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Abstract

O�ce delivery robots have to perform many tasks such as picking up and delivering mail
or faxes, returning library books, and getting co�ee. They have to determine the order in
which to visit locations, plan paths to those locations, follow paths reliably, and avoid static
and dynamic obstacles in the process. Reliability and e�ciency are key issues in the design
of such autonomous robot systems. They must deal reliably with noisy sensors and actuators
and with incomplete knowledge of the environment. They must also act e�ciently, in real
time, to deal with dynamic situations. To achieve these objectives, we have developed a robot
architecture that is composed of four layers: obstacle avoidance, navigation, path planning, and
task planning. The layers are independent, communicating processes that are always active,
processing sensory data and status information to update their decisions and actions. A version
of our robot architecture has been in nearly daily use in our building since December 1995. As
of January 1997, the robot has traveled more than 110 kilometers (65 miles) in service of over
2500 navigation requests that were speci�ed using our World Wide Web interface.

1 Introduction

We have been working towards the goal of building autonomous robotic agents that are capable of
planning and executing high-level tasks. Our framework consists of the integration of Xavier the
robot [24, 31] with the prodigy planning system [16, 33] in a setup where users can post tasks
for which the planner generates appropriate plans, sends them to the robot, and monitors their
execution.

This o�ce delivery robot will have to move autonomously in an o�ce building reliably per-
forming o�ce tasks such as picking up and delivering mail and computer printouts, returning and
picking up library books, and carrying recycling cans to the appropriate containers.

To carry out such tasks, the robots must determine the order in which to visit o�ces, plan
paths to those o�ces, follow paths reliably, and avoid static and dynamic obstacles while travelling.
Several issues arise for such autonomous o�ce delivery robots, the main ones being how to perform
the tasks reliably and e�ciently in the face of uncertainty and incomplete information. Moreover,
the robots have to act in real-time to cope with a dynamic environment, such as moving people
and changing delivery requests.
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While many techniques exist for handling various parts of the delivery problem, comparatively
little work has been done on building complete robot architectures. Only complete architectures,
however, allow researchers to study interactions between the layers. Our architecture is based on
layers of increasing abstraction. Upper layers in the architecture provide guidance to lower layers,
while lower layers handle details that the upper layers have abstracted away. We show that each
individual layer provides reliable and e�cient behaviour, and argue that the overall architecture
achieves synergistic e�ects by suitably partitioning system functionality.

A version of our robot architecture has been in almost daily use in our building since December
1995. As of January 1997, the robot has served over 2500 navigation requests, travelling a total of
more than 110 kilometers (65 miles). These experiments demonstrate that our robot architecture
leads to fast and reliable navigation. The robot can travel at speeds of up to 60 centimeters per
second in peopled environments. Its planning time is negligible and its task completion rate is
now about 95 percent. The robot's travel speed is currently limited only by the cycle time of its
sonar sensors, while tasks fail mainly because of problems with the wireless network at CMU|both
problems are unrelated to the robot architecture.

Xavier, the robot used in these experiments [22, 24], is built on top of a 24 inch diameter RWI
B24 base, which is a four-wheeled synchro-drive mechanism that allows for independent control of
the translational and rotational velocities (Figure 1).

The sensors on Xavier include bump panels, wheel encoders, a sonar ring with 24 ultrasonic
sensors, a Nomadics front-pointing laser light striper with a 30 degree �eld of view, and a color

Figure 1: Xavier
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camera on a pan-tilt head. The odometer, the sonars and the laser are the primary sensors during
navigation, while vision is used for �nal �ne-positioning and location veri�cation at the destination,
and the bump panels enable to prevent harm in emergencies. Control, perception, and planning
are carried out on three on-board 486 computers. The computers are connected to each other via
thin-wire Ethernet and to the outside world (for communicating with the User Interface) via a
Wavelan wireless Ethernet system [17].

Section 2 presents an overview of our architecture and a scenario that illustrates how the
various parts of the architecture work. Sections 3 and 4 discuss each layer in detail, including its
functionality and its interface to the other layers. Section 5 presents the related work, and Section 6
discusses issues of user interaction with the robot. The paper concludes with performance data on
the overall architecture and presents some of the lessons learned.

2 Overview of the Robot Architecture
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Figure 2: The Robot Architecture

Our robot architecture (Figure 2) consists of four layers: obstacle avoidance, navigation, path
planning, and task planning. The layers are implemented as separate code modules (processes).

The robot architecture is implemented as a
number of asynchronous processes, distributed
over the three on-board computers and an o�-
board computer permanently running the web-
server providing the user interface. The pro-
cesses are integrated using the Task Control
Architecture (TCA) [29]. TCA provides mes-
sage passing facilities and facilities to sup-
port task decomposition, task sequencing, ex-
ecution monitoring, and exception handling.

Other parts of the architecture include real-time servo
control, an interprocess-communication package, and a
user interface. The servo control package is provided
with the commercially available hardware (robot base and
pan-tilt head). Interprocess communication and synchro-
nization is provided by our Task Control Architecture
(TCA) [29]. TCA is a general-purpose framework for
task-level control, by which we mean the coordination of
planning, sensing and execution. It provides facilities for
interprocess communication (message passing), coordina-

tion, and synchronization of the distributed, concurrent modules. Other modules use these facil-
ities to indicate when subtasks should be active and how they should be monitored to determine
whether they succeed or fail. The user interface uses the World Wide Web. It allows users to
specify requests and monitor robot progress.
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While this division of functionality is certainly not novel, each module o�ers novel approaches
with solid theoretical foundations. Obstacle avoidance is performed by our Curvature-Velocity
Method (CVM) [30]. Navigation is done using Partially Observable Markov Decision Process
models [32]. Path Planning uses our decision-theoretic generate, evaluate and re�ne strategy that
is based on ideas from sensitivity analysis [15]. Task planning is performed using the planning
system prodigy [16]. We illustrate the layers of our navigation architecture using a typical delivery
scenario.

The user interface module allows users, such as secretaries, to enter delivery requests (includ-
ing desired delivery times and priorities). It also provides a means for monitoring the progress of
the robot, such as its current position and delivery request being carried out. Assume that there
is one delivery request pending, a delivery from A to B (Figure 3), when another user enters a new
delivery request: to carry a print-out from C to D.

D

CA

B Robot

Figure 3: A Navigation Scenario. What order should the robot visit the four locations?

The task planning module integrates the new asynchronous request into the current plan,
prioritizing tasks and opportunistically achieving compatible tasks. It has to determine, among
other things, the order in which to interleave the actions required for each task. In this example,
it needs to determine the order in which to visit the four locations. Possible orders are ABCD,
ACBD, ACDB, CABD, CADB, and CDAB. It consults with the path planner to determine the
expected travel time between any two locations. Based on this information, it selects the route
CABD.

The path planning module determines how to travel e�ciently from one location to another.
Actuator and sensor uncertainty complicates path planning since the robot may not be able to
follow a path accurately, and the shortest distance path is not necessarily the fastest. Consider,
for example, the two paths from A to B shown in Figure 4.

Although Path 1 is shorter than Path 2, the robot could miss the �rst turn on Path 1 and
have to backtrack. This problem cannot occur on the other path since the end of the corridor
prevents the robot from missing the turn. The longer path might take less time on average. The
path planner uses a decision-theoretic approach to choose plans with high expected utility and uses
sensitivity analysis to determine which alternatives to consider.

The navigation module generally follows the path suggested by the path planner. It may
deviate from the desired path since it, too, has to deal with sensor and actuator uncertainty. For
example, if the path planner chooses Path 1 from A to B, and the robot indeed overshoots the turn,
then it could mistake the dead-end corridor for the correct corridor. When it reaches the end of
the dead-end and discovers its mistake, it issues corrective actions that turn the robot around and
let it make progress toward the goal. Our navigation module uses a Partially Observable Markov
Decision Process model to maintain a probability distribution of where the robot is at all times,
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Figure 4: Two Paths from A to B. Path 1 is shorter, but the robot might miss the turn and get lost in the
dead-end.

choosing actions based on that distribution.
The obstacle avoidance module keeps the robot moving in the desired direction, while avoid-

ing static and dynamic obstacles (such as tables, trash cans, and people). It provides high-speed,
safe motion by taking the robot's dynamics into account and by optimizing, in real time, an objec-
tive function that combines safety, speed and progress along the desired heading.

To a large extent, the architecture achieves reliability and e�ciency by using reliable and
e�cient component modules. Reliability and e�ciency are also achieved through the interaction
of the layers: each layer works with more abstract representations of the data from lower levels
(Figure 5).

� Higher layers can \guide" the lower layers into regions of the environment where safe and
e�cient navigation can take place. For instance, the path planning module takes the prob-
ability of execution failure into account when planning paths|keeping the robot away from

(local obstacle map)
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User Interface

Hardware raw sonar data raw odometer data motor commands

current heading

next goal location

environment sensors
virtual virtual

movement sensor desired heading
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Figure 5: Flow of Information
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areas where it may have di�culty navigating.
� Lower layers can take care of details abstracted out by higher layers. For example, while the
navigation layer speci�es headings for the robot to follow, the obstacle avoidance layer can
steer the robot in a di�erent direction, if needed to avoid local obstacles.

� Lower layers propagate failures up to higher layers when they �nd that they cannot handle
certain exceptional situations. For example, the obstacle avoidance module can indicate when
it thinks it is stuck in a local minimum. By \failing cognizantly" [14], the lower layers can
provide information that enables higher layers to determine how to handle the situation.

The next two sections describe the layers of our architecture in more detail. They also describe
the interfaces between the layers and present the data abstractions used for the tasks they perform.

3 Low Level Layers: Obstacle Avoidance and Navigation

3.1 Obstacle Avoidance

Above all else, the robot must travel safely to protect itself and the people with which it shares the
environment. In addition, we desire fast (walking speed) travel, both to make the robot useful as a
delivery agent and to make it a more socially acceptable \in-
habitant" of our building.

The input to the obstacle avoidance module is either
a desired heading or a goal point. The obstacle avoidance
module tries to either maintain this heading or head towards
the goal point, while avoiding collisions. Without an explicit
goal, the robot wanders while avoiding obstacles. If it gets
stuck, the obstacle avoidance module will signal the other
modules with a description of the problem encountered.

The obstacle avoidance layer avoids static and
dynamic obstacles, while it moves in the direc-
tion provided by the navigation layer. It uses
our Curvature Velocity Method [30] to opti-
mize, in real time, an objective function that
combines safety, speed, and progress along the
desired heading. This way it provides high-
speed, safe motion that takes the dynamics of
the robot into account.

Previous obstacle avoidance schemes [2, 5] neglected dynamics by assuming the robot could
turn instantaneously, more recent schemes enable high speed travel by taking current velocities
and feasible accelerations into account. For example, the "dynamic window" approach [13] takes
robot dynamics into account by operating in velocity space, and chooses robot velocities by trying
to optimize an evaluation function. Our curvature-velocity method (CVM) [30], which is very
similar to this method, was developed somewhat later, but independently. CVM poses the obstacle
avoidance problem as one of constrained optimization in the velocity space of the robot. The
objective function contains terms for safety (distance to the nearest obstacle), speed, and progress
(heading in the desired goal direction). By adjusting the coe�cients of the objective function, we
can easily enable the robot to trade o� e�ciency for reliability in its travels. Figure 6 illustrates
how the robot travels in our corridors (the desired heading is to the right|the robot travels down
until it �nds an opening, and then travels in the desired heading).

3.2 Navigation

The role of the navigation module is to direct the robot to a given goal location. The path planner
sends, through TCA, a desired path for the robot to follow. The navigation module then estimates
the robot's current location, calculates the desired heading for that location, and then speci�es
that heading to the obstacle avoidance module.

The module must work reliably in spite of noisy sensors and actuators (\dead-reckoning uncer-
tainty") as well as incomplete knowledge of the environment (such as uncertainty about the exact
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Figure 6: Local Obstacle Avoidance at 60 cm/sec

lengths of corridors). Its performance directly a�ects the task completion rate and the number of
times the robot \gets lost." It can also negatively in
uence the robot's travel speed if the navigation
module runs too slowly.

3.2.1 Estimating Position

In order to avoid getting completely lost, our navigation module maintains a probability distribution
over the current pose (position and orientation) of the robot. Figure 7 shows two possible probability
distributions of the robot, where the size of the circle is proportional to the probability that the
robot is in that corridor.

Given new sensor information about the environment or how the robot has moved, plus the
current distribution over all possible poses, the navigation module uses Bayes' rule to update the

The navigation module follows the path
generated by the path planner. It main-
tains estimates of the robot's current lo-
cation and orientation using a POMDP,
and then selects a desired heading that will
follow the path. It gracefully recovers from
noisy sensors and actuator uncertainty.

pose distribution. The updated probabilities are based on
probabilistic models of the actuators, sensors, and the envi-
ronment.

This information, together with a prepared topological
map, is automatically compiled into a Partially Observable
Markov Decision Process (POMDP). The POMDP produced
by our system discretizes the pose of the robot: orientation

is discretized into the four compass directions (relying on the rectilinear nature of most build-
ings) and location is discretized with a precision of one meter. There is a trade-o�: a coarse
discretization leads to smaller memory and runtime requirements, but at reduced precision. For
instance, Nourbakhsh [23] uses a similar model, but represents each corridor segment as a sin-
gle Markov node. Figure 8 shows the Markov state representation and the representation of the
actuator transitions between states and robot orientations.

Discretizing the pose allows us to abstract the raw sensor data. The raw, odometer data is
discretized into virtual movement reports (e.g., \moved forward one meter" or \turned left ninety
degrees"). The virtual movements abstract away low level control aspects, such as circumnavigating
obstacles, by reporting the straight-line distance in the desired heading. Similarly, an evidence grid
(obstacle maps centered on the robot), which integrates raw sonar data over time [20], is used
to derive virtual sensors that report on the environment. For example, we model three sensors
(a front, left, and right sensor) that report features such as walls and openings of various sizes
(small, medium, and large). These abstract virtual sensor reports are less noisy and more closely
approximate the probabilistic independence assumptions needed by Bayes' rule since several related
raw sensors can be combined into one virtual sensor.
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Figure 7: Two possible probability distributions (larger circles indicate higher probability). In each, the robot is
shown in the most likely location.

3.2.2 Calculating Desired Headings

The navigation module takes the path produced by the path planning module and converts it to
a mapping from pose distributions to desired headings. During navigation, the navigation module
can then quickly determine the desired heading by indexing this mapping with the current pose
distribution. Thus, it is very reactive to unexpected sensor reports and can gracefully recover from
sensor noise and misjudgements about landmarks. For example, even if the robot strays from the
desired path, it will automatically execute corrective actions once it realizes its mistake.

Assume, for instance, that the robot takes Path 1 in Figure 4, but misses the �rst turn and
turns into the dead-end instead. Initially, most of the probability mass is in the corridor, since
the robot believes that it made the correct turn. However, when it reaches the end of the dead-
end, the sensor readings will make the probability mass shift to the correct position. The desired
heading within the dead-end is South, so the robot turns, heads out of the dead-end, and then

The four Markov states that
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Figure 8: POMDP state representation.
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turns right back onto the desired path. Note that this behavior is not triggered by any explicit
exception handling mechanism, but results automatically from the way the pose estimation and
heading selection interact.

4 High Level Layers: Path Planning and Task Planning

4.1 Path Planning

The task of the path planner is to take a pair of locations and create a policy that can be used by
the navigation module to guide the robot. It also provides the task scheduler with estimated travel
times between locations. By taking into account that some paths can be followed more easily than

others, the planner can choose a path that steers the robot
away from regions of the building where navigation is di�-
cult.
Our planner generates a path to the goal location and then

the navigation module uses that path to seed a policy for
navigating the robot to the desired location, allowing it to

The path planner determines how to travel ef-
�ciently from one location to another. Using a
modi�ed A* search, it takes into account prob-
abilities that corridors may be blocked, and the
recovery cost of missing turns, yet still iden-
ti�es the best path quickly [15].

select the path e�ciently.
The planner uses a generate, evaluate and re�ne strategy to e�ciently �nd the path with the

lease expected travel time, taking into account the di�culty of traversing each region, the possibility
of missing turns, and the possibility of encountering closed doors or blockages in corridors. Paths
are generated incrementally using a modi�ed A* search algorithm that creates a sequence of paths
from shortest to longest. As each path is generated, it is evaluated using a forward projection to
determine the expected travel time, assuming that all doors are open and no corridors are blocked.
The projection takes into account the possibility of missed turns, such as the second turn of Path 1
in Figure 9 since it occurs in the middle of a corridor.

path 2

path 1

Robot

Goal

Figure 9: The expected travel time for path 2 is the same as the distance of path 2 divided by the speed of
the robot, while the expected travel time for path 1 includes the possibility of missing the turn. The planner can
conclude that it has the best path, without exploring any more alternatives.

In cases where a path can be blocked by a closed door, upper and lower bounds are calculated
on the travel time needed to recover from encountering a closed door. In order to �nd the best
path, the planner re�nes its plan by generating more paths and planning for contingencies, like
closed doors, until the planner can prove that it has found a path with the least expected travel
time. For example, in �gure 9, the expected time to traverse path 2 is the same as the distance
divided by the speed of the robot, while the expected time to traverse path 1 includes a recovery
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Figure 10: Trading o� path length for
the ability to follow a path. The robot
can miss the turn in the middle of the
lower corridor.

Figure 11: Taking the probability of
blockages into account. The door on
Path 1 is closed with a 50% probability.

Best Path

Shortest Path

Goal

Door

Robot

Key

cost for missing the turn. As a result, the planner can conclude that path 2 has the lowest expected
travel time.

The use of expected travel time allows the planner to e�ectively trade o� travel distance for the
ease of traversing a route. Figures 10 and 11 illustrate two of these tradeo�s. In the �rst example,
the planner selects a slightly longer path, with turns only at the ends or corridors since these turns
are harder to miss. In the second example, the planner selects a longer route because the shortest
route passes through a door with a 50% probability of being closed.

4.2 Task Planning

Delivery requests may come from the users at any
time. The task planner must consider how each task
will a�ect the others in the queue, and then �nd an
interleaving of the requests which maximizes the sat-
isfaction of all users. The simple approach to han-
dle tasks in a �rst-come, �rst-served manner leads
to ine�ciencies and lost opportunities for combined
execution of compatible tasks. In addition, the task
planner must also know when actions fail and replan
to achieve them since the robot operates in a dynamic
world that is not completely known. The task planner
e�ectively handles the multiple asynchronous goals

The task planner creates plans for user requests [16].
It relies on prodigy, a classical planning system [33].
The task planner can

� easily integrate asynchronous requests,
� prioritize goals,
� easily suspend and reactivate tasks,
� recognize compatible tasks and opportunistically
achieve them,

� execute actions in the real world, integrating
new knowledge which may help planning, and

� monitor and recover from failure.

and also monitors the execution of plans, compensating for failures.
The task planning module is based on prodigy4.0 [33]. Prodigy is a domain-independent

nonlinear problem solver that uses means-ends analysis and backward chaining to reason about mul-
tiple goals and multiple alternatives of achieving them. It has been extended to support real-world
execution of its symbolic actions. The planning cycle involves several decision points, including
which goal to select from the set of pending goals, and which applicable action to execute. Dy-
namic goal selection from the set of pending goals enables the planner to interleave tasks, exploiting
common subgoals and addressing issues of resource contention.

When a new task request arrives, prodigy creates a new top-level goal and starts planning to
achieve it. Prodigy uses its domain knowledge to create a series of actions that will achieve the
goal. Usually, the task planner will be in the middle of executing another task. prodigy must
process incoming requests and interleave them appropriately with existing tasks. It prioritizes the
tasks and identi�es when di�erent requests can be combined and achieved opportunistically. It is
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robot-in-room r-5313

has-item mitchell delivermail

robot-has-item mitchell delivermail robot-in-room r-5313

robot-in-room r-5303 robot-in-room r-5311

robot-has-item jhm deliverfax

has-item jhm deliverfax

*finish*

goto-pickup-loc r-5303

acquire-item r-5303 mitchell delivermail

deliver-item r-5313  delivermail

goto-deliver-loc r-5313

deliver-item r-5313  deliverfax

acquire-item r-5311 jhm deliverfax

goto-pickup-loc r-5311

Figure 12: Search Tree for two task problem; goal nodes in ovals, required actions in rectangles.

also able to temporarily suspend lower priority tasks, resuming them when appropriate.
The plan tree shown in Figure 12 shows how prodigy expands the two goals (has-item

mitchell delivermail) and (has-item jhm deliverfax).
To �nd a good execution order of these actions, the planner selects the one that minimizes

the expected total traveled distance from the current location. Actions that opportunistically
achieve goals of other tasks are not repeated, e.g. both <goto-deliver-loc jhm r-5313> and
<goto-deliver-loc mitchell r-5313> achieve the same goal, namely (robot-in-room r-5313),
so therefore only one of the actions will be executed. Figure 13 shows one possible execution se-
quence.

Figure 14 shows a trace of the interaction between the planner and the robot for a simple
four-step plan. Each time prodigy selects an action for execution, the task planner maps it into a
sequence of actions supported by the lower layers, most commonly navigation, but also including
vision and speech (which are not described in this paper). Each line marked SENDING COMMAND

indicates a command sent through the TCA interface to one of Xavier's other modules. Each of
these commands is supported by one of the lower layers in the architecture, and is treated as an
atomic action by prodigy. By abstracting away the details of how each request is achieved (e.g.
which path the robot takes to a speci�ed goal location), the task planner can more fully address
issues arising from multiple interacting tasks, such as e�ciency, resource contention, and reliability.

Solution:

<goto-pickup-loc mitchell r-5303>

[arrival of second request]

<acquire-item r-5303 mitchell delivermail>

<goto-pickup-loc jhm r-5311>

<acquire-item r-5311 jhm deliverfax>

<goto-deliver-loc mitchell r-5313>

<deliver-item r-5313 jhm deliverfax>

<deliver-item r-5313 mitchell delivermail>

Figure 13: One possible Execution Sequence
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<GOTO-PICKUP-LOC MITCHELL R-5303>

SENDING COMMAND (TCAEXPANDGOAL "navigateToG" #(TCA::MAPLOCDATA 567.0d0 2316.5d0))

...waiting...

Action NAVIGATE-TO-GOAL-ACHIEVED finished.

Verifying Location: R-5303

SENDING COMMAND (TCAEXECUTECOMMAND "verifyLocation" 5303)

LOCATION-VERIFIED R-5303

<ACQUIRE-ITEM R-5303 MITCHELL DELIVERMAIL>

SENDING COMMAND (TCAEXECUTECOMMAND "C say" "Please place Tom Mitchell's mail on my tray.")

SENDING COMMAND (TCAEXECUTECOMMAND "C say" "Please indicate on my keyboard when you are finished.")

Are you finished placing Tom Mitchell's mail on my tray? (y/i(mpossible)): y

COMPLETED-ACTION (ACQUIRE-ITEM 1 "Tom Mitchell's mail")

<GOTO-DELIVER-LOC MITCHELL R-5313>

SENDING COMMAND (TCAEXPANDGOAL "navigateToG" #(TCA::MAPLOCDATA 567.0d0 4115.0d0))

...waiting...

Action NAVIGATE-TO-GOAL-ACHIEVED finished.

Verifying Location: R-5313

SENDING COMMAND (TCAEXECUTECOMMAND "verifyLocation" 5313)

LOCATION-VERIFIED R-5313

<DELIVER-ITEM R-5313 MITCHELL DELIVERMAIL>

SENDING COMMAND (TCAEXECUTECOMMAND "C say" "Please take Tom Mitchell's mail from my tray.")

SENDING COMMAND (TCAEXECUTECOMMAND "C say" "Please indicate on my keyboard when you are finished.")

Are you finished taking Tom Mitchell's mail from my tray? (y/i(mpossible)): y

COMPLETED-ACTION (DELIVER-ITEM 1 "Tom Mitchell's mail")

Figure 14: Planner/Robot Interaction. Blue indicates planner actions. Green indicates user-interaction.

4.2.1 Monitoring Execution

In any real-world domain, the outcome of executed actions is not guaranteed. The domain model
underlying the plan is bound to be incompletely or incorrectly speci�ed. Not only is the world
more complex than a model, but it is also constantly changing in ways that cannot be predicted.
Therefore any agent executing in the real world must have the ability to monitor the execution of
its actions, detect when the actions fail, and compensate for these problems.

In our domain, the navigation module operates using probabilistic information, and therefore
occasionally may get confused and report a success even in a failure situation. Thus, the planner
always veri�es the location with a more computationally expensive secondary test, namely vision or
human interaction. (Note that after each navigateToG command in Figure 14, the planner veri�es
the outcome of the action.)

Since prodigy's planning algorithm is state-based, it examines the current state before making
each planning decision. If the preconditions for a given desirable action are not true, prodigy must
create subgoals to achieve them. Therefore, when an action fails, the actual outcome of the action
is not the same as the expected outcome, and prodigy will attempt to �nd another solution. If, in
Figure 14, the veri�cation step had failed, the planner would, and select a new action to achieve
its goals|in this case, it would re-execute the navigateToG command.

In a similar manner, prodigy is able to detect when an action is no longer necessary. If an
action unexpectedly achieves some other necessary part of the plan, then that knowledge is added to
the state information. Any actions that require that precondition will no longer require subgoaling
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to achieve it. Also, when an action accidentally disachieves the e�ect of a previous action (and the
change is detectable), the planner deletes the relevant precondition and prodigy will be forced to
create a new subgoal to reachieve it.

In this manner, the task planner is able to detect simple execution failures and compensate for
them. By interleaving planning and execution, the planner can acquire additional domain knowl-
edge to make more informed planning decisions. For example, it can prune alternative outcomes of
a non-deterministic action, notice external events (e.g. doors opening or closing), monitor limited
resources (e.g. battery level), and notice failures. As a result, the information lost by abstraction
can be reconstructed when unexpected (infrequent) situations arise. The interleaving of planning
and execution reduces the need for replanning during the execution phase and increases the like-
lihood of overall plan success. It allows the system to adapt to a changing environment where
failures can occur.

5 Related Work

Consensus is building in the mobile robotics community on the advantages of a layered architec-
ture, consisting of behaviors, task-sequencing, and planning|the range of architectures adopting
variants of this approach grows rapidly, including AURA [3], Rhino [7], SSS [10], ATLANTIS [14],
RAPs [12, 19], Python [25] and SAPHIRA [28]. Generally such hybrid architectures combine
low-level reactive control mechanisms with one or more deliberative layers. Our robot delivery ar-
chitecture is consistent with such approaches, but takes an orthogonal cut at the decomposition|by
task function rather than by architectural capability. In particular, the obstacle avoidance layer is
essentially behavioral, the navigation layer contains behavioral and task-sequencing aspects, and
both the path planning and task scheduling layers combine planning and task sequencing.

In character, our architecture has many similarities to behavior-based approaches advocated in
the literature [6, 9, 18]. Lower layers are always running, even when higher layers are inactive, or
not present. For instance, the obstacle avoidance module can keep the robot wandering safely, even
without any \desired heading" input from the navigation module. In addition, lower layers are free
(within some bounds) to ignore the input received by higher layers, essentially treating higher level
plans and commands as \advice" [1]. For example, the local obstacle avoidance module can ignore
the current desired heading to steer the robot around obstacles.

The architecture di�ers from traditional behavior-based approaches in that it makes heavy use
of models and internal representations. This actually has the e�ect of improving e�ciency and
reliability, since the representations explicitly model the capabilities and limitations of the robot,
and take uncertainty and incomplete information into account. By combining prior information
(models) with current percepts, the robot is able to maintain representations that best re
ect its
current belief in the state of the world, given that it receives noisy, and often incorrect, sensor
information.

Shakey the robot [21] was the �rst system to use a planning system on a robot. However, the
underlying architecture was not as reliable as in Xavier, and therefore it operated in a very simple
near-static world. The range of failures that could occur were very limited, and goals were not very
challenging. There was little need for complex high-level reasoning. More recent work on putting
planning systems on robots include CIRCA [4] Flakey [8], Dervish [23] and NRMA [26]. These
systems all demonstrate the need for reliable, modular components where planning and forethought
increase reliability and e�ciency.

The deployment of Xavier is perhaps the most unique aspect of the our system. There are
typically two types of interactions with robot agents. In the most traditional, exempli�ed by
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Figure 15: The World Wide Web Interface. The page to control the robot.

systems such as HelpMate [11] and other service robots [27], authorized users interact on a one to
one basis with the agent. More recently, as \net robots" such as the USC Robotic Tele-Excavation,
Chicago's Labcam are made available, a larger audience can control the agent. In these systems,
the robots are teleoperated agents, with each command a low level control mechanism, monitored
to prevent harm to the agent and to the enviroment. Xavier represents the �rst bridge between such
extremes. Xavier is an autonomous agent, not simply a teleoperated robot. User requests are tasks
to be performed, the actual decisions as to when and how are decided by the task scheduler and the
other layers of the architecture|in one stroke both the need for teleoperation and for authorized
users are removed. Operating autonomously, Xavier carries out tasks in an uncontrolled, inhabited
o�ce building|not interfering with, being dissuaded by, or worst of all harming the the people it
encounters during task execution. Xavier operates remotely, communicating over a wireless link.
Thus it may not be accessible at all times, and needs to be capable of operating without external
intervention.

6 Results and Conclusions

The version of our robot architecture described in this paper has been in almost daily use since
December 1995, mainly controlled by ourWorld Wide Web interface, at http://www.cs.cmu.edu/-
�Xavier, and shown in Figures 15 and 16.

In the period from December 1, 1995 through January 31, 1997 (Table 1), Xavier received
nearly 11,000 job requests. It attempted 2603 separate tasks (simultaneous requests to the same
location were attempted together, and count as only one task), and reached its intended destination
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Figure 16: The World Wide Web Intercace. The page to monitor the robot.

Month Days in Use Jobs Attempted Jobs Completed Completion Rate Distance Traveled (approx.)
December 1995 13 262 250 95% 7.65 km
January 1996 16 344 310 90% 11.37 km
February 1996 15 245 229 93% 11.55 km
March 1996 13 209 194 93% 10.06 km
April 1996 18 319 304 95% 14.11 km
May 1996 12 192 180 94% 7.90 km
June 1996 7 179 170 95% 8.24 km
July 1996 7 122 121 99% 5.42 km
September 1996 15 178 165 93% 8.16 km
October 1996 31 168 151 90% 7.78 km
November 1996 29 228 219 96% 10.48 km
December 1996 29 172 167 97% 8.83 km
January 1997 31 157 154 98% 7.53 km
Total 327 2,603 2,447 94% 110.25 km

Table 1: Performance Data for World Wide Web Tasks

in 2447 cases (94%). Each job required Xavier to move 42 meters (38 yards) on average for a total
travel distance of over 110 kilometers (65 miles). The success rate is slowly climbing (from 90%
to about 95%) as we �nd and correct bugs and re�ne the individual modules (December 1995
was an anomaly, since tasks in that �rst month were largely con�ned to a single corridor of the
building). Many of the remaining failures are attributable to problems with our hardware (boards
shaking loose) and the wireless communication|while the robot system itself runs on-board, the
user interface (which includes the statistics-gathering software) operates o�-board, connected by a
wireless radio link.

More important than the raw data, our extensive experience with this architecture|both in de-
velopment and in use|have taught us some valuable lessons about the construction of autonomous
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mobile robot systems:

� It is important to have solid components.
� Layering increases reliability.
� A modular architecture is easy to re�ne.
� Users want feedback.

More discussion on these points can be found elsewhere [31].
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Figure 17: Navigate Window (Xavier's beliefs about the world)
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Figure 18: Xavier's World (as shown in the robot simulator)
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Figure 19: Controller Window, showing sonar readings
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Figure 20: Camera Image shown in Figure 15.
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