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Abstract

Many real-world applications require the successful
combination of spatial and temporal reasoning. In this
paper, we study the general framework of the Traveling
Salesman Problem with Simple Temporal Constraints.
Representationally, this framework subsumes the Trav-
eling Salesman Problem, Simple Temporal Problems, as
well as many of the frameworks described in the litera-
ture. We analyze the theoretical properties of the com-
bined problem providing strong inapproximability re-
sults for the general problem, and positive results for
some special cases.

Introduction
Tasks are usually situated in both time and space. While
temporal and spatial reasoning are individually well stud-
ied, their combination is not straightforward. For example,
Simple Temporal Networks (STNs) and Traveling Salesman
Problems (TSPs) are two frameworks, for temporal and spa-
tial reasoning respectively, which have been studied exten-
sively over the years. However, little is known about the the-
oretical properties resulting from combining them.

A unified framework is important in many real-life do-
mains. Imagine a surveillance vehicle which needs to au-
tonomously decide in which order to perform the observa-
tion tasks it has been assigned. The tasks, however, are not
completely independent of one another. For instance, the ve-
hicle may be instructed to observe nearby areas allowing
for a certain amount of time to elapse between observations.
This dependence between tasks can be captured by tempo-
ral constraints. Under some assumptions on the nature of the
temporal constraints, this problem is easily solved – or iden-
tified as unsolvable – even for a large number of tasks. Real-
istically, however, different tasks must be performed in dif-
ferent locations, and the vehicle must move from one place
to the next. This adds a new dimension to the problem: a
schedule which completely satisfies the temporal constraints
between tasks could be infeasible because of the time the ve-
hicle spends traveling from one location to the next. On the
other hand, if we want to minimize the time (or distance)
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traveled by the vehicle, we still have to satisfy the tempo-
ral constraints among the tasks. Finding a schedule which
satisfies the temporal constraints and minimizes the distance
traveled, while taking into account the time necessary for the
vehicle to move from location to location, is a problem for
which there exists no general efficient solution technique.

In this paper, we first recount the two commonly used
frameworks for solving temporal and spatial reasoning prob-
lems separately. We then introduce a unified framework, the
Traveling Salesman Problem with Simple Temporal Con-
straints (TSP-STC). We analyze the combinatorial proper-
ties of the TSP-STC in light of recent results from the the-
oretical computer science community. This analysis yields
results, both positive and negative, about the approximabil-
ity of TSP-STCs. Such results in turn allow us to identify
those aspects of the combined problem which require fur-
ther research to obtain efficient solutions.

Temporal Reasoning Problems
In this section, we recount well established formalisms for
reasoning about temporal constraints. Many kinds of tem-
poral relations, including the ones considered in this pa-
per, can be represented on a directed graph G = 〈X , E〉,
where a vertex Xi ∈ X is an event and a directed edge
e = 〈Xi, Xj〉 ∈ E is a constraint on the relative execution
times of Xi and Xj . Conventionally, a special event X0 is
used to represent the “beginning of time” and its execution
time is set to 0.

The simplest formalism for temporal reasoning is prece-
dence ordering, which is commonly encoded by a directed
edge e = 〈Xi, Xj〉, indicating that event Xi should be
executed before event Xj . Although their representational
power is limited, precedence constraints are useful in prac-
tice since they are able to represent causal relationships. For
instance, precedence constraints can model a plan whose ac-
tions are causally ordered. In our previous example of the
surveillance vehicle, causal relationships would dictate that
the vehicle should first reach the target area before observ-
ing it. Producing a total ordering for a set of precedence con-
straints, or alternatively identifying that no such ordering ex-
ists, can be done in polynomial time.

A more expressive but still tractable formalism for tem-
poral reasoning is the framework of Simple Temporal Prob-
lems (STPs). Here, each directed edge e = 〈Xi, Xj〉 ∈ E ,



annotated with the bounds [LB(e), UB(e)], is a simple tem-
poral constraint between Xi and Xj , indicating that the rel-
ative execution times of events Xi and Xj are constrained
by the pair of inequalities LB(e) ≤ Xj − Xi ≤ UB(e).1
A solution to an STP is an assignment of execution times
to all events such that all simple temporal constraints are
satisfied. STPs are one of the most widely used formalisms
for reasoning about metric time. They are fairly rich in their
expressiveness, although they cannot represent disjunctions.
STPs can be solved in polynomial time using shortest path
computations on their distance graph representations. In the
distance graph representation, the constraint Xj −Xi ≤ w
is represented as an edge from Xi to Xj annotated with a
cost w. Each simple temporal constraint in the STP is there-
fore represented as a pair of edges in the distance graph. The
absence of negative cost cycles in the distance graph charac-
terizes the consistency of the temporal constraints (Dechter,
Meiri, and Pearl 1991), that is, the existence of a solution.
Shortest paths in the distance graph are commonly calcu-
lated using the Bellman-Ford algorithm. However, recent,
more efficient algorithms can be employed for solving STP
instances with additional structure (Planken, De Weerdt, and
van der Krogt 2008).

There also exist more expressive formalisms for temporal
reasoning, such as Disjunctive Temporal Problems (DTPs).
However, their higher expressiveness comes at the cost of a
higher complexity. In particular, DTPs are NP-hard prob-
lems, and all known procedures for solving them require
exponential time. Here, we limit our analysis of combin-
ing temporal and spatial reasoning to cases with precedence
and simple temporal constraints. The negative results proved
here for the combined problem carry over to extensions in
which DTPs are used instead of STPs.

Traveling Salesman Problem
The Traveling Salesman Problem (TSP) is an established
formalism for reasoning about spatial problems and has been
extensively studied by different communities. Many variants
of the problem exist. In this section, we recount the results
associated with those variants which are relevant to our for-
mal definition of TSP-STCs.

The classical TSP is the problem of finding a Hamiltonian
cycle of minimum cost on an edge-weighted complete undi-
rected graph. A Hamiltonian cycle is a cycle in which each
vertex of the graph is visited exactly once. The TSP is NP-
hard and even hard to approximate within any polynomial
factor. However, many of its variants can be approximated
in polynomial time because they allow for tours instead of
cycles. A tour visits all vertices of the graph, like a Hamil-
tonian cycle, but any vertex can be visited more than once.
This relaxation is equivalent to the metric assumption, where
the triangle inequality holds for the distances between ver-
tices (Chekuri and Pál 2007).

The most common TSP variants consist of different com-
binations of assumptions and requirements, such as: a.
Whether we assume a metric distance function; b. Whether

1Here, for convenience, we use the same notation to indicate
events and their execution times.

distances between vertices are symmetric; c. Whether we are
interested in calculating a path between given start and goal
vertices or a cycle (in both cases all vertices should be vis-
ited); d. Whether a subset of the vertices should be visited
in a given order; and e. Whether a subset of the vertices
should be visited in an order consistent with specified prece-
dence constraints. The difference between requirements (d)
and (e) is that we have a total ordering over the vertices of
the subset for (d), while we have a partial ordering for (e).
Other variants based on different assumptions and require-
ments are well studied in different communities, such as the
relaxation of the requirement that every vertex should be vis-
ited or the assumption that a price is assigned to each vertex.
However, these variants are out of scope for our analysis.

Table 1 summarizes the known results for the TSP and
some of its most common variants which are relevant to
us (Charikar et al. 1997). There is no polynomial-time ap-
proximation algorithm for the classical TSP (unless P =
NP ). However, under the metric assumption, polynomial-
time approximation algorithms can be designed. In particu-
lar, for the symmetric TSP, where the distance from one ver-
tex to another is the same as that in the opposite direction,
there exists a factor-1.5 polynomial-time approximation al-
gorithm. In the case of the Asymmetric TSP (ATSP), the dis-
tances are not necessarily symmetric. The ATSP is amenable
to an O(log n) polynomial-time approximation algorithm.2
Next, the table lists both the symmetric and asymmetric path
variants of the TSP, TSP-Path and ATSP-Path, respectively,
where the start and end vertices are given. While the approx-
imation factor of O(log n) carries over to the ATSP-Path, the
best known polynomial-time algorithm for the TSP-Path has
a slightly worse approximation factor of 5/3.

Two other notable variants are the TSP and ATSP with
precedence constraints. These variants allow the specifica-
tion of precedence constraints between vertices, which can
be encoded as a directed acyclic graph and interpreted as a
partial order. A feasible solution is a total ordering on the
vertices which is consistent with the partial order. The cost
of a feasible solution is equal to the cost of the tour that it
induces. An optimal solution is a feasible solution with min-
imum cost. There are fairly strong inapproximability results
for the TSP and ATSP with precedence constraints, which
hold even under the metric assumption. Finally, the TSP and
ATSP with path constraints are special cases of the TSP and
ATSP with precedence constraints, respectively, where the
precedence constraints induce a total ordering on a subset
of the vertices. These last two variants have factor-3 and
O(log n) approximation algorithms, respectively.

TSP-STC: A Formal Definition
Having reviewed STPs and TSPs, we now study a combina-
tion of the two, a spatial problem with temporal constraints
where traveling from vertex to vertex takes time. In the ex-
ample from the Introduction, the traversal times depend on
both the terrain and the speed of the surveillance vehicle.
Thus, the solution of the spatial part of the problem gen-
erates temporal constraints in addition to the ones already

2Here, and in the rest of the paper, n is the number of vertices.



Variant Assumptions Tractable approximations
TSP No assumptions –

TSP Symmetric distances,
metric domains

1.5
(Christofides 1976)

ATSP Asymmetric distances,
metric domains

O(log n)
(Frieze, Galbiati, and Maffioli 1982)

TSP-Path
(given start and goal vertices)

Symmetric distances,
metric domains

5/3
(Hoogeveen 1991)

ATSP-Path
(given start and goal vertices)

Asymmetric distances,
metric domains

O(log n)
(Chekuri and Pál 2007)

TSP with path constraints Symmetric distances,
metric domains

3
(Bachrach et al. 2005)

ATSP with path constraints Asymmetric distances,
metric domains

O(log n)
(Chekuri and Pál 2007)

TSP with precedence constraints Symmetric distances,
metric domains

Inapproximability results
(Charikar et al. 1997)

ATSP with precedence constraints Asymmetric distances,
metric domains

Inapproximability results
(Charikar et al. 1997)

Table 1: A summary of the complexity results associated with different variants of the Traveling Salesman Problem.

specified by the STP. The complexity of the TSP-STC can-
not be smaller than the one of TSPs or STPs individually.

Formally, a TSP-STC is a sextuplet 〈V, d, t,X , c, E〉,
where:

V is the set of vertices, each of which represents a location;
d is the distance function, that maps an ordered pair of ver-

tices to a non-negative real number (d : V × V → R≥0),
which represents the distance from one vertex to another;

t is the traversal function, that maps an ordered pair of ver-
tices to a non-negative real number (t : V × V → R≥0),
which represents the time required to move from one ver-
tex to another;

X is the set of events, as defined for a standard STP;
c is the function mapping events to vertices (c : X → V);
E is the set of directed edges of the form e = 〈Xi, Xj〉, an-

notated with the bounds [LB(e), UB(e)]. Each e is a sim-
ple temporal constraint between two events Xi and Xj .

A feasible solution of a TSP-STC is a total ordering on
events in X and an assignment of execution times to all of
them such that: a. The execution times are consistent with
the total ordering; b. The execution times are consistent with
the constraints in E ; and c. The execution times of two con-
secutive events Xi and Xi+1 in the total ordering satisfy the
induced constraint Xi+1 − Xi ≥ t(c(Xi), c(Xi+1)). The
last condition accounts for the traversal time between ver-
tices (locations) of consecutive events while not penalizing
waiting time at any location.3

Since every event in X is mapped to a unique location in
V , a feasible solution defines a visit sequence on the loca-
tions. The cost of a feasible solution of a TSP-STC is equal
to the cost of the induced tour as derived from the distance

3In the rest of the paper, we use “vertex” and “location” syn-
onymously, as one corresponds to the other in our definition of the
TSP-STC.

function d. An optimal solution of the TSP-STC is a feasible
solution of minimum cost.

Just like for TSPs, we assume metric distances between
vertices for TSP-STCs as well. Unless otherwise specified,
we also assume that the distance function of TSP-STCs is
symmetric. If this is not the case, we refer to these problems
as Asymmetric Traveling Salesman Problems with Simple
Temporal Constraints (ATSP-STCs).

The above definition is only one possible way to combine
TSPs and STPs. However, it is general enough to encode
many real-world problems. In fact, both TSPs and STPs
are special cases of TSP-STCs. Given a TSP with a set of
vertices V and a distance function d, it can be represented
in this framework by imposing the following conditions:
t(Vi, Vj) = 0 for all 1 ≤ i, j ≤ |V|; |X | = |V|, where
each Xi ∈ X is a fictitious event; c is a bijective function
mapping each event to a unique location and vice versa; and
E = ∅. These conditions entail that every vertex must be
visited in the tour, but no temporal constraints need to be
considered. Conversely, a standard STP with a set of events
X and a set of constraints E can be represented in this frame-
work by imposing the following conditions: V = {V0};
d(V0, V0) = 0; t(V0, V0) = 0; and each event Xi ∈ X is
associated with the same location, meaning that c(Xi) = V0

for all 1 ≤ i ≤ |X |.

Computational Analysis of TSP-STCs
In this section, we present a complexity analysis of TSP-
STCs. We show that this class of problems is subject to
strong inapproximability results, even under simplifying as-
sumptions commonly made for TSPs. We first address the
complexity of TSP-STCs when temporal constraints are lim-
ited to precedence constraints (Theorems 1 and 2). Next, we
prove that TSP-STCs are NP-hard to approximate within any
polynomial factor, even under the assumption that both the
distance and traversal functions are metric and symmetric.



As TSP-STCs are a special case of ATSP-STCs, the inap-
proximability results for the former carry over to the latter.

Theorem 1. For the TSP-STC, there is no polynomial-time
|V|α-approximation algorithm, for some α > 0, unless P =
NP .

Theorem 2. For the TSP-STC, there is no polynomial-time
(log |V|)δ-approximation algorithm, for any δ > 0, unless
NP ⊆ DTIME(|V|log log |V|).

Proof. Consider TSPs with precedence constraints. Since
precedence constraints are a special case of simple tempo-
ral constraints, TSPs with precedence constraints are a sub-
class of TSP-STCs and therefore inapproximability results
for the former carry over to the latter. Theorems 1 and 2 cor-
respond to Theorems 5 and 9 in (Charikar et al. 1997)4 after
setting k = n = |V|.

A Closer Look at TSP-STCs with Precedence
Constraints
Theorems 1 and 2 dictate that we cannot design polynomial-
time approximation algorithms for TSP-STCs or ATSP-
STCs with precedence constraints. However, we can pre-
cisely characterize the instance complexity of solving TSP-
STCs and ATSP-STCs with only precedence constraints.

The first, trivial case encompasses instances without any
temporal constraints, resulting in classical TSPs and ATSPs,
for which there exist applicable polynomial-time approxi-
mation algorithms (see Table 1).

The second case encompasses instances where the sub-
set of events for which precedence constraints are specified
is totally ordered, resulting in TSPs and ATSPs with path
constraints, for which there exist factor-3 and O(log n) ap-
proximation algorithms, respectively.

Finally, the third case encompasses those instances where
precedence constraints are specified, but whose events can-
not be uniquely ordered. For such cases, we can still re-
duce TSP-STCs and ATSP-STCs with only precedence con-
straints to multiple instances of TSPs and ATSPs with path
constraints, where each instance corresponds to a total order-
ing over a subset of the vertices consistent with the original
precedence constraints. The best guaranteed result obtained
by evaluating all possible total orderings is a factor-3 ap-
proximation for the given original instance of the TSP-STC
with precedence constraints or an O(log n) approximation
for the ATSP-STC instance with precedence constraints. Ob-
viously, the overall running time to find an approximate so-
lution depends on the number of total orderings for that spe-
cific subset which are consistent with the specified prece-
dence constraints.

The tractability of approximating TSP-STCs and ATSP-
STCs with only precedence constraints depends on the num-
ber of total orderings over all events allowed by the prece-
dence constraints. As a rule of thumb, a large space of pos-

4The two Theorems were in turn adapted from (Bhatia, Khuller,
and Naor 1995). Note that the two Theorems were originally for-
mulated for walks instead of tours. However, when considering
metric and symmetric distances, the cost of a tour corresponding
to a given walk is at most twice the cost of the walk.

sible total orderings (as in the first case) and a small space
of total orderings (as in the second case) are both amenable
to efficient approximations.

Strong Inapproximability Results
We now prove a strong inapproximability result for TSP-
STC. Theorem 3 is stronger than Theorems 1 and 2 as
it proves the inapproximability of the problem within any
polynomial factor. Moreover, it proves that the negative re-
sults hold even under the assumption that both the dis-
tance and traversal functions are metric and symmetric. It
is worth comparing this with the original TSP, which, al-
though inapproximable within any polynomial factor, be-
comes amenable to tractable approximations under the met-
ric assumption.
Theorem 3. The TSP-STC is NP-hard and also NP-hard to
approximate within any polynomial factor, even under the
assumptions that both the distance and traversal functions
are metric and symmetric.

Proof. We reduce the Hamiltonian path problem to the TSP-
STC. The Hamiltonian path problem is the problem of find-
ing a path in a given undirected graph in which each vertex
of the graph is visited exactly once. Consider a Hamiltonian
path problem over an undirected graph G = 〈N ,A〉, where
N is a set of vertices (|N | = n) and A is a set of undi-
rected edges (|A| = k). We associate each Ni ∈ N with a
vertex Vi ∈ V . For each 1 ≤ i ≤ n, we define a unique
event Xi ∈ X associated with Vi. We define t and d as
follows: t(Vi, Vj) = d(Vi, Vj) = t(Vj , Vi) = d(Vj , Vi);
t(Vi, Vj) = 1 if there is an edge between Ni and Nj in
G; t(Vi, Vj) = 1.5 otherwise. Note that both t and d are
symmetric and metric, as the triangle inequality holds by
construction. We complete the construction of the TSP-STC
instance by defining 2

(
n
2

)
temporal constraints of the form

eij = 〈Xi, Xj〉 for all 1 ≤ i, j ≤ n and i 6= j, with
LB(eij) = −∞ and UB(eij) = n − 1. A Hamiltonian
path exists in G iff we can visit all vertices in the TSP-STC
and satisfy the temporal constraints. This is so because the
temporal constraints dictate that, regardless of the starting
point of the path, every vertex should be visited within n−1
time units. The traversal function indicates that it takes ex-
actly one time unit to go from one vertex to another if there
is an edge between the two in G. It is easy to see that a so-
lution of the Hamiltonian path problem maps to a solution
of the TSP-STC instance constructed above. In addition, a
solution of the TSP-STC instance maps to a solution of the
Hamiltonian path problem: no vertex can be visited twice
and no edge can be traversed in the TSP-STC which was not
present in G because the time constraints would be violated.
Finally, we can view the TSP-STC as a constraint optimiza-
tion problem. The optimization component of the problem
is the minimization of the sum of the distances in the tour
induced by the visitation order. The satisfaction component
is to respect the simple temporal constraints and the con-
straints induced by the traversal function. If the satisfaction
component is itself NP-hard, it follows that the TSP-STC is
NP-hard to approximate within any polynomial factor. As
we have demonstrated, the reduction from the Hamiltonian



path problem is only to the satisfaction component of the
TSP-STC, hence proving the Theorem.

A Notable Special Case
We now analyze an important special case of the TSP-STC
which is reducible to TSPs with precedence constraints and
to which the analysis presented above applies. This notable
case occurs when the traversal function is degenerate, i.e.,
maps all combinations of its arguments to zero, and all sim-
ple temporal constraints can be expressed in the form of
time windows. A time window represents an interval during
which an event must be executed. This is more restrictive
than simple temporal constraints because, in the latter case,
we can constrain the relative execution times of two differ-
ent events, while, with time windows, we only constrain the
execution times of individual events. A time window is de-
fined by the interval [ai, bi] for event Xi, where ai is the
start time and bi the end time, with ai ≤ bi. A degener-
ate traversal function captures the case in which the agent
which has to travel between locations can move fast enough
so that the traversal times can be disregarded as a factor in
the problem domain. The case we analyze can be viewed
as a special case of the well studied TSP with Time Win-
dows (TSPTW) which also considers non-degenerate traver-
sal functions (Melvin et al. 2007).

A time window for event Xi is modeled in the STP com-
ponent of the TSP-STC as a simple temporal constraint
〈X0, Xi〉 annotated with the bounds [ai, bi], where X0 is a
special event which is used to represent the “beginning of
time” and is conventionally set to 0. A TSP-STC instance
with only time window constraints and a degenerate traver-
sal function can be reduced to an instance of the TSP with
precedence constraints as follows. The set of locations V and
the distance function d remain unchanged, but locations are
duplicated, if needed, so that at most one event is assigned
to each location. For all events Xi and Xj with bi < aj , a
precedence constraint c(Xi) ≺ c(Xj) is added.

A solution of the original TSP-STC instance is retrieved
from a solution of the corresponding instance of the TSP
with precedence constraints as follows. We assign execution
times to the events in the TSP-STC using the total order-
ing obtained as a solution of the TSP with precedence con-
straints. This assignment of execution times is constructed to
satisfy the invariant that the execution time of any event Xi

is always equal to the starting point of the time window of
an already scheduled event Xj . Assume that the event that
corresponds to the initial location of the TSP with prece-
dence constraints is Xi. We set the execution time of Xi to
ai. Thus, it holds that the execution time of Xi corresponds
to the starting point of the time window of an already sched-
uled event (namely, Xi). Now, assume that the solution of
the TSP with precedence constraints moves from the loca-
tion that corresponds to event Xi to the location of the next
event Xj in the total ordering. It cannot be the case that
bj < Xi for the following reason: Xi corresponds to the
starting point of the time window of an already scheduled
event Xk, which the solution of the TSP with precedence
constraints visits no later than event Xi. But this is impossi-
ble since Xi = ak and bj < Xi mean that there is a prece-

dence constraint c(Xj) ≺ c(Xk). Thus, a solution of the
TSP with precedence constraints cannot visit Xk and then
later move to Xj . Thus, Xi ≤ bj . We now have two distinct
cases:

• aj ≤ Xi, that is, Xi ∈ [aj , bj ]. In this case, we set Xj =
Xi, which satisfies the time window constraint of Xj . It
holds that Xj corresponds to the starting point of the time
window of an already scheduled event (namely, Xk).

• aj > Xi. In this case, we set Xj = aj , which satisfies the
time window constraint of Xj . Here, too, it holds that Xj

corresponds to the starting point of an already scheduled
event (namely, Xj).

We claim that any solution of the TSP-STC instance is
also a solution of the corresponding instance of the TSP
with precedence constraints and vice versa. It would there-
fore follow that the optimal solution of the corresponding
instance of the TSP with precedence constraints is also an
optimal solution of the original instance of the TSP-STC.
Consider any solution of the TSP-STC. Assume, for proof
by contradiction, that it does not satisfy some precedence
constraint c(Xi) ≺ c(Xj) of the TSP with precedence con-
straints because Xi ≥ Xj . This is a contradiction since
Xi ≤ bi < aj ≤ Xj due to the semantics of the precedence
constraint c(Xi) ≺ c(Xj). Conversely, consider any solu-
tion of the TSP with precedence constraints. The procedure
described above already provides an algorithmic construc-
tion of a corresponding solution for the TSP-STC.

Related Work
The combination of spatial and temporal aspects is impor-
tant in different domains, among which are robotics and ve-
hicle routing. Thus, problems similar or identical to TSP-
STCs have been studied in operations research, theoretical
computer science, artificial intelligence and robotics. Differ-
ent combinations of spatial and temporal aspects are possi-
ble. The spatial aspects can be expressed by minimizing dis-
tances or maximizing the (uniform or non-uniform) total re-
ward of the visited vertices. The temporal aspects can be ex-
pressed via precedence constraints, absolute time windows
or more general temporal constraints. The resulting com-
bined problems are often solved with constraint program-
ming, branch-and-bound search and dynamic programming
as exact algorithms; or genetic algorithms, tabu search, co-
operative auctions and insertion or interchange heuristics as
heuristic algorithms. In this section, we present a general
overview of the solution techniques adopted in different re-
search areas.

Robotics researchers have studied multi-robot routing
problems with rewards and disjoint time windows (that do
not overlap), where robots have to visit targets during given
time windows. The objective is to maximize the sum of the
rewards of the visited targets minus the sum of the costs in-
curred for moving from target to target (Melvin et al. 2007).
The problem is solvable in pseudo polynomial time for a
single robot but is NP-hard for multiple robots, although
special cases can be solved in polynomial time (including
the case where the robots are identical and the targets have



singleton time windows). Robotics researchers have also
studied multi-robot routing problems where robots have to
visit targets in the presence of precedence constraints be-
tween targets. The objective is to maximize the sum of time-
decreasing rewards of the targets (Jones, Dias, and Stentz
2011). Cooperative auctions and genetic algorithms have
been proposed as heuristic algorithms to solve this prob-
lem. An alternative approach for solving multi-robot routing
problems is to use multiple constraint solvers which progres-
sively refine trajectory envelopes for each vehicle according
to mission requirements, by leveraging the notion of least
commitment to obtain easily revisable trajectories for exe-
cution (Pecora, Dimitrov, and Cirillo 2012).

Theoretical computer science researchers have studied
prize-collecting traveling salesman (or vehicle routing)
problems with time windows, where a salesperson (or ve-
hicle) has to visit customers during given time windows.
The objective is to maximize the sum of the rewards of
the visited customers. Several scheduling problems with
sequence-dependent setup times can be reduced to this prob-
lem, which can be solved with O(log n) approximation al-
gorithms (Bansal et al. 2004).

Operations researchers have studied time-constrained
TSPs, where a salesperson has to visit customers during
given time windows. The objective is to minimize the travel
distance or time (Baker 1983). It is already NP-hard to de-
cide whether a feasible solution exists (Savelsberg 1985).
Constraint programming, branch and bound search and dy-
namic programming have been proposed as exact algorithms
to solve this problem, and greedy heuristics or interchange
heuristics as heuristic algorithms (Pesant et al. 1998).

Conclusions
In this paper, we defined the framework of the TSP-STC,
which combines the temporal aspects of STPs and the spatial
aspect of TSPs. We recounted known computational results
from the theoretical computer science community for the
spatial and temporal aspects of the problem separately. We
then analyzed the problem in its entirety, proving strong in-
approximability results. These results hold even under com-
mon assumptions (such as the metric assumption) which al-
low for tractable approximations for TSPs.

Despite these negative results, we were able to present
special cases which are amenable to tractable approxima-
tions with low-order instance complexities. Given the com-
plexity of the TSP-STC and the strong inapproximability re-
sults, the most promising avenues for future investigations
are heuristic and knowledge engineering approaches. From
the heuristic perspective, we can potentially generalize well
established heuristics for TSPs (e.g., the 2-opt heuristic).
From the knowledge engineering perspective, we can poten-
tially employ mixed-initiative approaches.

Although the TSP-STC is only a particular way of com-
bining spatial and temporal reasoning, it is general enough
to capture the requirements of many real-world applications.
Therefore, our results bear strong implications on a variety
of problems, namely the combination of temporal and spatial
planning in agent-based systems and robotics. As we have

seen in the previous sections, there are many existing meth-
ods for addressing more restrictive cases, whose applicabil-
ity is, however, very limited. Our analysis covers the cases
in which a single agent or robot is present, and therefore the
inapproximability results carry over to multi-agent systems
as well, which are more complex.

Our future work will focus on the adaptation of well es-
tablished heuristic techniques developed in the TSP frame-
work to TSP-STCs and on the generalization of our frame-
work to multi-agent systems.
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