM is 1.5.
MAx and CPTAVE are spanning forests, we also conclude: Applying the BDSUMPATH rule to the example in Figure 2
Corollary 9: The performance ratio of theiBMAXTREE Wwith § = 1 — ¢ yields a solution that allocates all targets to
bidding rule for the MNIMAX team objective is at motn. the left-most robot, and a path that runs through all targets
Corollary 10: The performance ratio of theilBMAX TREE  left to right. Obviously, MAX(BIDSUMPATH) =~ n, whereas
bidding rule for the MNIAVE team objective is at mog@tm. MAX(OPTMAX) = 1 (each robot visits its corresponding
target). Therefore, a lower bound for the performance ra-
F. Upper Bounds for BIDAVETREE tio of BIDSUMPATH for MINIMAX is n = m. Similarly,

Theorem 7: The performance ratio of the IBAVETREE AVE(BIDSUMPATH) ~ (1 + 2+ ... +n)/n = (n +1)/2,
bidding rule for the MNISUM team objective is at mostm. whereas XE(OPTAVE) = 1 (each robot visits its correspond-

Proof: Under the BoAVETREE rule. the intermediate INd target). Therefore, a lower bound for the performante ra

spanning forest at the end of the auction will consist ofsstai®f BIDSUMPATH for MINIAVE is (n +1)/2 = (m +1)/2.
one for each robot, where each target is connected dirextly t APPIYiNg BIDMAXPATH to the instance in Figure 2 with
the closest (in terms of cost) robot. Because of the triang?e: e yields a solution that allocates one target to each robot.
inequality assumption, direct connections minimize theote | NUS, IM(BIDMAXPATH) = n, whereas 8M(OPTSUM) =
target costs, and therefore the average. 1+ ne ~ 1 (the left most robot takes all targets) for
Let c* be the cost of the most expensive robot-target edge = ©(1/n). Thus, a lower bound for the performance
in the forest. It holds that* < SuM(MSF), since in an MSF, ratio of BIDMAXPATH for MINISUM is n = m. Similarly,
no robot can reach a target with cost less than the cheapagl (BIDAVEPATH) = n, whereas 8m(OPTSUM) ~ 1 (the
direct edge from any robot to that target. Since thererare €ft-most robot takes all targets). Thus, a lower bound ffer t

targets in total, the @ cost of the forest is at mostc*, and Performance ratio of BBAVEPATH for MINISUM is n = m.
thus, the &M cost of BDAVETREE can be at mos2mc*, Applying BIDMAX PATH (or BIDAVEPATH) to the instance
in Figure 3 yields a solution that allocates one target per

SUM(BIDAVETREE) < 2mc* < 2m SUM(MSF), (6) cluster to each robot. The path of each robot traverses ttie gr

An optimal solution @TSuM for the MINISUM team objec-
tive is also a spanning forest, so by Lemma 1 we have
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Fig. 4. Cluster arrangement in grid construction: exampléd itclusters
[ [ [ s [ ] [ ] [ ] [ ] of 5 targets each and 5 robots clustered on the left. Targethister?; are
arranged evenly on a line of slopé5° within a small cost from each other.
(1 1) (1 n) Each of the 5 robots visits one target T, since the straight line is the
@ PY PY . P ° PY ’. shortest path. Targets if, have the same arrangement, but are shifted up by

€ to ensure that the cost between corresponding target3 iand 7% is less
) ) ) 5 than any other inter-cluster cost. The robot that visits fite target in7T}
Fig. 3.  Grid constructionn robots at(1,1) andm = n” targets on a il also visit the first target irf%, and so on. This pattern repeats along the

(n x n) rectangular grid; each of the> gridpoints is a cluster of targets. horizontal axis, but it can also be used for clusters arrdngetically.
The intra-row distance ig, whereas the intra-column distancedst 1.

alternating left-to-right and right-to-left, and also fincbottom P€rformance guarantees. We are currently conducting exten
to top. Figure 4 shows the necessary adjustments to make H¥§ experimentation to assess the actual performancerof ou
possible. Thus, Mx(BIDMAXPATH) = n(n — 1)3 + (8 + bidding rules and their effectiveness in solving large eots.
1)(n—1) = (nB8+4+1)(n—1), whereas Mx (OPTMAX) < ACKNOWLEDGMENT
(n—1)B+(B+1)(n—1) = (26+1)(n—1) (each robot takes . c 9 G

one row of the grid). Thus, a lower bound for the performance This research was partially supported by NSF awards under
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