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In this paper, we present an efficient algorithm for veri-
fying path-consistency on a binary constraint network. The
complexities of our algorithm beat the previous conjectures
on the lower bounds for verifying path-consistency. We
therefore defeat the proofs for several published results that
incorrectly rely on these conjectures. Our algorithm is mo-
tivated by the idea of reformulating path-consistency verifi-
cation as fast matrix multiplication. Further, for a compu-
tational model that counts arithmetic operations (rather than
bit operations), a clever use of the properties of prime num-
bers allows us to design an even faster variant of the algo-
rithm. Based on our algorithm, we hope to inspire a new
class of techniques for verifying and even establishing vary-
ing levels of local-consistency on given constraint networks.

Introduction and Background
Constraints constitute a very natural and general means for
formulating regularities in the real world. Developments in
constraint reasoning bear immediate and important implica-
tions on how fast we can solve computational problems that
arise in several other areas of research: including computer
vision, spatial and temporal reasoning, model-based diagno-
sis, planning, language understanding, etc.

A constraint satisfaction problem (CSP) can be defined
using a triplet 〈X ,D, C〉 where X = {X1, X2 . . . XN} is a
set of variables, and C = {C1, C2 . . . CM} is a set of con-
straints between subsets of them. Each variable Xi is as-
sociated with a discrete-valued domain Di ∈ D, and each
constraint Ci is a pair 〈Si, Ri〉 defined on a subset of vari-
ables Si ⊆ X , called the scope of Ci. Ri ⊆ DSi

(where
DSi

= ×Xj∈Si
Dj) denotes all compatible tuples of DSi

allowed by the constraint. The cardinality of Si is referred
to as the arity of that constraint. The size of the largest do-
main is denoted by D. A solution to a CSP is an assignment
of values to all the variables from their respective domains
such that all the constraints are satisfied. In a binary CSP,
each constraint is restricted to have an arity of at most two.
It is well known that binary CSPs are representationally as
powerful as general CSPs. The task of finding a solution to a
CSP or a binary CSP is NP-hard in general (Dechter 2003).
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Although solving a given CSP is hard in general, cer-
tain kinds of polynomial-time algorithms can be employed
to make quick inferences about inconsistent assignments to
subsets of the variables. These algorithms are referred to
as local-consistency algorithms, and they transform a given
CSP into a more explicit one by deducing additional con-
straints and adding them to the problem. The spectrum of
local-consistency algorithms is characterized by the vary-
ing cardinality of the subsets of variables that we examine
locally in each iteration. For example, in arc-consistency,
we examine only two variables - Xi and Xj - at a time,
and make sure that each domain value of Xi has at least
one consistent match in the domain of Xj , and vice-versa.
In general, we can examine k variables at a time, and add
(k − 1)-ary constraints to the given CSP. This is referred to
as establishing k-consistency. With increasing k, enforcing
k-consistency makes deeper inferences but the procedure is
exponential in k.

Path-Consistency (PC) refers to local-consistency with
k = 3. PC ensures that any consistent assignment to any
two variables is extensible to any other third variable. For-
mally, given a CSP 〈X ,D, C〉, two variables (Xi, Xj) are
said to be path-consistent relative to Xk if and only if for ev-
ery consistent assignment (Xi←diu, Xj←djv), there exists
dkw ∈ Dk such that the assignments (Xi←diu, Xk←dkw)
and (Xj←djv, Xk←dkw) are consistent. We say that a CSP
is path-consistent if and only if for every i 6= k, j 6= k, i 6=
j, the two variables (Xi, Xj) are path-consistent relative to
Xk. PC has the special property that, on a binary CSP, any
newly inferred constraint is also binary. Hence, the result
of establishing PC on a binary CSP is also a binary CSP.
Furthermore, PC is of deep theoretical interest for analyz-
ing the tractability of various classes of constraints. For ex-
ample, 2-SAT constraints, Connected Row-Convex (CRC)
constraints (Deville et al. 1997), Tree-Convex constraints
(Zhang and Freuder 2004), Simple Temporal Problems, Re-
stricted Disjunctive Temporal Problems (Kumar 2005), and
certain kinds of geometric CSPs, can all be solved in poly-
nomial time by establishing PC.

Unfortunately, algorithms that establish PC have wrong-
fully used the conjectured Ω(N3D3) lower bound from
(Mohr and Henderson 1986). The optimality proofs for
many of these algorithms use the following common logi-
cal structure in their arguments: (1) The proposed algorithm



runs in cubic time; (2) Establishing PC is harder than ver-
ifying it; and (3) Verifying PC has the same cubic lower
bound. Improving the lower bound for verifying PC defeats
the above proof-structure for the many results that rely on it.
Some examples of published papers that rely on these incor-
rect lower bounds are: (a) Incorrectly remarking about the
generic lower bound for PC (Kumar and Russell 2006, page
2): “This algorithm is optimal, since even verifying path-
consistency has the same lower bound.”; (b) Incorrectly an-
alyzing Singleton Arc-Consistency (Bessiere and Debruyne
2004, page 2): “Verifying if it is path consistent (PC) is in
O(end3). For each of the variables (i, j), we must check
whether the triangles i, k, j with Ckj ∈ C are path consis-
tent. (Checking the other triangles is useless.)”; and (c) In-
correctly claiming the optimality of PC-4 in a standard text
book (Dechter 2003, page 66): “It is an optimal algorithm,
since even verifying path-consistency has that lower bound;
namely, it is Ω(n3k3)” (here k refers to the size of the largest
domain D).

In this paper, we present an efficient algorithm for verify-
ing PC on a binary constraint network in time O(N3D2.38).
This result holds for a computational model that counts the
number of bit operations or the number of arithmetic oper-
ations. We also present a variant of this algorithm that has
a time complexity of O(N2.38D2.38) when we measure the
number of arithmetic operations. Our algorithms are moti-
vated by the idea of reformulating path-consistency verifi-
cation as fast matrix multiplication, and a clever use of the
properties of prime numbers.

Numerical matrix multiplication - sometimes simply re-
ferred to as “matrix multiplication” - finds its use in vari-
ous applications such as analyzing electrical circuits, solving
systems of linear and/or differential equations, computing
fast Fourier transforms, etc. At first glance, numerical ma-
trix multiplication of two N ×N matrices seems to require
a total of O(N3) operations. This is because the resulting
matrix is also N ×N , and each entry in this matrix requires
computing the dot product of two N -dimensional vectors.
However, Strassen’s algorithm (Strassen 1969) provided the
first breakthrough in reducing this complexity to O(N2.81).
The basic ideas in Strassen’s algorithm are to: (a) recursively
split the matrices into “blocks”; and (b) recognize that the
multiplication of blocks is amenable to the exploitation of
certain common factors. Over the years, the complexity of
matrix multiplication has been reduced even further using
various other mathematical manipulations. The best known
algorithm for numerical matrix multiplication runs in time
O(N2.38) (Coppersmith and Winograd 1987). Moreover,
there is a continuing effort in the Theory community to re-
duce this complexity more and more.

The time complexities of the algorithms that we present
in this paper for verifying PC match that of multiplying two
matrices. This beats the previously conjectured lower bound
of Ω(N3D3) and therefore defeats the arguments used in
the proofs of various results published throughout the years.
We expect our techniques to be generalizable to the task of
verifying higher levels of local-consistency. We also hope
to inspire a new class of algorithms for establishing PC as
well as higher levels of local-consistency with lower time
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(a) Graphical Rep. of C(X1, X2)
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(b) Matrix Rep. of C(X1, X2)

Figure 1: The graphical representation of a binary constraint C(X1, X2) is a set
of edges representing consistent combinations of values to the participating variables.
The small dark circles indicate the domain values, and the larger ovals represent en-
tire domains for the variables. The matrix representation requires an ordering for the
domain values for each of the variables.

complexities. This in turn has crucial implications on the
efficiency of solving CSPs in general.

Representing Binary CSPs as Matrices

For a given binary CSP, we can build a matrix representa-
tion for it using a simple mechanism. First, we assume that
the domain values for each variable are ordered in some way.
(We can simply use the order in which the domain values for
each of the variables are specified.) Under such an ordering,
we can represent each binary constraint as a 2-dimensional
matrix with all its entries set to either 1 or 0 based on
whether the corresponding combination of values to the par-
ticipating variables is allowed or not by that constraint. Fig-
ure 1 shows the (0, 1)-matrix representation of a binary con-
straint between two variables X1 and X2 with domain sizes
of 5 each. The combination of values (X1←d12, X2←d21)
is an allowed combination, and the corresponding entry in
the matrix is therefore set to 1. However, the combination
of values (X1←d14, X2←d22) is a disallowed combination,
and the corresponding entry is therefore set to 0. It is also
easy to see that such a matrix representation can be extended
to non-binary constraints as well using higher dimensional
(0, 1)-matrices. However, for the purposes of this paper, and
because binary CSPs are representationally as powerful as
general CSPs, we choose to restrict our discussion to the bi-
nary case alone.

The matrix representation of an entire binary CSP can be
constructed simply by stacking up the matrix representations
for the individual constraints into a bigger “block” matrix.
Figure 2 illustrates how a binary CSP on 3 variables X1, X2

and X3 can be represented as a “mega-matrix” with 3 sets
of rows and 3 sets of columns. Each block-entry inside this
mega-matrix is the matrix representation of the direct con-
straint between the corresponding row and column variables.
In essence, therefore, the matrix representation of an entire
binary CSP has

∑N
i=1 |Di| rows and

∑N
i=1 |Di| columns. In

the rest of this paper, we will commonly denote the matrix
representation of an entire given binary CSP by A.
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Figure 3: Shows the numerical and logical multiplications of two constraint matrices. It also illustrates that the logical multiplication of two constraint matrices C(Xi, Xj) �
C(Xj , Xk) can be simulated using the numerical multiplication C(Xi, Xj) × C(Xj , Xk) with a simple post-processing technique of changing all non-zero entries in the
resulting matrix to 1. It is important to note that this emulation works only for operations on individual constraints and not on entire CSPs.
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Figure 2: The matrix representation of an entire binary CSP consists of a 2-
dimensional array of blocks, each of which represents the direct binary constraint
between the corresponding row and column variables.

Logical and Numerical Operations on CSPs
and Matrices

In this section, we will define logical operations on CSPs
that are relevant to PC, and we will try to capture them using
numerical operations on their matrix representations.

The logical multiplication of two matrices representing
the constraints C(Xi, Xj) and C(Xj , Xk) is defined to be
the matrix representation of a constraint C(Xi, Xk) such
that any combination of values to Xi and Xk from their re-
spective domains is set to be allowed if and only if there
is some value of Xj that is consistent with both of them.
Figure 3 shows the numerical as well as the logical multipli-
cation between the matrix representations of two constraints
(denoted by the operators × and �, respectively).

Figure 3 also illustrates that the logical multiplication of
the matrix representations of two constraints can be simu-

lated using a regular numerical multiplication of them. Al-
though the numerical multiplication yields a matrix with en-
tries that could be greater than 1, simply converting all non-
zero entries to 1 results in an equivalence to the logical mul-
tiplication. The logical multiplication of constraints is the
fundamental operation used repeatedly in establishing PC.

Let A be the matrix representation of a binary CSP. As
noted previously, A can be viewed as a block-matrix with
block Aij being the matrix representation of the constraint
between Xi and Xj . We can now define the logical multi-
plication L = A�A as follows. L is also a block-matrix
with the block Lij representing the cumulative effect of
the logical multiplications of the constraints C(Xi, Xk) and
C(Xk, Xj) over all k. The cumulative effect is in essence
just the logical ∧-ing of the N constraint matrices corre-
sponding to every possible value of k.1

The task of verifying PC can now be viewed as the task of
checking whetherA�A = A. This is because the left-hand
side A�A represents an attempt to tighten the constraints
between pairs of variables using every possible third variable
as required in PC. The equality check to the right-hand side
represents a convergence to a path-consistent network.

Since A can be viewed as an N × N block-matrix,
A�A can be computed in N3 operations on individual
blocks.2 Individual multiplications of blocks are essentially
logical multiplications of constraints, and they can be em-
ulated using numerical multiplications as explained above.
This means that the total running time for verifying PC
can be improved from Ω(N3D3) to O(N3D2.38) in a rel-
atively straightforward way.3 This already defeats the argu-
ments used in various published papers concerning the lower

1∧-ing two constraint matrices is equivalent to simply ∧-ing
each of the corresponding entries in the matrices.

2The cubic number of operations on blocks cannot be obviated
right away because the required multiplication is logical and not
numerical.

3The bit complexity is also the same because all entries in the
matrix remain bounded by D.



bounds for verifying PC.
We can also attempt to reduce N3 to N2.38 using a

similar line of thought. Figure 5 shows the result of
such an attempt by naively casting the logical multiplica-
tion A�A as a regular numerical multiplication A×A.
Of course, computing A×A requires us to view A as a
“flattened-out” matrix without a block-structure, but with∑N

i=1 |Di| rows and
∑N

i=1 |Di| columns. Figure 5 also il-
lustrates the failure of this naive transformation. In partic-
ular, (X1←d11, X2←d22) is not ruled out by the numeri-
cal multiplication A×A while it is ruled out by the logical
multiplication A�A.

A closer look to analyze the failure of the naive method
leads us to define the concept of a support. The assignment
Xk←dkw is said to be a support for (Xi←diu, Xj←djv)
in Xk’s domain if and only if Xk←dkw is consistent
with both Xi←diu and Xj←djv . The support set of
(Xi←diu, Xj←djv) in Xk’s domain is defined to be the
set of all domain values of Xk that qualify as supports
for (Xi←diu, Xj←djv). Now, we observe that the nu-
merical multiplication A×A yields a matrix M with the
following properties. First, M has

∑N
i=1 |Di| rows and∑N

i=1 |Di| columns with one row and one column cor-
responding to each possible variable-value combination.
Second, M[Xi←diu,Xj←djv] computes the total number
of supports for (Xi←diu, Xj←djv) over all possible Xk.
The true requirement, however, is to compute whether
(Xi←diu, Xj←djv) has at least one support in every other
variable’s domain independently.

Properties of Prime Numbers
In the previous section, we noticed that casting logical
operations on constraints as numerical operations on regular
matrices does not always yield the desired result for entire
CSPs. In order to bridge the gap, we make use of the
properties of prime numbers in a novel way. A prime
number is a whole number greater than 1 that is divisible
only by itself and 1. The prime factorization of any whole
number is unique. Moreover, there are an infinite number
of primes greater than any given number, and roughly
N/ logN primes ≤ N (Newman 1980). There is also an
efficient algorithm for finding all primes in a specified range
(Gries and Misra 1978). For the purposes of this paper,
however, it suffices to assume the existence of a large table
of primes that is available a priori. Before we apply prime
numbers to the task of verifying PC, we illustrate their
relevance through the following Lemma.

Lemma 1. Suppose we have K positive rational numbers
s1
p1
, s2
p2
· · · sKpK

in their irreducible forms s.t. ∀i ∈ [1, 2 . . .K],
pi is a prime number, si is a non-negative integer, and pi >

si.4 The irreducible form A
B of the sum

∑K
i=1

si
pi

has B =∏K
i=1 pi if and only if none of the si are zero.

4The irreducible form of a rational number is a fraction P
Q

such
that GCD(P,Q) = 1.

(I) 1
3
+ 2

7
+ 11

13
+ 8

17
= 1·7·13·17+2·3·13·17+11·3·7·17+8·3·7·13

3·7·13·17 = 8984
4641

(II) 1
3
+ 0

7
+ 11

13
+ 8

17
= 1·13·17+11·3·17+8·3·13

3·13·17 = 1094
663

Figure 4: Illustrates the truth of Lemma 1. The first example shows that if none of the
terms is zero, then all the primes appear in the denominator of the summation. The
second example shows that in case one of the terms is zero, then the denominator of
the irreducible form of the summation has a missing prime number.

Proof. Suppose that ∀i ∈ [1, 2 . . .K], si > 0. Then, we
know that

K∑
i=1

si
pi

=

∑K
i=1 si

∏
j 6=i pj∏K

i=1 pi

This quantity is already in its irreducible form. This con-
clusion can be made based on the following arguments. All
of the factors p1, p2 . . . pK in the denominator are primes.
So, they are the only potential common factors with the nu-
merator. But any pi appears in all but one of the terms in
the numerator. Specifically, this term is si

∏
j 6=i pj . Since

pi appears in all other terms, it divides them. So, pi would
divide the entire numerator if and only if it divides the term
si
∏

j 6=i pj . However, since pi is also a prime, it clearly does
not share any factors with any of the other primes not equal
to it. The only remaining possibility for a common factor is
if si is a multiple of pi. This too cannot be the case because
si < pi. Put together, this proves that the irreducible form
of the summation has the denominator equal to the prod-
uct of all the primes. It is also easy to observe that, when
one or more of the si are zero, then the denominator of the
irreducible form of the summation will not contain the cor-
responding pi in its factorization.

Using Prime Numbers to Bridge the Gap
The result presented in the previous section can be used
to bridge the gap between logical operations on con-
straints and numerical operations on regular matrices for
entire CSPs. Let A be the matrix representation of a
given binary CSP. We observe that the regular numerical
multiplication A×A yields a matrix M with the entry
M[Xi←diu,Xj←djv] being equal to the total number of sup-
ports for (Xi←diu, Xj←djv) over the domains of all other
variables. Here, 1 ≤ u ≤ |Di| and 1 ≤ v ≤ |Dj |. Let us de-
note the support set of (Xi←diu, Xj←djv) in Xk’s domain
by Sk(Xi←diu, Xj←djv), and use sk(Xi←diu, Xj←djv)
to denote the cardinality |Sk(Xi←diu, Xj←djv)|. We know
thatM[Xi←diu,Xj←djv] =

∑N
k=1 sk(Xi←diu, Xj←djv).

In PC, the logical multiplication A�A is required to
yield a matrix L with L[Xi←diu,Xj←djv] equal to 1 when-
ever (Xi←diu, Xj←djv) has at least one support in every
other variable Xk’s domain; and 0 otherwise. This means
that L[Xi←diu,Xj←djv] requires sk(Xi←diu, Xj←djv) to
be non-zero for all k, whereas M[Xi←diu,Xj←djv ] simply
sums over sk(Xi←diu, Xj←djv) for all k. Lemma 1 can be
used to simulate the requirements of L using regular numer-
ical multiplication if the individual sk(Xi←diu, Xj←djv)
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(b) The Matrix Representation A
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(c) Logical Multiplication A�A ≡ L
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(d) Numerical Multiplication A×A ≡M
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(e)M after Threshold Cutoffs
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(f) Result in (e) ∧-ed with A
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(h) Numerical Matrix Multiplication A′ ×A
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(i) After Checking Denominators in (h)

Figure 5: Illustrates the working of our algorithm. The example in (a) shows 4 variables with domain sizes of 2 each. The edges indicate consistent combinations of values.
For clarity, X4’s edges are in blue. (b) shows the matrix representation A. (c) shows the logical multiplication A�A as required by PC. (d) shows the regular numerical
multiplication A×A. Note thatM[Xi←diu,Xj←djv ] is the total number of supports for that combination across every other variable’s domain, including Xi and Xj . Since
Xi←diu, Xj←djv) requires at least one support in every variable’s domain, the entries inM that are less than N can be immediately converted to 0 in an attempt to retrieve a
(still incorrect) logical representation as shown in (e). The entries in (e) do not match the intended result in (c). Further, even ∧-ing the outcome in (e) withA in order to tighten the
constraints as shown in (f) does not yield the intended result. The dark squares in (f) emphasize the incorrect entries produced by our first attempt in comparison to (c). (g) shows the
column-wise scaled-down version ofA using the primes 3, 5, 7 and 11 - all greater than the domain size 2 - associated with the variables X1, X2, X3 and X4, respectively. (h)
shows the outcome of the regular numerical multiplicationA′ ×A. (i) shows the result of examining the denominators in each of the entries of (h). If the denominator equals the
product of the primes 3× 5× 7× 11 = 1155, then the corresponding entry is set to 1; and set to 0 otherwise. The outcome of doing this matches the intended result in (c).



for all k are scaled down by an appropriately chosen unique
prime number pk > D.5

Overall, the idea is to associate a unique prime number pi
with each of the variables Xi and use them to scale down the
entries of the matrix A appropriately. In checking whether
A�A = A, we can choose to scale down the columns of
A on the left-hand side of the �, or the rows of A on the
right-hand side of the �. Figure 5 shows how the entries of
a matrixA representing a CSP are scaled down column-wise
using prime numbers corresponding to the column variables.
Let us denote the scaled-down version ofA byA′. L can be
obtained by computing A′ ×A, and examining the denom-
inator of each entry in the resulting matrix. Again, Figure
5 shows the result of multiplying A′ ×A and converting it
into the logical matrix L.

We also note that the matrix multiplications can be carried
out using fractional forms of the numbers. These fractions
will always be in their irreducible forms because of the use
of primes.

Algorithm 1: Verify-Path-Consistency
The algorithm for verifying PC. Here, N is the total number of variables,

and D is the size of the largest domain. The arithmetic time complexity of

the steps in our algorithm is dominated by that of Step (4) which in turn is

O(N2.38D2.38).

Input: A binary CSP 〈X ,D, C〉
Output: Report whether 〈X ,D, C〉 is path-consistent

1 Build A, the matrix representation of 〈X ,D, C〉
2 Choose N prime numbers greater than D
3 Build A′ by scaling down each entry in A by the unique

prime pi associated with the column variable Xi

4 Compute A′ ×A
5 Set each entry in A′ ×A with denominator equal to the

product of all the primes to 1; set others to 0
6 Report 〈X ,D, C〉 as being path-consistent if and only if

the outcome of the previous step matches A

Lemma 2. Algorithm 1 correctly verifies PC and uses
O(N2.38D2.38) arithmetic operations.

Proof. We know that M = A×A, and that any specific
entryM[Xi←diu,Xj←djv] =

∑N
k=1 sk(Xi←diu, Xj←djv).

By Lemma 1, if we have primes p1, p2 . . . pN with pk >

sk(Xi←diu, Xj←djv), then
∑N

k=1
sk(Xi←diu,Xj←djv)

pk

will have a denominator indicative of whether all the indi-
vidual terms are non-zero. This is exactly what is required
for verifying PC. Further, Step (3) of Algorithm 1 achieves
this scaling by associating a unique prime number with each
variable, hence completing the argument for correctness.
As for the arithmetic complexity of Algorithm 1, Steps (3),
(5) and (6) run in O(N2D2), and the total running time is
dominated by the multiplication in Step (4) which in turn is
O(N2.38D2.38).

5pk is just required to be greater than sk(Xi←diu, Xj←djv);
but since the latter term is guaranteed to be at most D, pk chosen
to be greater than D satisfies the requirement.

Arithmetic vs Bit Complexity

In the above algorithm, all primes are greater than D, and
we use N such primes. Since there are K/ logK primes
≤ K (Newman 1980), and we require N primes greater
than D, the size of the largest prime is approximately
O((N + D

logD ) log(N + D
logD )). This requires a bit rep-

resentation of size O(log(N + D)). Now, the numera-
tors and denominators can grow up to the product of all
these primes and might therefore require bit representations
of size O(N log(N + D)). Thus, if we count the num-
ber of bit operations, we get a total complexity exceeding
O(N3D2.38). Nonetheless, if we count the number of ma-
chine cycles on an architecture that can accommodate the
required bit representations (which is reasonable in many
practical problems), then multiplications can be carried out
within a few constant machine cycles (Patterson and Hen-
nessy 2008) (p.235), in which case, the arithmetic complex-
ity of O(N2.38D2.38) would be more relevant.

Discussions
The results presented in this paper defeat the arguments
made in many previous articles and standard literature on
PC. It might be possible to generalize our techniques for ver-
ifying higher levels of local-consistency. In order to verify
whether a given CSP is (k+1)-consistent, we need to reason
about k-dimensional matrices (because (k + 1)-consistency
introduces k-ary constraints). However, since numerical ma-
trix multiplication of k-dimensional matrices also benefits
from the optimization techniques used in fast matrix mul-
tiplication algorithms, a generalization of our approach is
likely feasible.

Some (hitherto failed) attempts can also be made to re-
duce the time complexity of verifying PC even further. One
such way might be to employ fingerprinting techniques from
the Randomized Algorithms community. Checking whether
the product of two given N × N matrices equals a third
given N × N matrix can be done in O(N2 logN) time us-
ing randomized algorithms (Freivalds 1977). However, this
approach is not directly applicable for our purposes because
what we are really interested in is the logical productA�A
instead of the numerical product A×A. Furthermore, this
approach cannot even be used directly in conjunction with
the prime numbers scaling technique, as we are interested
in examining only the denominators of the resulting matrix
while the randomized algorithm is tailored to identity check-
ing. Nonetheless, a connection to fingerprinting techniques
used in the Randomized Algorithms community might result
in important implications for improving the lower bounds
for verifying PC and higher levels of local-consistency.

We also hope to inspire a new class of algorithms for
actually establishing PC and/or higher levels of local-
consistency for a given CSP. We surmise that such a
new class of algorithms will conceivably make use of the
methodologies discussed in this paper. We would also like to
inspire a revisit of some well known and important complex-
ity results about PC, Singleton-Arc-Consistency or local-
consistency, that are currently taken for granted.



Conclusions
In this paper, we presented an efficient algorithm for veri-
fying PC that runs in time O(N3D2.38). We also presented
an algorithm with O(N2.38D2.38) arithmetic time complex-
ity. Here, N is the number of variables, and D is the size of
the largest domain in a given binary CSP. The previous con-
jecture on the lower bound for verifying PC was Ω(N3D3).
The reduction from D3 to D2.38 was based on a straight-
forward application of fast matrix multiplication algorithms
well known in the Theory community. The reduction of
the arithmetic complexity from N3 to N2.38 was also in-
spired by fast matrix multiplication algorithms, but was not
directly amenable to those techniques. We used the proper-
ties of primes to bridge the gap, and cast logical operations
on the matrix representations of constraints as numerical op-
erations on regular matrices.

This paper therefore defeats the arguments used in the
proofs of various results published throughout the years. We
expect our techniques to be generalizable to the task of ver-
ifying higher levels of local-consistency. We also hope to
inspire a new class of algorithms for establishing PC as well
as higher levels of local-consistency with lower time com-
plexities. This in turn will have crucial implications on the
efficiency of solving CSPs in general.
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