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In this paper, we present fast polynomial-time algorithms
for solving classes of submodular constraints over Boolean
domains. We pose the identified classes of problems within
the general framework of Weighted Constraint Satisfaction
Problems (WCSPs), reformulated as minimum weighted
vertex cover problems. We examine the Constraint Compos-
ite Graphs (CCGs) associated with these WCSPs and pro-
vide simple arguments for establishing their tractability. We
construct simple - almost trivial - bipartite graph represen-
tations for submodular cost functions, and reformulate these
WCSPs as max-flow problems on bipartite graphs. By do-
ing this, we achieve better time complexities than state-of-
the-art algorithms. We also use CCGs to exploit planarity
in variable interaction graphs, and provide algorithms with
significantly improved time complexities for classes of sub-
modular constraints. Moreover, our framework for exploit-
ing planarity is not limited to submodular constraints. Our
work confirms the usefulness of studying CCGs associated
with combinatorial problems modeled as WCSPs.

Introduction
In many application domains, we are required to efficiently
represent and reason about factors like fuzziness, probabil-
ities, preferences, and/or costs. Many extensions to the ba-
sic framework of Constraint Satisfaction Problems (CSPs)
(Dechter 2003) have been introduced to incorporate and rea-
son about such “soft” constraints. These include variants
like fuzzy-CSPs, probabilistic-CSPs, and Weighted-CSPs
(WCSPs). A WCSP is an optimization version of a CSP in
which the constraints are no longer “hard,” but are extended
by associating non-negative costs with the tuples. The goal
is to find an assignment of values to all variables from their
respective domains such that the total cost is minimized.

More formally, a WCSP is defined by a triplet 〈X ,D, C〉
where X = {X1, X2 . . . XN} is a set of variables, and
C = {C1, C2 . . . CM} is a set of weighted constraints on
subsets of the variables. Each variable Xi is associated with
a discrete-valued domain Di ∈ D, and each constraint Ci is
defined on a certain subset Si ⊆ X of the variables. Si is re-
ferred to as the scope of Ci; and Ci specifies a non-negative

∗Alias: Satish Kumar Thittamaranahalli
Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

cost for every possible combination of values to the variables
in Si. The arity of the constraint Ci is equal to |Si|. An opti-
mal solution is an assignment of values to all variables (from
their respective domains) so that the sum of the costs (as
specified locally by each weighted constraint) is minimized.
In a Boolean WCSP, the size of any variable’s domain is
equal to 2, that is, Di = {0, 1} for all i ∈ {1, 2 . . . N}.
Boolean WCSPs are representationally as powerful as WC-
SPs; and it is well known that optimally solving Boolean
WCSPs is NP-hard in general (Dechter 2003). The con-
straint network (also called the constraint graph or the vari-
able interaction graph) associated with a WCSP instance is
an undirected graph where a node represents a variable and
an edge (Xi, Xj) exists if and only if Xi and Xj appear
together in some constraint.

Boolean WCSPs can be used to model important combi-
natorial problems arising in different application domains.
Examples include (but are not limited to) representing and
reasoning about user preferences (Boutilier et al. 2004),
over-subscription planning with goal preferences (Do et al.
2007), combinatorial auctions (Sandholm 2002), and bioin-
formatics (Sanchez, de Givry, and Schiex 2007). They also
arise as Energy Minimization Problems in probabilistic set-
tings. In computer vision applications, for example, tasks
such as image restoration, total variation minimization, and
panoramic image stitching can be formulated as Boolean
WCSPs derived in the context of Markov Random Fields
(Kolmogorov 2005). In addition, many real-world domains
exhibit submodularity in the cost structure and planarity in
the variable interaction graphs, that are worth exploiting for
computational benefits.

Submodular cost functions are characterized by a natu-
ral “diminishing returns” property that makes them useful
in game theory, sensor placement, and semantic segmen-
tation of images, among others. Submodular constraints
over Boolean domains correspond directly to submodular
set functions. A set function ψ : 2V → Q defined on all sub-
sets of a set V is submodular if and only if, for all subsets
S, T ⊆ V , we have ψ(S ∪ T ) +ψ(S ∩ T ) ≤ ψ(S) +ψ(T ).
A submodular constraint is a weighted constraint with a
submodular cost function. Here, the correspondence is in
light of the observation that any subset S can be interpreted
as specifying the Boolean variables in V that are set to 1.
Boolean WCSPs with submodular constraints are known to



be tractable (Zivny and Jeavons 2008). However, the gen-
eral algorithm for solving Boolean WCSPs with submodular
constraints has a time complexity of O(N6), which is not
very practical. Specific classes of submodular constraints
have been shown to be related to graph cuts, and are there-
fore solvable more efficiently (Zivny and Jeavons 2008).

By definition, planar graphs are those that can be drawn
on a planar surface without any two edges crossing each
other. Many combinatorial problems are known to be eas-
ier to solve on planar graphs (Baker 1994). Planar graphs,
however, do not necessarily have a bounded treewidth.1 This
means that planar graphs exhibit additional computational
properties that are not necessarily captured by a treewidth-
based characterization. Very little work has been done on
exploiting planarity in constraint networks associated with
(Boolean) WCSPs even though planarity occurs naturally in
real-world domains. For example, 2-dimensional pictures
in computer vision, 2-dimensional surfaces in sensor place-
ment, and 2-dimensional fields for circuit layouts and trans-
portation networks are all indicative of the potential for ex-
ploiting planarity towards computational benefits.

Consider the problem of defending a perimeter with iden-
tical agents that are used for surveillance. The problem of
choosing vantage points from a given set of possible loca-
tions is much like the problem of sensor placement. The lat-
ter problem can be modeled as a Boolean WCSP with the ob-
jective of maximizing mutual information between chosen
and unchosen locations. Here, the weighted constraints can
be designed to be submodular (Krause, Singh, and Guestrin
2008). Further, planarity is also commonplace in such spa-
tial reasoning problems.

Constraint Composite Graphs (CCGs) are combinatorial
structures associated with optimization problems posed as
WCSPs. They provide a unifying framework for exploit-
ing both the graphical structure of the variable interactions
as well as the numerical structure of the weighted con-
straints (Kumar 2008a). Moreover, establishing tractabil-
ity results for various subclasses of WCSPs is often much
simpler when using CCGs. An important example is prov-
ing tractability of the language Lbipartite (Kumar 2008b).
In this paper, we discuss both submodularity and planarity
in the light of CCGs by reformulating WCSPs as minimum
weighted vertex cover problems. By doing so, we are able
to: (1) construct simple bipartite graph representations for
important classes of submodular constraints, thereby trans-
lating them into max-flow problems on bipartite graphs; (2)
identify tractable classes of WCSPs that have only a log-
arithmic number of constraints not included in LBoolean

bipartite

(Lbipartite for Boolean variables); and (3) exploit planarity
in variable interaction graphs to design algorithms with sig-
nificantly improved time complexities for various classes of
WCSPs. In general, our work confirms the usefulness of
studying the CCGs associated with combinatorial problems
modeled as WCSPs.

1The treewidth is a measure of the size of the largest subprob-
lem that needs to be solved in a dynamic programming-based ap-
proach for solving the original problem.
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Figure 1: The table on the right-hand side represents the projection of the minimum
weighted VC problem onto the IS {X1, X4} of the node-weighted undirected graph
on the left-hand side. (The weights on X4 and X7 are set to 3 and 2, respectively,
while all other nodes have unit weights.) The entry ‘7’ in the cell (X1 = 0, X4 =

1), for example, indicates that, when X1 is prohibited from being in the minimum
weighted VC but X4 is necessarily included in it, then the weight of the minimum
weighted VC - {X2, X3, X4, X7} or {X2, X3, X4, X5, X6} - is 7.

Background on CCGs
In an undirected graph G = 〈V,E〉, U = {u1, u2 . . . uk}
is said to be an independent set (IS) of G if and only if no
two nodes in U are connected by an edge in E. A vertex
cover (VC) is a set of nodes S ⊆ V such that every edge
has at least one end point in S. A minimum VC is a VC of
minimum size. When non-negative weights are associated
with nodes, the minimum weighted VC is defined to be a VC
of minimum weight.

The concept of the minimum weighted VC on a given
undirected graph G = 〈V,E〉 can be extended to the no-
tion of projecting minimum weighted VCs onto a given IS
U ⊆ V . The input to such a projection is the graph G as
well as an identified IS U = {u1, u2 . . . uk}. The output is
a table of 2k numbers. Each entry in this table corresponds
to a k-bit vector. We say that a k-bit vector t imposes the
following restrictions: (a) if the ith bit ti is 0, the node ui is
necessarily excluded from the minimum weighted VC; and
(b) if the ith bit ti is 1, the node ui is necessarily included
in the minimum weighted VC. The projection of the mini-
mum weighted VC problem onto the IS U is then defined
to be a table with entries corresponding to each of the 2k

possible k-bit vectors t(1), t(2) . . . t(2
k). The value of the en-

try corresponding to t(j) is equal to the weight of the mini-
mum weighted VC conditioned on the restrictions imposed
by t(j). Figure 1 presents a simple example to illustrate the
notion of projecting minimum weighted VC problems onto
an IS in a node-weighted undirected graph.

The table of numbers produced above can be viewed as a
weighted constraint over |U | Boolean variables. Conversely,
given a (Boolean) weighted constraint, we can think about
designing a “lifted” representation for it so as to be able
to view it as the projection of a minimum weighted VC
problem in some intelligently constructed node-weighted
undirected graph. This idea was first discussed in (Kumar
2008b). The benefit of constructing these graphical repre-
sentations for individual constraints lies in the fact that the
“lifted” graphical representation for the entire WCSP can be
obtained simply by “merging” them. This “merged” graph
is referred to as the CCG associated with the WCSP.

Figure 2 shows an example WCSP over 3 Boolean vari-
ables to illustrate the construction of the CCG. Here, there
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Figure 2: Shows a WCSP over 3 Boolean variables. The constraint network is shown in the top-left cell, and the 6 binary and unary weighted constraints are shown along with their
lifted graphical representations in the 1st and 2nd rows. The CCG is shown in the bottom-right cell.

are 3 unary weighted constraints and 3 binary weighted con-
straints; and their lifted representations (as projections of
minimum weighted VC problems) are shown next to them.
The figure also illustrates how the CCG is obtained from
the individual graphs representing each of the weighted con-
straints. In the CCG, nodes that represent the same vari-
able are simply “merged” - along with their edges - and ev-
ery “composite” node is given a weight equal to the sum of
the individual weights of the merged nodes. Computing the
minimum weighted VC for the CCG yields a solution for the
WCSP; namely, if Xi is in the minimum weighted VC, then
it is assigned the value 1 in the WCSP, else it is assigned the
value 0 in the WCSP.

Any given weighted constraint on Boolean variables (that
is, a Boolean weighted constraint) can be represented graph-
ically using a tripartite graph, which can be constructed in
polynomial time (Kumar 2008a). In many cases, the lifted
graphical representations even turn out to be only bipartite.
Since the resulting CCG is also bipartite if each of the indi-
vidual graphical representations are bipartite, the tractabil-
ity of the language LBoolean

bipartite - the language of all Boolean
weighted constraints with a bipartite graphical representa-
tion - is readily established. This is because solving mini-
mum weighted VC problems on bipartite graphs is reducible
to max-flow problems, and can therefore be solved effi-
ciently in polynomial time.

Lifted Graphical Representations for
Weighted Constraints

Boolean weighted constraints can be represented as mul-
tivariate polynomials on the variables participating in that
constraint (Zivny and Jeavons 2008; Kumar 2008a). The co-
efficients of the polynomial can be computed with a standard
Gaussian Elimination procedure for solving systems of lin-
ear equations. The linear equations themselves arise from
substituting different combinations of values to the vari-
ables, and equating them to the corresponding entries in the
weighted constraint. One way to build a graphical represen-

tation for a given weighted constraint is therefore to simply:
(a) build the graphical representations for each of the indi-
vidual terms in the multivariate polynomial; and (b) “merge”
these individual graphical representations (Kumar 2008a).

We need to construct graphical representations for only
three kinds of terms: (1) linear terms, (2) negative nonlin-
ear terms, and (3) positive nonlinear terms. First, consider
building a graphical representation for a given (positive or
negative) linear term. Any such term can be represented by
a single edge that connects the corresponding variable to an
auxiliary node. The non-negative weights on the two nodes
are set appropriately as shown in Figure 3(a).2

Now, consider building a graphical representation for a
given negative nonlinear term, say, −w · (Xi · Xj · Xk)
for w > 0. A simple “flower” structure, as shown in Fig-
ures 3(b)&(c), serves the requirements. The “flower” struc-
ture makes use of one auxiliary node that is connected to all
variables appearing in the term. A unit weight is assigned
to all original variables while a weight of w is assigned to
the auxiliary node. Since the only case in which the aux-
iliary node is excluded from the minimum weighted VC is
when all original variables are set to 1, the weight of the
minimum weighted VC for the example in Figure 3(c) is
Xi +Xj +Xk +w−w · (Xi ·Xj ·Xk). After canceling the
linear lower-order terms by constructing graphical represen-
tations of their negatives (as discussed above), we obtain a
graphical representation for the term −w · (Xi ·Xj ·Xk) as
required. Once again, the additive constant can be ignored.

Finally, consider building a graphical representation for
a given positive nonlinear term. Unlike negative nonlinear
terms, positive nonlinear terms do not always have bipartite
graph representations. However, we can construct tripar-
tite graph representations for such terms. In the construc-
tions presented so far, a simple graph-theoretic trick allows
us to substitute (1 − Xl) for any of the original Boolean
variables Xl. Figure 3(d) shows how this is done for an
example variable Xk by introducing an intermediate node

2Additive constants do not change the optimal solution.
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Figure 3: Lifted graphical representations for different kind of terms. (a) represents a linear term, either positive or negative, where w1 and w2 are chosen appropriately. (b)
represents a negative quadratic term. (c) represents a negative cubic term. (d) illustrates the “change of variable” method and essentially represents a leading positive cubic term. (e)
is the same “flower” structure shown in (c), but with a “thorn” introduced for each variable. The resulting graph is also bipartite, because the auxiliary variable A can be moved to
the same partition as the original variables. The graph now represents the term −w(1 − Xi)(1 − Xj)(1 − Xk), which in effect, is a bipartite representation for an expression
with a leading positive cubic term.

with a large weight L associated with it.3 Assigning unit
weights to all original variables and a weight ofw to the aux-
iliary node, a “flower” structure over the variables Xi, Xj

and Xk that bears an intermediate node - referred to as the
“thorn” - between Xk and the auxiliary node yields a mini-
mum weighted VC of weightXi+Xj +Xk +L ·(1−Xk)+
w−w · (Xi ·Xj · (1−Xk)). Treating lower-order terms (re-
cursively) by constructing graphical representations for their
negatives, we obtain a graphical structure that essentially
represents the positive nonlinear term +w · (Xi · Xj · Xk)
as required.4 In general, the graphical representation for a
positive nonlinear term simply falls out of constructing a
“flower” structure over the participating variables (using a
single auxiliary node), and introducing a “thorn” (interme-
diate node of large weight) for one of the variables. By the
introduction of a “thorn,” the graph is no longer bipartite;
instead, it becomes tripartite as shown in Figure 3(d).5

The only case when the graph is bipartite is when all par-
ticipating variables in the constraint have a “thorn” associ-
ated with them, as shown in Figure 3(e). Here, the auxil-
iary variable connected to all “thorns” can be given the same
“color” as the original variables, that is, they can be in the
same partition, hence making the graph bipartite. Such a
case yields expressions of the form −w · (1 − Xi) · (1 −
Xj) · (1−Xk) with a positive leading term. We refer to the
introduction of “thorns” as the “change of variable” method.

Submodular Constraints
In this section, we will present fast polynomial-time algo-
rithms for solving classes of submodular constraints over
Boolean domains. Classes of submodular constraints over
Boolean domains that are expressible by graph cuts have
been identified in (Zivny and Jeavons 2008). We will show
the tractability of the same classes using much simpler argu-
ments, by constructing simple bipartite graphs for the poly-

3Although L is required to be “large,” it suffices for it to be
greater than the sum of the weights on all other nodes for the graph-
ical representation of that weighted constraint.

4Although the above constructions for individual terms allude
to treating lower-order terms recursively, any Boolean constraint of
arity K can be constructed from a collection of basis graphs using
at most 2K auxiliary nodes and 2K edges (Kumar 2008a).

5All original variables should belong to the same partition.

nomials that represent them. Because our reduction is to
flow problems on bipartite graphs, our algorithms have bet-
ter time complexities.

Corollary 2.10 on page 10 of (Zivny and Jeavons 2008)
states that a quadratic polynomial

a0 +

N∑
i=1

aiXi +
∑

1≤i<j≤N

aijXiXj

over Boolean variablesX1, X2 . . . XN represents a submod-
ular cost function if and only if aij ≤ 0 for every 1 ≤ i <
j ≤ N . That is, all nonlinear terms are negative. Using
the construction from the previous section, we can obtain
bipartite graph representations for all terms. This proves the
tractability of the language Γsub,2 of all submodular con-
straints of arity 2 on Boolean domains. The reduction to
graph cuts in (Zivny and Jeavons 2008) yields an algorithm
that runs in time O((N + M)3), where N is the number
of variables and M is the number of weighted constraints.
However, our reduction to minimum weighted VC problems
on bipartite graphs yields a more efficient algorithm as max-
flow on bipartite graphs is more efficient than on general
graphs. In particular, for bipartite graphs, the complexity
of max-flow is O(n1m log(n2/m)) where n1 is the number
of nodes in the smaller partition, n is the total number of
nodes, and m is the number of edges (Ahuja et al. 1994). In
our case, the CCG is a bipartite graph with exactly N nodes
in one partition, at most M +N nodes in the other partition,
and at most 2M + N edges.6 The time complexity of our
algorithm is therefore O(NM logM). This is better than
O((N + M)3), especially because M could be O(N2) in
the worst case.7

Lemma 4.6 on page 14 of (Zivny and Jeavons 2008) states
that a cubic polynomial p(X1, X2 . . . XN ) over Boolean
variablesX1, X2 . . . XN represents a submodular cost func-

6We assume that the constraint network is connected. If it is not,
the problem can be divided into independent subproblems. Thus,
we assume that M is greater than N − 2.

7For arity 2, M could be as large as
(
N
2

)
.



tion if and only if it can be written as

p(X1, X2 . . . XN ) =

= a0 +
∑
{i}∈C+

1

aiXi −
∑
{i}∈C−

1

aiXi

−
∑

{i,j}∈C2

aijXiXj

+
∑

{i,j,k}∈C+
3

aijkXiXjXk −
∑

{i,j,k}∈C−
3

aijkXiXjXk

where C2 is the set of quadratic terms, and C+
i (C−i ) is the

set of terms of degree i ∈ {1, 3} with non-negative (nega-
tive) coefficients and the following two conditions hold:8

1. ai, aij , aijk ≥ 0
({i} ∈ C+

1 ∪ C−1 , {i, j} ∈ C2, {i, j, k} ∈ C+
3 ∪ C−3 )

2.
∑

k|{i,j,k}∈C+
3
aijk − aij ≤ 0

({i, j} ∈ C2)

Once again, using the construction from the previous sec-
tion, we can obtain bipartite graph representations for the
linear and negative nonlinear terms. To obtain a bipartite
representation for the entire polynomial, the only term that
requires further attention is

∑
{i,j,k}∈C+

3
aijkXiXjXk. We

can use the “change of variable” method from the previous
section to construct a bipartite graph for∑
{i,j,k}∈C+

3

− aijk(1−Xi)(1−Xj)(1−Xk) =

∑
{i,j,k}∈C+

3

(aijkXiXjXk − aijkXiXj − aijkXjXk

− aijkXiXk + aijkXi + aijkXj + aijkXk − aijk)

instead, as shown in Figure 3(e).
The leading cubic term is positive as required; the con-

stant term can be ignored; and the linear terms are positive
and can be canceled by adding their negatives, which have
bipartite graph representations like all linear terms. To can-
cel the newly introduced quadratic terms, we examine the
coefficient that is associated with any quadratic combina-
tion XiXj . This coefficient is

∑
k|{i,j,k}∈C+

3
aijk plus the

original coefficient −aij associated with XiXj . Condition
(2) of Lemma 4.6 in (Zivny and Jeavons 2008) requires that
−aij +

∑
k|{i,j,k}∈C+

3
aijk ≤ 0. This means that we have

to represent quadratic terms with only negative coefficients,
which are already known to have simple “V-structures” as
their lifted graphical representations, shown in Figure 3(b).

8Condition (2) in (Zivny and Jeavons 2008) has a typo where
−aij has been written as +aij . Note that, except in degenerate
cases, having +aij in the condition does not make sense because
this would imply that the sum of non-negative numbers is ≤ 0.

More formally,
p(X1, X2 . . . XN ) =

=
∑

{i,j,k}∈C+
3

−aijk(1−Xi)(1−Xj)(1−Xk)

+
∑

{i,j,k}∈C−
3

−aijkXiXjXk

+
∑

{i,j}∈C2

[(
∑

k|{i,j,k}∈C+
3

aijk)− aij ]XiXj

+
∑
{i}∈C+

1

[(
∑

{k,j}|{i,j,k}∈C+
3

−aijk) + ai]Xi

+
∑
{i}∈C−

1

[(
∑

{k,j}|{i,j,k}∈C+
3

−aijk)− ai]Xi

+ (
∑

{i,j,k}∈C+
3

aijk) + a0

where evidently each term has a bipartite representation. We
will refer to this form of the polynomial as its bipartite rep-
resentational form.

There are also necessary - but not sufficient - conditions
provided on pages 15-16 of (Zivny and Jeavons 2008) for
quartic and higher-order polynomials to be submodular. A
simple rearrangement of the terms in these polynomials,
similar to the foregoing discussion, shows that they all have
bipartite graph representations. For example, Condition (2)
in Lemma 5.1 of (Zivny and Jeavons 2008) shows that the
positive coefficients of cubic terms and the positive coeffi-
cients of quartic terms need to comply in a special way with
the coefficients of the quadratic terms. In our framework,
this corresponds directly to the facts that: (a) negative non-
linear terms have simple bipartite representations; and (b)
only the positive nonlinear terms require special attention, as
indicated by C+

3 and C+
4 in Condition (2) in Lemma 5.1 of

(Zivny and Jeavons 2008). A “change of variable” technique
used on the cubic and quartic terms can be used to represent
the required positive terms. The extraneous second degree
terms that are produced in this process are combined with
the original coefficients aij . The cumulative effect is assured
to be non-positive because of Condition (2) in Lemma 5.1 of
(Zivny and Jeavons 2008). Therefore, they too have bipar-
tite graph representations. In effect, we can solve the same
classes of submodular constraints identified in (Zivny and
Jeavons 2008) more efficiently because the underlying max-
flow problems are staged on bipartite graphs. For Boolean
WCSPs with arity at mostK, the bipartite CCG hasN nodes
in one partition, at most 2KM nodes in the other partition,
and at most K2KM edges. For K bounded by a constant,
this results in a time complexity of O(NM logM). This
significantly improves on the O((N +M)3) time complex-
ity of the algorithm provided by (Zivny and Jeavons 2008).9

When Almost All Constraints are Submodular
(Kumar 2008a; 2008b) provide a simple algorithm for con-
structing tripartite graph representations for an arbitrary

9For arity K, M could be as large as
(
N
K

)
.



weighted constraint of bounded arity. This means that, for a
given instance of a Boolean WCSP, we can always construct
a CCG for it that is tripartite. Moreover, the complexity of
solving this instance is exponential only in the size of the
smallest partition - in terms of the number of nodes - of the
tripartite CCG constructed for it. This is so because the min-
imum weighted VC problem can be solved in polynomial
time for bipartite graphs; and every possible combination of
decisions to include or exclude the nodes of the smallest par-
tition in the VC can be evaluated to find the optimal one. We
note that one of these partitions consists of the original N
variables, leading us to the obvious upper bound of charac-
terizing the problem to be exponential in N . However, this
partition may not be the smallest, in which case our frame-
work yields a much tighter characterization of the complex-
ity. In particular, when there is sufficient numerical struc-
ture in the weighted constraints - such as in the submodular
constraints discussed above - the CCG is only bipartite, and
such classes of WCSPs can be solved in polynomial time.
Even when the CCG is not bipartite, our framework allows
us to computationally leverage the numerical structure of the
weighted constraints.

For example, intuitively, when “most” of the constraints
have bipartite representations - like those for the submodular
constraints discussed above - the other constraints can still
be arbitrary without compromising the tractability. That is,
they can be solved in time polynomial in N and M . More
precisely, we know that any constraint has a tripartite graph
representation; and, if there are onlyO(logN) constraints of
bounded arity that do not have bipartite representations, then
the problem can still be solved in polynomial time. There-
fore, the class of all Boolean WCSPs that have submodular
constraints of the above kind and a logarithmic number of
arbitrary constraints of bounded arity is still tractable.

Planar Constraint Networks
Most of the work done on characterizing the tractability
of WCSPs has been on: (1) restricting the nature of the
weighted constraints, that is, “language restrictions” and (2)
constraining the treewidth of the variable interaction graphs.
The CCG provides a unifying framework for exploiting the
numerical structure of the weighted constraints as well as the
graphical structure of the variable interaction graph since the
treewidth of the CCG is identical to that of the variable in-
teraction graph (Kumar 2008a). In this section, we show
that the CCG also captures the important structural notion
of planarity in constraint networks. This again illustrates
the usefulness of reformulating combinatorial problems in
the form of WCSPs as minimum weighted VC problems on
their associated CCGs.

Planar constraint networks are those that can be drawn on
a planar surface without any two edges crossing each other.
Many combinatorial problems are easier to solve on planar
graphs. However, planar graphs do not necessarily have a
bounded treewidth.10 Planarity is thus not captured by a
treewidth-based characterization. Very little work has been

10An N ×N grid is planar but has treewidth N .

done on exploiting planarity in constraint networks associ-
ated with Boolean WCSPs for computational benefits even
though it occurs naturally in real-world domains. Exploiting
planarity in conjunction with submodularity is important in
various applications too. In computer vision, for example,
submodularity arises in semantic segmentation of images,
and planarity arises naturally due to the layout (Jegelka and
Krause 2012).

Consider the submodular constraints discussed in the pre-
vious section (with arity at most 3). If the constraint network
is planar, then the CCG is also planar despite the fact that it
has additional (auxiliary) variables, as illustrated in Figure 4.
An edge between Xi and Xj in the constraint network can
arise because of two reasons: (1) There is a binary constraint
between Xi and Xj ; or (2) Xi, Xj and another variable Xk

participate in a ternary constraint. Examining the bipartite
representational form of the polynomial p(X1, X2 . . . XN )
which characterizes submodular constraints of arity at most
3, we observe that each binary constraint has a lifted rep-
resentation with one auxiliary variable as shown in Figure
3(b). In the planar rendition of the lifted representation, this
auxiliary node can simply be fitted as an intermediate node
on the edge between the two variables in the planar con-
straint network. This is indicated by the red nodes in Figure
4(b). Each ternary constraint corresponds to a triangle in the
constraint network. Once again, examining the bipartite rep-
resentational form of p(X1, X2 . . . XN ), we observe that the
lifted representations for ternary constraints are only of two
possible kinds, as shown in Figures 3(c)&(e). In the planar
rendition of these lifted representations, the auxiliary nodes
can be inscribed within the triangles of the planar constraint
network. This is indicated by the blue nodes for positive
ternary constraints and the green nodes for negative ternary
constraints in Figure 4(b). Thus, the CCG is not only bipar-
tite but also planar.

Now, we can make use of two standard results for planar
graphs: (1) The number of edges |E| is at most 3|V | − 6
for |V | ≥ 3 vertices; and (2) By Euler’s formula for planar
graphs, the number of faces |F | is equal to |E| − |V | + 2.
Since we introduce at most one auxiliary node for every edge
and at most 4 auxiliary nodes inscribed in any triangular face
of the constraint network, the planar CCG has O(N) nodes
and O(N) edges. This means that computing the minimum
weighted VC on the bipartite planar CCG requires staging
a max-flow on O(N) nodes and O(N) edges. Using the
improved max-flow algorithm for such graphs (Orlin 2013),
we can solve the problem in time O( N2

logN ). For planar
constraint networks, this is a significant improvement over
the algorithm presented in (Zivny and Jeavons 2008), which
runs in time O((N +M)3).

Our discussion of exploiting planarity, however, does not
have to be in conjunction with submodularity. In fact, the
broader LBoolean

bipartite constraints, for arity at most 3, also re-
sult in planar CCGs if the constraint networks are planar.
This is because the same transformations of edges and trian-
gles as described above for submodular constraints continue
to apply. Moreover, for general constraints of arity at most
3, planarity of the CCG is still preserved, although it may
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Figure 4: Shows the invariance of planarity between a constraint network and its
CCG. In (a), the red dotted edges indicate negative binary constraints; the blue dotted
triangles indicate positive ternary constraints; and the green dotted triangles indicate
negative ternary constraints. In (b), the unary constraints are transformed to the grey
edges with an auxiliary node; the negative binary constraints are transformed to edges
with an intermediate auxiliary node; and the positive and negative ternary constraints
are transformed to planar structures inscribed within the corresponding triangles.

no longer be bipartite.11 Nonetheless, finding the minimum
weighted VC on a planar graph is amenable to a polynomial-
time approximation scheme (PTAS) (Baker 1994).

Conclusions and Future Work
In this paper, we studied submodular constraints because
they arise in many real-world applications. We presented
fast polynomial-time algorithms for solving classes of sub-
modular constraints over Boolean domains. Reformulat-
ing WCSPs as minimum weighted VC problems on their
CCGs, we constructed simple bipartite graph representa-
tions for the submodular cost functions and translated them
into max-flow problems on bipartite graphs. By doing so, we
achieved better time complexities than existing algorithms.
Furthermore, we also identified tractable classes of WCSPs
that have all except a logarithmic number of constraints in
LBoolean
bipartite. Next, we studied planarity in conjunction with

submodularity. Once again, we used the reformulation of
WCSPs as minimum weighted VC problems on their CCGs
to exploit planarity in order to provide polynomial-time al-
gorithms with significantly improved time complexities. Fi-
nally, we discussed planarity outside of submodularity.

In future work, we intend to generalize our techniques to
broader classes of WCSPs with higher arities, larger domain
sizes, and higher crossing numbers of their constraint net-
works. We would also like to make use of the recent progress
on solving max-flow problems, such as exploiting the PTAS
for general undirected graphs G = 〈V,E〉 that runs in time
Õ((|V |+ |E|)4/3) (Christiano et al. 2011). Moreover, since
our algorithms are based on reductions to flow problems,
they are amenable to incremental computations that we will
further explore.

11Although representing certain terms might require adding
newer cancellation terms of lower order, the basis graphs (Ku-
mar 2008a) for representing any constraint of arity at most 3 over
Boolean domains are always planar.
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