
Position Paper: Incremental Search Algorithms Considered Poorly Understood

Carlos Hernández∗

Depto. de Ingenierı́a Informática

Universidad Católica de la Ssma. Concepción

Caupolican 491, Concepción, Chile

chernan@ucsc.cl

Jorge Baier
Computer Science Department

Pontificia Universidad Católica de Chile

Santiago, Chile

jabaier@ing.puc.cl

Tansel Uras and Sven Koenig
Computer Science Department

University of Southern California

Los Angeles, CA 90089, USA

{turas,skoenig}@usc.edu

Abstract
Incremental search algorithms, such as D* Lite, reuse in-
formation from previous searches to speed up the current
search and can thus solve sequences of similar search prob-
lems faster than Repeated A*, which performs repeated A*
searches. In this position paper, we study goal-directed nav-
igation in initially unknown terrain and point out that it is
currently not well understood when D* Lite runs faster than
Repeated A*. In general, it appears that Repeated A* runs
faster than D* Lite for easy navigation problems (where the
agent reaches the goal with only a small number of searches),
which means that it runs faster than D* Lite quite often in
practice. We draw two conclusions, namely that incremen-
tal search algorithms need to be evaluated in more diverse
testbeds to improve our understanding of their properties and
that they can be improved to be more competitive for easy
navigation problems.

We study goal-directed navigation with the freespace as-
sumption in initially unknown terrain, as needed in robotics
and video games. The terrain is discretized into a grid of
known dimensions. The agent does not know initially which
cells are blocked but always observes the blockage status
of the neighboring cells of its current cell and adds them
to its map. It can then move to any unblocked neighbor-
ing cell. In this paper, the agent moves to a goal cell with
given coordinates using the following navigation strategy: It
finds a shortest (unblocked) path from its current cell to the
goal cell. If such a path does not exist, it stops unsuccess-
fully. Otherwise, it follows the path until it either reaches the
goal cell, in which case it stops successfully, or observes the
path to be blocked, in which case it repeats the process. The
agent thus needs to solve a sequence of similar search prob-
lems fast. Incremental search algorithms, such as D* Lite
(Koenig and Likhachev 2005), reuse information from pre-
vious searches to speed up the current search. We claim that
it is currently not well understood when D* Lite runs faster
than Repeated Forward A*.1 For example, it appears that Re-
peated Forward A* runs faster than D* Lite in many cases,

∗Our research was supported by NSF, ARO and ONR grants
to Sven Koenig (while he served at NSF) and a Fondecyt grant to
Jorge Baier.
Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Repeated Forward A* performs repeated A* searches from the
current cell of the agent to the goal cell and typically expands fewer
cells than Repeated Backward A* during the first searches and thus

typically for easy navigation problems where the agent ob-
serves its path to be blocked only a small number of times
and thus performs only a small number of searches before
it reaches the goal cell (or discovers that this is impossi-
ble). Examples are gridworlds where the start and goal cells
are close to each other or where the h-values are not mis-
leading (including where only a small number of cells are
blocked). The reason appears to be the following: D* Lite
has the advantage that it typically expands fewer cells than
Repeated Backward A* after the first search since it reuses
information from previous searches. However, D* Lite has
the disadvantage that Repeated Backward A* typically ex-
pands more cells during the first searches than Repeated For-
ward A* during the first searches. D* Lite also expands cells
more slowly than Repeated (Forward or Backward) A*. This
means that the first search of D* Lite typically runs more
slowly than the first search of Repeated Forward A*, an ef-
fect that becomes the more pronounced the further apart the
start and goal cells are. If the number of subsequent searches
needed for the agent to reach the goal cell is small then typ-
ically D* Lite runs more slowly than Repeated Forward A*.

Case Study: Random Grids To support our claims, we
generate four-neighbor random grids of size 1024 × 1024
with 8, 16, 24, 32 and 40 percent blocked cells. For each
percentage of blocked cells, we generate 1000 grids with
randomly blocked cells and randomly chosen start and goal
cells from all unblocked cells, different from many previous
evaluations that used fixed start and goal cells (for example,
in diagonally opposite corners of the grids). The h-values are
the Manhattan distances. We ensure that Repeated Forward
A* and D* Lite follow the same trajectory, different from
many previous evaluations. We report the average length of

runs faster, see (Koenig and Likhachev 2005) for an explanation.
We use a version of Repeated Forward A* that finds a shortest path
whenever the agent observes a blocked cell on its path (as most
evaluations do), different from the previous evaluation in (Koenig
and Likhachev 2005) where it finds a shortest path whenever the
agent observes any blocked cell. D* Lite is a version of Repeated
Backward A* that reuses information from previous searches. We
use a version of D* Lite that breaks ties among cells with the same
f-value in favor of smaller g-values since it typically runs faster
than a version of D* Lite that breaks ties in the opposite direction
because it a) expands more cells during the first search but fewer
cells during subsequent searches and b) expands cells faster since
its f-values are pairs rather than triples.



Blocked Length Searches Algorithm Expansions Runtime (ms) Faster

8% 725.8 58.7
Rep. Forw. A* 25,235 6.76 95.4%

D* Lite 113,368 24.93 4.6%

16% 812.3 128.2
Rep. Forw. A* 52,527 13.47 86.9%

D* Lite 113,387 26.37 13.1%

24% 996.1 225.8
Rep. Forw. A* 89,792 22.35 77.4%

D* Lite 114,957 28.81 22.6%

32% 1562.3 429.2
Rep. Forw. A* 170,626 41.52 53.4%

D* Lite 123,482 36.07 46.6%

40% 13880.3 3671.0
Rep. Forw. A* 21,885,533 4,195.11 3.4%

D* Lite 299,762 172.95 96.6%

Total 3595.4 902.6
Rep. Forw. A* 4,444,743 855.85 63.3%

D* Lite 152,991 57.82 36.7%

Table 1: Results for Random Four-Neighbor Grids

Blocked Length Searches Algorithm Expansions Runtime (ms) Faster

10% 569.8 48.0
Rep. Forw. A* 14,725 4.23 91.6%

D* Lite 45,753 13.41 8.4%

20% 596.2 98.2
Rep. Forw. A* 29,494 8.28 84.5%

D* Lite 47,334 15.01 15.5%

30% 644.7 155.8
Rep. Forw. A* 46,483 13.05 76.5%

D* Lite 49,409 16.89 23.5%

40% 740.5 233.1
Rep. Forw. A* 69,382 19.53 67.5%

D* Lite 51,531 19.93 32.5%

50% 1142.3 421.4
Rep. Forw. A* 126,509 35.75 54.8%

D* Lite 61,209 30.10 45.2%

Total 738.7 191.3
Rep. Forw. A* 57,319 16.17 75.0%

D* Lite 51,047 19.07 25.0%

Table 2: Results for Random Eight-Neighbor Grids

the trajectory, the average number of searches performed,
the average number of cells expanded and the runtime until
the agent reaches the goal cell and the percentage of naviga-
tion problems for which the search algorithm runs faster than
its competitor. Table 1 shows that the average runtime of
Repeated Forward A* over all navigation problems is larger
than the one of D* Lite. Yet, perhaps surprisingly, Repeated
Forward A* runs faster than D* Lite on the majority of nav-
igation problems with 9, 16, 24 and 32 percent blocked cells
and on the majority of all navigation problems. Most re-
search evaluates D* Lite only on four-neighbor grids, with
only few exceptions such as (Koenig and Likhachev 2005).
However, we now show that it makes sense to evaluate it
on eight-neighbor grids as well. We generate eight-neighbor
random grids of size 1024 × 1024 with 10, 20, 30, 40 and
50 percent blocked cells and proceed otherwise as before.
Table 2 shows, perhaps surprisingly, that the average run-
time of Repeated Forward A* over all navigation problems
is now smaller than the one of D* Lite (which is likely due
to the fact that navigation problems on eight-neighbor grids
are easier than those on four-neighbor grids with the same
percentage of blocked cells), which supports our claim that
one needs use more diverse testbeds to evaluate incremental
search algorithms.

Case Study: Game Maps, Office Maps and Mazes Nav-
igation problems on random grids get harder as the percent-

age of blocked cells increases. It is not immediately obvious
how to characterize the hardness of navigation problems on
other kinds of grids. We use the general solution to clas-
sify navigation problems as easy iff the runtime of Repeated
Forward A* is small. Consequently, we group navigation
problems into buckets according to the runtime of Repeated
Forward A* so that each bucket contains the same number
of navigation problems. We compare eight-neighbor game
maps, office maps and mazes, obtained from Nathan Sturte-
vant’s repository movingai.com. We omit all details due to
space constraints but the results are similar to those on ran-
dom grids. For game and office maps, Repeated Forward A*
runs faster than D* Lite on the majority of easy navigation
problems (that is, navigation problems in buckets where the
runtime of Repeated Forward A* is small) and on the ma-
jority of all navigation problems. Only for mazes, Repeated
Forward A* runs more slowly than D* Lite on the majority
of all navigation problems. Overall, navigation problems on
game maps seem to be easier than on office maps, and nav-
igation problems on office maps seem to be easier than on
mazes, which supports our claim that Repeated Forward A*
is faster than D* Lite for many navigation problems, includ-
ing those often encountered in practice.

Conclusions Evaluations of incremental search algo-
rithms are often performed on only one or two kinds of grids.
However, we conclude that one needs to evaluate them in
more diverse testbeds and with more diverse implementa-
tions (for example, of the priority queue) to improve our un-
derstanding of their properties. Evaluations of incremental
search algorithms also often average over many randomly
generated grids of a given kind. We conclude that this can
give the wrong impression in cases where D* Lite appears
to run faster than Repeated Forward A* because Repeated
Forward A* runs faster than D* Lite on many easy naviga-
tion problems but much more slowly on a few hard navi-
gation problems. We currently use these insights to develop
new incremental search algorithms (for example, by classi-
fying navigation problems and then either running Repeated
Forward A* or D* Lite, as appropriate) and to improve ex-
isting incremental search algorithms (for example, by speed-
ing up the first search of D* Lite). D* Lite performs its first
search essentially on an empty map, which means that the
first search can be simulated by initializing the values of
all (or a subset of) cells appropriately, namely by setting
rhs(s) = g(s) = h(s). In general, it would be helpful to
have computational models that can predict the performance
of incremental heuristic search methods as a function of the
navigation problem, experimental setup and implementation
details. Runtime proxies, such as the number of cells ex-
panded, cannot be used to compare incremental heuristic
search methods against Repeated Forward A* since they do
not expand cells equally fast. Furthermore, the maps of navi-
gation problems typically fit in memory. For such navigation
problems, big O-analyses do not make sense and small im-
plementation details can have a big effect on the runtime.

References
Koenig, S., and Likhachev, M. 2005. Fast replanning for navi-
gation in unknown terrain. IEEE Transactions on Robotics and

Automation 21(3):354–363.


