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BOUNDS ON THE TRAVEL COST
OF A MARS ROVER PROTOTYPE SEARCH HEURISTIC∗
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Abstract. D∗ is a greedy heuristic planning method that is widely used in robotics, including
several Nomad class robots and the Mars rover prototype, to reach a destination in unknown terrain.
We obtain nearly sharp lower and upper bounds of Ω(n logn/ log logn) and O(n logn), respectively,
on the worst-case total distance traveled by the robot, for the grid graphs on n vertices typically
used in robotics applications. For arbitrary graphs we prove an O(n log2 n) upper bound.
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1. Introduction. D∗ is a greedy heuristic planning method that is widely used
to direct a robot in a terrain with initially unknown obstacles from given start to given
goal coordinates. D∗ always moves the robot along a shortest presumed unblocked
path from its current coordinates to the goal coordinates, presuming that as-yet-
unobserved portions of the terrain have no obstacles. It stops when it has reached the
goal coordinates or determined that this is impossible. If movement along the current
path is blocked by an obstacle, the shortest presumed unblocked path changes and
D∗ needs to replan. This can be implemented efficiently [11] and easily [4].

In robotics applications, the continuous terrain is usually discretized into a grid.
Robot movement then corresponds to traversal from vertex to adjacent vertex in a
grid graph. The graph is known in the sense that the vertices (grid cells) and edges
are known. Impassable features of the terrain, which determine the graph’s structure,
may be known via satellite reconnaissance, prior exploration, or mapping. The graph
is unknown in the sense that vertices of the graph may be blocked by debris, crevices,
or other obstacles. An obstacle is not known until the robot’s sensors detect it, for
example, as the robot attempts to move to it.

D∗ is also used in other AI applications to reach a desired goal state from an
initial starting state [13, 3, 7, 14]. In these applications, and in some terrains such
as buildings, the graph may be a Voronoi or other type of graph rather than a grid
graph. In all of these applications the vertices can be recognized—in the case of
robot movement, by the physical coordinates; in other planning problems by state
identifiers.
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The D∗ algorithm has some advantages over depth first search (DFS) in practice,
including ease of replanning if the robot is moved to a new location, empirically good
average performance, and effective use of partial terrain information [6]. D∗ has been
used outdoors on an autonomous high-mobility multiwheeled vehicle that navigated
1,410 meters to the goal location in an unknown area of flat terrain with sparse mounds
of slag as well as trees, bushes, rocks, and debris [13]. As a result of this demonstration,
D∗ is now widely used in the DARPA unmanned ground vehicle (UGV) program, for
example, on the UGV Demo II vehicles. D∗ is also being integrated into a Mars
rover prototype (according to Anthony Stentz), tactical mobile robot prototypes, and
other military robot prototypes for urban reconnaissance [3, 7, 14]. Furthermore, it
has been used indoors on Nomad 150 mobile robots in robot-programming classes to
reach a goal location in unknown mazes [9, 8]. D∗ has also been used as the key
method in various robot-navigation software [2, 12].

Given its simple form and many applications it would be quite interesting to know
analytically how well D∗ performs. The measure by which we assess performance here
is the worst-case distance traveled by the robot. We focus on travel distance in the
terrain rather than travel planning time because robots move so slowly that the task-
completion times are completely dominated by their travel times.

For the rest of the paper, n denotes the number of vertices in the terrain graph
G = (V,E). In practice, D∗ seems to perform reasonably well and, in many domains,
exhibits a performance that is linear in n [6], i.e., the same order as DFS, but it is
not known whether this is due to properties of the test terrains or whether the plan-
execution times are indeed guaranteed to be good on any terrain. However, in [6]
it was also shown that for arbitrary graphs the performance is Ω(n log n/ log log n).
Here we prove the same Ω(n log n/ log log n) bound for grid graphs. The proof is a
considerably modified version of the construction in [6]. This establishes that D∗

has superlinear worst-case performance on the class of graphs used in real robotics
applications.

The best upper bound on D∗ previously known was O(n3/2) [5]. We prove an
upper bound of O(n log n) for planar graphs. This leaves only a log logn gap, and
establishes that D∗ is only slightly inferior to DFS in this worst-case performance
sense. As mentioned above, D∗ is also employed for other applications in which the
graph may not possess the grid structure. For arbitrary graphs we prove an upper
bound of O(n log2 n). Thus D∗ has a rather good performance guarantee in general.

In sections 2–4 we assume that the robot has tactile (short-range) sensors. In
section 5.1 we extend the results to long-range sensors. In particular, the lower bound
applies to any line-of-sight sensor, and the upper bounds apply to all sensor types.
In section 5.2 we extend results to the case where both vertices and edges may be
blocked.

2. Definitions. We assume that the robot is equipped with a tactile (short-
distance) sensor, omni-directional, point-sized, and capable of error-free motion and
sensing. The sensors on board the robot uniquely identify its location. We model the
terrain as a graph. Vertices in the graph represent locations in the terrain. Traversing
an edge in the graph corresponds to traveling from one location to an adjacent location
in the terrain. We are interested in the quality of the plans determined by D∗ as a
function of the number of vertices of the graph.

With these assumptions, we can formalize the behavior of D∗ as follows. We call a
graph H = (V,E) vertex-blocked by B ⊂ V if B is the set of blocked vertices, vertices
that cannot be traversed. On a finite undirected graph H = (V,E) vertex-blocked by



MARS ROVER D∗ HEURISTIC SEARCH TRAVEL BOUNDS 433

start

v4v3v2v1v0 v8v7v6v5 v10v9 v22v20v18v16v15v14v13v12v11 v26v24 v27=vddv25v23v21v19v17

spokes

rim

= blocked vertex

1 2 3 4 5 6 7 8 9

101112

13

the order in which paths

= unblocked vertex

to the goal vertex are tried out
goal vertex class 1

class 0

class 2

all edge lengths are one

tip
vertex

blocked

Fig. 1. Reference [6]’s example graph for lower bound.

B, a robot has to reach a designated goal vertex t from a start vertex s. D∗ always
moves the robot from its current vertex along a shortest presumed unblocked path to
the goal vertex. A presumed unblocked path is one that contains no vertices which
are known to be blocked. Initially, the robot has no information about B except that
s �∈ B. If the robot attempts to move to a blocked vertex v, it learns that v ∈ B.
D∗ then recomputes a new presumed unblocked path to begin the next iteration. D∗

terminates when the robot reaches the goal vertex or there are no presumed unblocked
paths to the goal vertex, in which case the goal vertex is unreachable from the start
vertex. Additional notation to formalize the information state of the robot is given
in section 4.1.

3. D∗: Lower bound on grids. We now prove a lower bound on the worst-case
travel distance of D∗ on vertex-blocked grids. First, we review the construction of
[10, 6], which employs the key idea of tricking the robot into traversing the same long
path back and forth many times. Second, we give an overview of how to transform
that example into a grid without losing the key idea. Third, we explain exactly how
the grid is constructed. Last, we analyze the worst-case travel distance of D∗ on our
grid graph, proving the lower bound.

3.1. Making the robot go to and fro.1 The analysis of [10, 6] proved that
the worst-case travel distance of D∗ is Ω( n logn

log log n ) steps on vertex-blocked graphs

H = (V,E). This lower bound is achieved with graphs of the structure shown in
Figure 1. We now sketch the main idea of its construction, but with our own “rim-and-
spoke” terminology, in order to introduce our much more complex grid construction.

The graph of Figure 1 consists of a long horizontal path of length dd (where d
is an integer parameter), which we call the “rim,” and a set of “spokes” of varying
lengths attached to the rim at various vertices. The uppermost “tip” vertex of each
spoke is blocked and connected to the goal vertex by an edge. Note that the edges
from the tips to the goal are physically unrealistic edges, because they allow the robot

1

A charming old bear at the zoo
Could always find something to do

When tired, you know
Of the walk to and fro

He’d reverse, and walk fro and to.
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to move from any tip to the goal in one step. The possible spoke lengths are
∑h

i=0 d
i

for the nonnegative integers h = 0 · · · d − 1. We refer to a spoke of length
∑h

i=0 d
i

as a “class h spoke.” Longer spokes are spaced farther apart from each other than
short spokes. In particular, the vertices where class h spokes attach to the rim have
distance dh+1 from each other. Hence, if the robot is at a vertex where a class h spoke
attaches to the rim, then it is shorter to go to the goal along the rim to the next class
h spoke than it is to go via any class h + 1 spoke.

In particular, in Figure 1 there are three classes of spokes: 0, 1, and 2. The robot
does not know that the shortest unblocked path to the goal from starting vertex v0

is to traverse the rim to v27, then the long class 2 spoke, and reach the goal vertex.
Instead, the robot tries to reach the goal through the shortest presumed unblocked
path via the short class 0 spoke at v3, then the class 0 spoke at v6, and so on until
it tries the class 0 spoke at the right end of the rim, v27. From there, the shortest
presumed unblocked path to the goal is via the class 1 spoke at v18. Thus the robot
is led to traverse the rim from right to left, checking each class 1 spoke. Finally, the
robot traverses the rim a third time, reaching the goal via the class 2 spoke.

In general, the robot starts at vertex v0; it traverses the rim from left to right,
checking the class 0 spokes for a path to the goal vertex; then it returns along the rim
from right to left, checking class 1 spokes for a path to the goal vertex, and so on.
Each class forces the robot to traverse the rim once. Thus the total travel distance is
≥ dd+1. A computation shows that there are O(dd) vertices in the graph, and hence
the total travel distance is Ω( n logn

log log n ).

3.2. Conceptual overview. We wish to construct a grid that captures the key
idea from the previous analysis: to fool the robot into traversing a lengthy rim many
times by visiting all the class h spokes before visiting any class h+1 spokes. However,
the graph topology of the previous analysis cannot directly be embedded into a grid;
the goal vertex must be simultaneously adjacent to the ends of many spokes of greatly
different lengths, which moreover are placed at great distances from each other. In
a grid, on the other hand, each cell is adjacent to at most four cells, and adjacent
cells are physically close. We use several ideas to modify the graph topology of the
previous construction to be able to embed it into a grid. A conceptual sketch of these
ideas is shown in Figure 2.

1. Attach each spoke at a separate vertex to the rim (Figure 2a). This eliminates
the problem of a vertex on the rim being adjacent to too many other vertices.
As long as longer class spokes are spaced far enough apart, the robot is still
fooled into repeatedly traversing the rim.

2. Remove the very short spokes (Figure 2b). We must place the goal vertex at
some distance D from the rim, and we thus cannot construct spokes of length
less than D. In particular, we only use classes 0.8d to 0.9d instead of using
classes 0 to d.

3. Move the spokes physically closer together, but maintain their distances from
each other along the rim. We do this by “squeezing” the rim into an accordion
shape (Figure 2c). In particular, the sections of the rim between spokes get
bent into long loops, which we call “columns.”

4. Redesign the spokes so that they all have the same physical height, while
maintaining their original lengths (Figure 2c). In particular, build a pair
of blocked walls of the same height, with some space between them. Put a
twisty path of the appropriate length in between the walls.

5. Once the spokes are fairly close and of equal height, bend the rim into part of
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Fig. 2. Steps of the transformation.

a circular arc, pushing the tips of the spokes together towards the goal vertex
(Figure 2d). It is not possible to squeeze too many distinct vertices into a
small area on a grid, but this problem is solved by blocking the paths to the
goal vertex a bit before the goal vertex.

3.3. Construction. Place the goal vertex g at (0, 0). For some sufficiently large
integer z ≡ 0(mod 10), define the outer rim R such that

R :=
{
(x, y) ∈ Z≥0 × Z≥0 : z0.7z ≤ x + y ≤ z0.7z + 1

}
.

The rim is a long diagonal path from (0, z0.7z) to about (z0.7z, 0). Note that the rim is
two concentric quarter circles in the “taxicab” metric L1, so each point in R is within
1 of z0.7z from g. Along the rim, there will be “spoke-base points” and “column-base
points” alternating. (Note: to avoid notational clutter, we omit the “floor” operation
notation. Here, for example, z0.7z means �z0.7z	. )

For each i ∈ {0.8z, . . . , 0.9z}, create zz−i−1 spokes of class i. A conceptual figure

is given in Figure 3. Let S := z0.2z−z0.1z−1

z−1 be the number of total spokes. For
i ∈ {1, . . . , S}, define the ith spoke-base, bi, such that

bi :=

(
z0.7z

S
i +

z0.7z

2S
, z0.7z − z0.7z

S
i− z0.7z

2S

)
.

Therefore bi ∈ R.
From each spoke-base, construct a twisty path towards g. Each path has length

2zj for some j ∈ {0.8z, 0.8z+1, . . . , 0.9z}. We call such a path of length 2zj a “spoke
of class j.” The graph will contain zz−j−1 spokes of class j, for each j.

The taxicab distance between two adjacent spoke bases will be 2z0.7z/S, but to
make the construction’s key idea work, these distances must be longer for the robot
as it moves in the graph. We increase the graph distances by inserting detour loops
into the rim. Lemma 3.1 makes this idea precise.
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Fig. 3. Conceptual figure with two spoke classes.

Fig. 4. A column of height 3.

Lemma 3.1. Given a function t : {1, . . . , S} → Z≥0 such that t(i) − t(i − 1) ≥
2z0.7z

S+1 ∀i, it is possible to modify R using only cells above R in the plane, such that
∀j > i, traveling along R from bi to bj takes between (t(j)−t(i)−4) and (t(j)−t(i)+4)
steps.

Proof. For i ∈ {0, . . . , S}, define the ith column-base, ci such that

ci :=

(
z0.7z

S
i, z0.7z − z0.7z

S
i

)
.

Therefore ci ∈ R. At each of the column-bases, remove the point itself and the point
above it from the rim and add two paths traveling upwards, connected at the top.
So, if the column-base is at (x, y), remove (x, y) and (x, y + 1) from R and add one
path from (x − 1, y + 2) to (x − 1, y + 3 + h) and another path from (x + 1, y) to
(x + 1, y + 3 + h), with a connecting point at (x, y + 3 + h). This increases the steps
needed to cross this point in the rim by 2h. We call such a construction a “column
of height h.” A column of height 3 is illustrated in Figure 4.

We now define an iterative algorithm for building the columns. For a fixed i,
assume the previous columns have been built and let D be the current distance from b1
to bi. Let h := � t(i)−t(1)−D

2 	 and build a column of height h at ci−1. This ensures that
the distance from b1 to bi is now t(i)− t(1), up to round-off error. Repeat the process
for all later i. (Note that the recalculation from t(1) here prevents accumulation of
round-off error.)

The fourth idea is to build each spoke as a twisty path of the appropriate length.
Each spoke consists of a wedge of sufficient area. The spokes do not overlap, except
in a small unblocked triangular region near the goal vertex, within which all paths
are direct.

Lemma 3.2. Given a function l : {1, . . . , S} → Z≥0 such that z0.7z ≤ l(i) ≤ zz−1,
∀i, it is possible to construct spokes from bi such that the distance from bi to t is
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Fig. 5. The hypothetical path Pi, along with the shortening necessary to set the path length to l(i).

between (l(i) − 4) and (l(i) + 4).
Proof. We would like to connect each of the spokes to g. However, the max degree

of a grid prevents this. Therefore we add a triangle T such that

T :=
{

(x, y) : x, y ∈ Z≥0

∧
x + y ≤ z0.5z

}
.

We may then simply connect the spokes to T . For each i ∈ {1, . . . , S}, define the ith
“tip” vertex ti such that

ti :=

(
z0.5z

S
i +

z0.5z

2S
, z0.5z − z0.5z

S
i− z0.5z

2S

)
.

Therefore ti ∈ T . This will be the point that the ith spoke connects to.
To construct the paths of length l(i) for each i, construct a hypothetical path Pi

from bi of excessive length. Then, when building the actual graph, simply include as
much of Pi as necessary before the graph takes a direct path to ti, as illustrated in
Figure 5. The point where the graph ignores Pi and instead switches to a direct path
to ti depends on l(i). We block the cell just prior to ti on the path.

Building Pi takes a bit of construction. We use Euclidean rays from g to partition
the space between R and g into areas Ai and then create many path segments running
parallel to R called “levels.” Pi runs up and down these levels, traveling back and
forth to increase length. We define a space Ci to give room to connect one level to
the next without coming close to the rays. This is all illustrated in Figure 5. The
triangle in the lower left corner represents a region of unblocked cells, bordered by
the ti. Since all of the twisty paths have become direct paths by the time they reach
their ti, and the blockages occur prior to reaching ti, the spokes may overlap within
this unblocked region.

For each i ∈ {0, . . . , S}, define the ith “ray” ri to be the Euclidean line from

( z
0.5z

S i, z0.5z− z0.5z

S i) to ci. Hence ri goes from T to R. For each i ∈ {1, . . . , S}, define
the ith area Ai to be the integer points between ri−1 and ri. Define the ith cushion
Ci such that

Ci :=
{

(x, y) : x, y ∈ Z≥0

∧
d[((x, y), ri)] ≤ 8

}
.

For each i ∈ {1, . . . , z0.3z − 2} and each j ∈ {1 . . . , 0.1z0.7z}, define the level li,j
such that

li,j :=
{
(x, y) : z0.7z − 6j ≤ x + y ≤ z0.7z − 6j + 1

}⋂
(Ai − Ci − Ci+1).
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Use levels {li,0, . . . , li,0.1z0.7z} to make Pi, using Ci and Ci+1 to connect the levels.
Ci is large enough to let Pi avoid crossing the ray.

The distance between ci and ci+1 is 2z0.7z

S ≥ 2z0.3z. The levels are parallel and
contained in a Euclidean triangle. The smallest is only one tenth of the way to the
point, so each level is longer than z0.3z. There are 0.1z0.7z levels, so the total length
of Pi is at least 0.1zz.

To build the actual spoke, we define a function s(p) for all points p ∈ Pi, such that
s(p) is the distance from bi to t if we were to shorten Pi at p and take a direct path to
ti from p. (Note that this definition involves the actual distance in the graph, avoiding
accumulated round-off error.) Let Si be the point in Pi that minimizes |s(Si) − l(i)|.
For any two points p, p′ in the same level, if d(p, p′) = 2, then |s(p) − s(p′)| = 2,
since d(p, t) = d(p′, t). Therefore, if Si is contained in one of the levels, shortening
Pi at Si gives a spoke within 2 of l(i). If Si is contained in one of the cushions, we
may be able to create an even more precise spoke. For any adjacent c, c′ ∈ Ci ∩ Pi,
|s(c) − s(c′)| ≤ 1, as the path from c to ti likely passes through c′. Hence, regardless
of whether Si appears in a level or in a cushion, we exceed the precision required by
Lemma 3.2.

To finally build our graph, define a function p[i, j] such that

p[i, j] := zi+1j +
z0.8z+1

0.1z + 1
(i− 0.8z).

This will be the “position” of the jth spoke of class i. We order the spokes by this
position function, so the first spoke is the one with the lowest position, the second is
the one with the second lowest position, and so forth.

Put a blocked cell near the end of each spoke except one of class 0.9z. Hence the
robot will be tempted by each of the spokes of class 0.8z in turn, following the rim
for about zz steps. The robot will then turn around and travel up the rim, tempted
only by the spokes of the next class 0.8z + 1, again taking about zz steps, and so on
until it reaches the goal via the unblocked spoke of class 0.9z.

Define the length function l such that l[k] := 2zi, where i is the class of the kth
spoke. We use this l with Lemma 3.1.

Define t such that t[k] = p[i, j], where i and j are the coordinates for the kth
spoke. We use this t with Lemma 3.2.

3.4. Analysis. Note: here we prove the lower bound for tactile (short-range)
sensors. In section 5.1 we show that the theorem applies to all line-of-sight sensors as
well.

Theorem 3.3. The worst-case travel distance of D∗ on vertex-blocked grids
H = (V,E) is Ω( n logn

log log n ) steps.

Proof. The distance the robot must travel to find a spoke of class i and then
travel to g is at most zi+1 +2zi steps. For any j > i, simply traveling a spoke of class
j will take at least 2zj ≥ 2zi+1 steps. Hence the robot will walk to the smallest class
spoke available, find a blocked cell, and go to the next of that class, traversing the
rim.

By the placement of the spokes, notice that ∀h, h′ ∈ {0.8z, . . . , 0.9z}, if h < h′,
then the rightmost h-class spoke is to the right of the rightmost h′-class spoke. Also
the leftmost h-class spoke is to the left of the leftmost h′-class spoke. Hence, after
visiting every spoke of class i, the robot turns around and finds the first spoke of class
i + 1. Each time the robot traverses the rim, it goes from the leftmost spoke of class
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i to the rightmost spoke of class i. This distance is more than zz − 2zi−1 = Ω(zz).
The total travel distance (just on the rim) is therefore at least z0.1zΩ(zz) = Ω(zz+1).

On the other hand, there are θ(zz) vertices in the rim (including the columns).
There are O(z0.5z) vertices in T . In class i there are O(zz−i−1) spokes, each with
O(zi) vertices, so each class contains O(zz−1) vertices. There are 0.1z classes, so
there are O(zz−.9) vertices in the spokes. Therefore the total number of vertices in
the graph is θ(zz). If n = θ(zz), then logn = θ(z log z) and log logn = θ(log z). Then
the total distance is Ω(zz+1) = Ω(nz) = Ω( n logn

log log n ).

4. D∗: Upper bounds.

4.1. Notation. As defined in section 2, the robot knows the graph H = (V,E),
the starting location s ∈ V and a goal vertex t ∈ V . However, it does not know which
vertices in V are blocked. D∗ travels along a shortest presumed unblocked path to
t. If the robot has tactile sensors, it replans whenever it encounters a blocked vertex
along its currently planned path. To prepare the way for an extension to long-range
sensors in the next section, we analyze here a slightly more general case. We permit
the robot to detect a blocked vertex some distance ahead on its planned path. For
example, in Figure 6, the robot starting from 0 might travel as far as 2 and then
detect blocked vertex 6. Note that an earlier vertex such as 4 might be blocked, but
go undetected at this iteration.

We assume that the initial graph H = (V,E) given to the robot is connected with
n = |V | vertices (if not, take the component containing the starting vertex). The
starting and target vertices are denoted s, t ∈ V , respectively. At the start of the
ith iteration of D∗, let vi−1 denote the robot’s location and Hi = (V,Ei) denote its
current information about the environment. Ei is obtained from E by removing all
edges incident on vertices that have been found to be blocked. Initially v0 = s and
H1 = H. Let Pi denote the shortest path in Hi from vi−1 to t that the robot decides
to follow. If i is not the final iteration, let bi be the vertex found to be blocked by the
robot while following Pi. Hi+1 is obtained from Hi by removing edges incident on
bi. Let b−i and b+i denote, respectively, the vertices preceding and following bi on Pi;
see Figure 6. Let vi be the starting vertex for the next iteration. Clearly vi either is
b−i in Pi or precedes b−i in Pi and the subpath of Pi between vi and b−i exists in Hi+1.
Also, the subpath of Pi from b+i to t exists in Hi+1.

Let d(u, v)H denote the shortest distance between vertices u and v in graph H.
If u and v are not connected, then d(u, v)H = ∞.

Let v0, v1, . . . , vk be a run of the method. This captures a run up to ties in
shortest viable paths. If the robot reaches t, then vk = t. The total distance traveled
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by the robot is

C =
k∑

i=1

d(vi−1, vi)
Hi

.

4.2. Telescoping.
Lemma 4.1. C ≤ n +

∑k−1
i=1 d(b−i , b

+
i )H

i+1

.
Proof. Since vi lies on the shortest path Pi from vi−1 to t in Hi, by the principle

of optimality

C =
k∑

i=1

d(vi−1, vi)
Hi

=

k∑
i=1

(d(vi−1, t)
Hi − d(vi, t)

Hi

)

= d(v0, t)
H1 − d(vk, t)

Hk

+

k−1∑
i=1

(d(vi, t)
Hi+1 − d(vi, t)

Hi

)

≤ n +

k−1∑
i=1

(d(vi, t)
Hi+1 − d(vi, t)

Hi

).

This formula has the following intuitive explanation: the robot optimistically
thinks that undetected vertices are unblocked. When the robot gets to vi and de-
tects a blockage, it is set back in the distance it thinks it is from t, by the amount
(d(vi, t)

Hi+1 − d(vi, t)
Hi

). The sum of these setbacks, plus the initial optimistic dis-
tance to t, equals the total distance traveled by the robot.

By the triangle inequality,

d(vi, t)
Hi+1 ≤ d(vi, b

−
i )H

i+1

+ d(b−i , b
+
i )H

i+1

+ d(b+i , t)
Hi+1

.(4.1)

By the principle of optimality, the subpath of Pi from vi to b−i in Hi has length

d(vi, b
−
i )H

i

, the subpath of Pi from b−i to b+i has length d(b−i , b
+
i )H

i

= 2, and the

subpath of Pi from b+i to t in Hi has length d(b+i , t)
Hi

. Hence,

d(vi, t)
Hi

= d(vi, b
−
i )H

i

+ 2 + d(b+i , t)
Hi

.(4.2)

Observe that the first and third of these subpaths exist in Hi+1. Only the path
of length 2 through bi between b−i and b+i is no longer viable in Hi+1. Therefore,

d(vi, b
−
i )H

i

= d(vi, b
−
i )H

i+1

and d(b+i , t)
Hi

= d(b+i , t)
Hi+1

. Plugging (4.1) and (4.2)
into the bound for C above yields the lemma.

In plain words, the amount of the setback when at vi cannot be more than the re-
vised distance d(b−i , b

+
i )H

i+1−2 since the robot could splice in that path to replace the

blocked b−i , bi, b
+
i portion of Pi. Notice that d(b−i , b

+
i )H

i+1

< ∞ because the following
pairs are all in the same connected component in Hi+1: vi and b−i ; vi and t; b+i and t.

4.3. Time reversal and weighted edges. Define the following function:

CYCLE-WEIGHT(T, S). Input: a tree T = (V, F ) and an ordered list S =
{ek, ek−1, . . . , e1} of distinct edges from the complete graph on V such that S∩F = φ.
Define the weight wi of edge ei ∈ S to be the length of a shortest cycle that contains
ei in the graph Ti = (V, F ∪ {ek, ek−1, . . . , ei}).
Output:

∑k
i=1 wi.
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We next show that
∑k−1

i=1 d(b−i , b
+
i )H

i+1 ≤ CYCLE-WEIGHT(T, S) for a suitably
constructed tree T and S = {ei = (b−i , bi) : 1 ≤ i ≤ k − 1}.

The basic idea relating the edge weights in CYCLE-WEIGHT to the d(b−i , b
+
i )H

i+1

values can be understood by considering a special case. Suppose Hk is connected ex-
cept for the isolated vertices b1, b2, . . . , bk−1. Reverse the time perspective so that
the robot motion adds edges, first the edges incident on bk−1, then the edges in-
cident on bk−2, and so on. Pick T to be a spanning tree of the graph (V,Ek ∪
{(b1, b+1 ), (b2, b

+
2 ), . . . , (bk−1, b

+
k−1)}) and S to be ei = (b−i , bi) : 1 ≤ i ≤ k − 1. Then

wi ≥ 2 + d(b−i , b
+
i )H

i+1

because any cycle containing (b−i , bi) in Ti must also contain
(bi, b

+
i ).
Unfortunately such a simple construction does not work in the general case as

multiple connected components may be formed when the edges incident to a blocked
vertex are removed. To get around this problem, we define a new sequence of graphs
Fk, Fk−1, . . . , F1 as follows:

1. Fk is a spanning forest of Hk.
2. For 1 ≤ i ≤ k − 1, let Ci be the connected component of Hi+1 containing

b+i and b−i . Then Fi is a spanning forest of Hi containing the subgraph
Fi+1

⋃
{(bi, b+i )}.

The following lemma follows by induction directly from the definition of Fi.
Lemma 4.2. For 1 ≤ i ≤ k and all vertices u and v, Fi is acyclic; d(u, v)Fi < ∞

iff d(u, v)Hi < ∞; and d(u, v)Fi ≥ d(u, v)H
i

.
Consider the cycle weight problem with T = F1 and S = {ei = (bi, b

−
i ) : 1 ≤ i ≤

k − 1}. The next lemma bounds the cost of our method by CYCLE-WEIGHT(T,S).
Lemma 4.3. Let H1, H2, . . . , Hk be a sequence of graphs as defined in section

4.1. Let T = F1 and S = {ei = (b−i , bi) : 1 ≤ i ≤ k − 1}. Then
∑k−1

i=1 d(b−i , b
+
i )H

i+1 ≤
CYCLE-WEIGHT(T ,S).

Proof. According to Lemma 4.2, Fi+1 and Hi+1 have the same connected com-
ponents. The subgraph of F1 induced by Ci is connected since Ci is a component
of Hi+1. The edges ej for i < j < k are contained in Ci since b−j , bj , b

+
j ∈ Ci for

all i < j < k. Thus, the graph obtained by contracting all vertices of Ci in Ti+1

is acyclic. Since Ti is obtained from Ti+1 by adding ei, every cycle that contains
ei = (b−i , bi) in Ti must also contain (bi, b

+
i ). Thus, wi is equal to 2 plus the dis-

tance between b−i and b+i in the subgraph G′ of Ti induced by Ci. But G′ is also

a subgraph of Hi+1 and hence it holds that wi ≥ 2 + d(b−i , b
+
i )H

i+1

. Consequently,∑k−1
i=1 d(b−i , b

+
i )H

i+1 ≤
∑k−1

i=1 wi = CYCLE-WEIGHT(T, S).

4.4. An extremal problem on graphs. We now bound CYCLE-WEIGHT((V,E), S)
in terms of |V | and |S|. Let Ew = {ei;wi ≥ w} be the set of edges with weight at
least w. Recall that the girth of a graph is the length of its shortest cycle. Define
Γ(n,w) (respectively, ΓP (n,w)) to denote the maximum number of edges in a graph
(respectively, planar graph) with n vertices and a girth of at least w. The following
lemma relates Ew and Γ(n,w).

Lemma 4.4. |Ew| ≤ Γ(|V |, w)− |V |+ 1 for all CYCLE-WEIGHT((V,E), S) and
all w.

Proof. Consider the graph Tw = (V,E ∪Ew). We claim that Tw has a girth of at
least w. To see this, assume that it does not and thus has a cycle C of length w′ < w.
Since (V,E) is a tree, at least one edge of C must belong to Ew. Consider the edge
ej ∈ Ew ∩C with the smallest j. Then Tj contains C and thus wj ≤ w′ < w. On the
other hand, wj ≥ w since ej ∈ Ew, which is a contradiction. Thus, Tw has a girth of
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at least w. This implies that Γ(|V |, w) ≥ |E ∪Ew| = |E|+ |Ew| = |V | − 1 + |Ew| and
the lemma follows.

Corollary 4.5. |Ew| ≤ ΓP (|V |, w)−|V |+1 for all CYCLE-WEIGHT((V,E), S)
such that (V,E ∪ S) is planar, and all w.

Proof. In the proof of Lemma 4.4, Tw is planar because it is a subgraph of planar
graph (V,E ∪ S). Hence Γ(|V |, w) may be replaced by ΓP (|V |, w).

We now bound CYCLE-WEIGHT((V,E), S) by making use of bounds on Γ(n,w),
a well studied problem in extremal combinatorics. We first consider the case that the
graph (V,E ∪ S) is planar.

Lemma 4.6. ΓP (n,w) ≤ wn
w−2 for all n and w.

Proof. Since the sum of the lengths of all faces of any planar graph G = (V,E) is
at most 2|E| and every face has length at least w, the number of its faces can be at
most 2|E|/w. The bound of the lemma follows from substituting this relationship in
Euler’s formula.

Note that the weight of any edge in S is at most |V |. Define Ew,2w = {ei ∈ S :
w ≤ wi < 2w}. Then, by Corollary 4.5 and Lemma 4.6 it holds that

CYCLE-WEIGHT((V,E), S) ≤
log |V |∑
i=1

2i+1|E2i,2i+1 |

≤ O(|S|) +

log |V |∑
i=3

2i+1|E2i |

≤ O(|S|) +

log |V |∑
i=3

2i+1(ΓP (|V |, 2i) − |V | + 1)

≤ O(|S|) +

log |V |∑
i=3

2i+1

(
2i|V |
2i − 2

− |V | + 1

)

≤ O(|S|) +

log |V |∑
i=3

2i+1 4|V |/2i

= O(|V | log |V |).

The last inequality depends on planarity (so S = O(|V |)) and |V | ≥ 6. We now
repeat the analysis for general graphs. In this case, we use a recent result by Alon,
Hoory, and Linial [1] that states that any graph G = (V,E) with average degree d > 2
has a girth of at most logd−1 |V | [1], resulting in the following lemma.

Lemma 4.7. Γ(n,w) ≤ n(n
1
w + 1)/2 for all n and w.

Proof. Consider any graph G = (V,E) with |V | = n, |E| ≥ |V | + 1 and a girth
of at least w. Then, its average degree is d = 2|E|/n > 2 and thus, according to the
result by Alon, Hoory, and Linial [1], w ≤ log2|E|/n−1 n. Solving this inequality for
|E| yields the lemma.

This lemma allows us to bound CYCLE-WEIGHT((V,E), S) for general graphs.

Lemma 4.8. w(|V |(|V | 1
w − 1)) = O(|V | log |V |) for |V | ≥ w > log2 |V |.

Proof. Let n = |V | and remove the common factor |V | from the statement of

the lemma. The resulting left-hand side defines the function f(w) = w(n
1
w − 1). Its

derivative is

f ′(w) = n
1
w

(
1 − lnn

w

)
− 1
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and its second derivative is

f ′′(w) =
n

1
w ln2 n

w3
> 0.

Therefore f is convex (in the range w > 0). Hence arg maxn≥w≥log2 n f(w) occurs at

one of the endpoints of the range, n or log2 n. We will show that f(w) = O(log n) for
both endpoints.

At w = n, let t = lnn
n → 0 as n → ∞. The Taylor series for et around 0 then

gives

n
1
n − 1 = e

ln n
n − 1 = et − 1 =

lnn

n
+

ln2n

2n2
+ o(n−2) = O

(
log n

n

)
.

Thus f(n) = O(log n).
At w = log2 n, let t = ln 2

logn , so

f(w)

log n
= log n(n

1
log2 n ) − 1 = log n(e

ln n
log2 n − 1) = logn(e

ln 2
log n − 1) =

ln 2

t
(et − 1).

Again using the Taylor series we get f(w)
logn = ln 2(1 + t

2 + t2

6 + · · · ) = ln 2(1 + o(1)) =

O(1).
Using Lemmata 4.8, 4.4, and 4.7, we have

CYCLE-WEIGHT((V,E), S) =
∑

i:wi≤log2 |V |

wi +
∑

i:wi>log2 |V |

wi

≤ |S| log2 |V | +
log |V |∑

i=2 log log |V |
2i+1|E2i,2i+1 |

≤ |S| log2 |V | +
log |V |∑

i=2 log log |V |
2i+1|E2i |

≤ |S| log2 |V | +
log |V |∑

i=2 log log |V |
2i+1(Γ(|V |, 2i) − |V | + 1)

= |S| log2 |V | +
log |V |∑

i=2 log log |V |
2i+1(|V |(|V |

1

2i − 1)/2 + 1)

= |S| log2 |V | +
log |V |∑

i=2 log log |V |
O(|V | log |V |)

= O((|V | + |S|) log2 |V |).

We now state these results as a lemma.
Lemma 4.9. CYCLE-WEIGHT((V,E), S) = O((|V |+ |S|) log2 |V |). If the graph

(V,E ∪ S) is planar, CYCLE-WEIGHT((V,E), S) = O(|V | log |V |).

4.5. Worst-case travel bound. We are now ready to prove an upper bound
on the worst-case travel distance of D∗.
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Theorem 4.10. For robot sensors as described in section 4.1, D∗ traverses
O(n log2 n) edges on connected graphs G = (V,E). It traverses O(n log n) edges on
connected planar graphs G = (V,E).

Proof. According to Lemmata 4.1 and 4.3, D∗ traverses at most O(n) +∑k−1
i=1 d(b−i , b

+
i )H

i+1 ≤ O(n) + CYCLE-WEIGHT((V,E′), S) edges, where |S| < n
and (V,E′ ∪ S) is a subgraph of G. According to Lemma 4.9, it holds that
CYCLE-WEIGHT((V,E′), S) = O((n + |S|) log2 n) = O(n log2 n) and, if G and thus
(V,E′ ∪ S) are planar, CYCLE-WEIGHT((V,E′), S) = O(n log n).

5. Extensions.

5.1. Long-range sensors. Both the lower and upper bounds of the previous
sections extend to the case of long-range sensors, rather than the tactile sensors we
have assumed so far. Many real robots are equipped with sonar, radar, or laser sensors,
so it is worthwhile to consider this case. In directions where the view is not blocked
by obstacles, these sensors can detect at moderate or even unlimited distances.

The lower bound is easy. Place a little twist in the path Pi just before the blocked
vertex of each spoke, so that the blocked vertex cannot be detected until the robot is
O(1) vertices away. Therefore Theorem 3.3 applies to robots with long-range field-of-
vision sensors.

We now extend the upper bound to the case of long-range sensors. We will not
require that the sensors be field-of-vision; they may see around corners, have gaps in
their vision, etc. We only require that if the robot attempts to move to vertex v ∈ B
from a vertex adjacent to v, then the robot will detect that v ∈ B. This is a minimal
property required for any functioning robot.

Theorem 5.1. Suppose that the robot follows the D∗ algorithm on graph H =
(V,E). Each time the robot attempts to move to an adjacent vertex, it either moves
successfully or it detects that the vertex is blocked. After an attempted move (whether
successful or not) the robot may detect additional blocked vertices in H. Then the
bounds of Theorem 4.10 apply.

Proof. Our proof consists of two parts. Part 1 shows that our bounds apply if
the robot detects blocked vertices that are not on the planned path to the target.
Part 2 shows that if more than one blocked vertex on the planned path is detected,
then there exists a different robot whose movements are the same, but which does not
detect more than one blocked vertex on the planned path.

We preface part 1 by stating the very simple ideas hidden in the technical state-
ments. Blocked vertices off the path do not affect the telescoping formula of Lemma
4.1, because, by definition, they do not affect the current path. When we reverse
time and add the special edges ek, . . . , e1, we add extra edges (those connected to the
off-path vertices). Our upper bound is on the length of a smallest cycle containing ei,
so adding extra edges can only make this smaller. Therefore the upper bound, which
is computed in Lemma 4.9 as though there were no extra edges, is still valid.

Let Bi ⊂ V denote the off-path vertices detected as blocked in iteration i. The
definitions of vi and Hi remain the same as in section 4.1, but now Hi+1 is obtained
from Hi by removing all edges incident on bi or incident on any b ∈ Bi. Lemma 4.1
remains true in this setting because no vertices in Bi are on the path Pi. In particular,
the subpaths of Pi from vi to b−i and from b+i to t still exist in Hi+1. Intuitively, the
blockages Bi contribute to the setback amount suffered by the robot, but this setback
is still bounded by the change in distance from b−i to b+i .

For the associated cycle weight problem, we define a sequence of forests
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Fk, Fk−1, . . . , F1. As before, Fk is a spanning forest of Hk and Fi is a spanning
forest of Hi containing the subgraph Fi+1

⋃
{(bi, b+i )}. It is easy to show that taking

T = F1 and S = {ei = (bi, b
−
i ) : 1 ≤ i ≤ k − 1} satisfies Lemma 4.3. Therefore we

have verified part 1.

Based on part 1, the bounds of Theorem 4.10 apply as long as the robot never
detects more than one blocked vertex on the current planned path to t. For the
second part of the proof, whenever the robot detects more than one such blocked
vertex, categorize the detected vertices as follows:

• off-path: all vertices not on the current planned (shortest presumed unblocked)
path to t.

• first-path: the nearest detected blocked vertex on the current planned path to t.
• more-path: all other detected blocked vertices on the current planned path to t.

Consider now a fictional robot whose movements have been identical to the real
one, and which until the present step has detected the same set of blocked vertices.
Now, however, our fictional robot only detects the off-path vertices and first-path
vertex. It replans the shortest presumed unblocked path to t, moves zero steps, and
then considers detecting the more-path vertices (more-path with respect to the original
plan, not the new plan). It detects all of those which are off the newly replanned path.
It can also detect one vertex on the new path, if there is one. If more than one of
these are on the new path, it recategorizes them with respect to the new path and
repeats the procedure.

This procedure must terminate, because each replan strictly decreases the number
of more-path vertices. At termination, the fictional robot has performed precisely the
same set of physical movements as has the real robot, and it has detected the same
set of blocked vertices. The fictional robot has never detected more than one blocked
vertex on its current planned path. The desired bounds therefore apply to both it
and the real robot.

5.2. Blocked edges. Another natural extension is when in addition to blocked
vertices B ⊂ V , some edges B′ ⊂ E might also be blocked. This can be reduced to
the vertex blocking case by adding a new vertex ve in the middle of every edge e ∈ E.
Blocking of e then corresponds to blocking of vertex ve in the tranformed graph. We
consider two cases.

First, assume that the robot does not expend travel cost to detect an incident
blocked edge. Then if the robot encounters a blocked edge (u, v) while going from u
to v, it can sense all other edges emanating from u to check which ones are blocked
at zero additional cost. Thus the robot will stop in at most n iterations. To bound
the travel cost, let (b−i , b

+
i ) be the edge found blocked by the robot in iteration i.

Lemma 4.1 remains true in this setting as the subpaths of Pi from vi to b−i and from
b+i to t still exist in Hi+1. For the associated cycle weight problem, Hi+1 is now
obtained from Hi by removing all edges found blocked by the robot in iteration i.
Define the sequence Fk, Fk−1, . . . , F1 by taking Fk a spanning forest of Hk and Fi

a spanning forest of Hi containing the subgraph Fi+1. Similar arguments show that
T = F1, S = {(b−i , b+i ) : 1 ≤ i ≤ k − 1} satisfies Lemma 4.3. By arguments for long-
range sensors above, the bounds in Theorem 4.10 also hold when the robot detects a
combination of blocked vertices and edges in each iteration.

Next we assume that the robot must traverse an edge in order to detect edge
blockage. In this case detecting blocked e in the original graph corresponds to trav-
eling to vertex ve in the transformed graph. However, the number of vertices in the
transformed graph is |V |+ |E| and Theorem 4.10 gives an O(|E| log |E|) upper bound
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s t

u v

Fig. 7. Lower bound example for blocked edges.

for planar graphs and O(|E| log2 |E|) upper bound for general graphs. For planar
graphs this is still O(n log n) since |E| = O(n). We next show a lower bound of
Ω(|E|) for D∗ on general graphs. Thus our bounds leave a O(log2 |E|) = O(log2 n)
gap.

Consider the graph H = ({s, t}
⋃
X

⋃
Y,E) as shown in Figure 7 where |X| =

|Y | = n
2 . Assume that all edges E′ ⊂ E between X and Y are blocked without the

knowledge of the robot. Imagine a little twist towards the end of each edge e ∈ E′,
so the robot has to travel to the twist to find out whether e is blocked. Now consider
running D∗ with start vertex s and target vertex t. As long as there exists a “presumed
unblocked” edge (x, y) ∈ E′ at the start of iteration i, the robot has a length 2 path
vi−1 − y − t or a length 4 path vi−1 − s − x − y − t available to it. Therefore the
robot will not take the length 6 path vi−1 − s− u− · · · − v− t until iteration |E′|+ 1.
In each preceding iteration, the robot will travel on edge (x, y) till the twist near y,
find it to be blocked, and then come back to x. Therefore its travel cost is at least
Ω(|E′|) = Ω(|E|) steps on H.

6. Conclusions. The popular robot-navigation method that we have analyzed
in this paper, D∗, is appealingly simple and easy to implement from a robotics point
of view and appealingly complicated to analyze from a mathematical point of view.
Our results, likewise, are satisfying in two ways. First, our tighter upper bounds
on worst-case travel distances guarantee that D∗ cannot perform badly under any
circumstances. Second, the gap between the best known lower and upper bounds
is now quite small, namely O(log log n) for planar graphs, and O(log n log log n) on
arbitrary graphs.
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