
Subgoal Graphs for Eight-Neighbor Gridworlds∗

Tansel Uras Sven Koenig
Department of Computer Science
University of Southern California

Los Angeles, USA
{turas, skoenig}@usc.edu

Carlos Hernández
Depto. de Ingenierı́a Informática

Univ. Católica de la Ssma. Concepción
Concepción, Chile
chernan@ucsc.cl

Abstract

We propose a method for preprocessing an eight-
neighbor gridworld to generate a subgoal graph and a
method for using this subgoal graph to find shortest
paths faster than A*, by first finding high-level paths
through subgoals and then shortest low-level paths be-
tween consecutive subgoals on the high-level path.

Preliminaries
We assume that an agent operates on eight-neighbor grid-
worlds with blocked and unblocked cells. Movement is from
grid center to grid center, and it is assumed that objects mov-
ing have the same diameter as a grid cell. As a result, diag-
onal movement is only allowed when both associated cardi-
nal directions are also unblocked. For example, an agent can
move from A1 to B2 iff B2, A2 and B1 are all unblocked.
We use octile distance as the heuristic function h(s, s′) that
estimates the distance between cells s and s′. We say that s
and s′ are h-reachable iff there is a path of length h(s, s′)
between them. We say that s and s′ are safe-h-reachable iff
they are h-reachable and every trajectory of length h(s, s′)
between them is unblocked.

Simple Subgoal Graphs
Our simple subgoal graphs in gridworlds are similar to visi-
bility graphs in Euclidean planes (Lozano-Pérez and Wesley
1979). We proceed as follows to construct a simple subgoal
graph: First, we make the unblocked cells that are diagonally
away from the convex corners of obstacles the subgoals. For
example, if cells C3, C4 and D3 are blocked, the cells B2,
B5, D5, E2 and E4 are the subgoals. Second, we add edges
between all pairs of directly-h-reachable subgoals, which
are h-reachable subgoals that are not h-reachable through
another subgoal. For example, consider pairwise h-reachable

∗This paper is based upon research supported by NSF (while
Sven Koenig was serving at NSF). It is also based upon research
supported by ARL/ARO under contract/grant number W911NF-
08-1-0468 and ONR in form of a MURI under contract/grant num-
ber N00014-09-1-1031. The research was performed while Carlos
Hernández visited the University of Southern California.
Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) Subgoals and
directly-h-reachable edges

(b) Directly-h-reachable area
around the yellow cell

Figure 1: Simple subgoal graph

subgoals s, s′ and s′′. If there is a shortest path that con-
nects s and s′ and passes through s′′, we do not add the edge
between s and s′. Figure 1(a) shows part of the resulting
simple subgoal graph. Connecting only directly-h-reachable
subgoals can significantly reduce the size and branching fac-
tor of simple subgoal graphs, which have the following two
properties. First, the distances between subgoals in simple
subgoal graphs are the same as the distances between them
in the gridworld. Second, all edges connect subgoals that are
directly-h-reachable.

We proceed as follows to find a shortest path between a
given start cell s and a given goal cell s′: First, we make
sure that s and s′ are connected to the simple subgoal graph.
If they are not subgoals, we add edges connecting them to
all subgoals that they are directly-h-reachable with. Second,
we perform an A* search (Hart, Nilsson, and Raphael 1968)
from s to s′. It turns out that the length of the resulting high-
level path is the same as the distance between s and s′ in the
gridworld. Third, we find a shortest path between s and s′ in
the gridworld by finding shortest paths between consecutive
subgoals on the high-level path. It turns out that two sub-
goals that are directly-h-reachable are also safe-h-reachable,
which means that any trajectory of length h(si, si+1) be-
tween subgoals si and si+1 in the gridworld is unblocked
and a shortest path between them can thus be constructed
quickly.

An important part of constructing and searching the



simple subgoal graph is identifying all subgoals that are
directly-h-reachable from a given cell s. We do this by
exploring the directly-h-reachable area around s (shaded
green, black and yellow in Figure 1(b)), which consists of
all cells that are directly-h-reachable from s, and collecting
all subgoals in this area.

Two-Level Subgoal Graphs
The runtime of the A* search in subgoal graphs dominates
the runtime of connecting the start and goal cells to the sub-
goal graph and the runtime of finding low-level paths. We
therefore speed up the A* search by reducing the size of the
subgoal graph considered for the search, which is possible
because some subgoals, called local subgoals, might only
be needed to connect the start and goal cells to the subgoal
graph. Global subgoals might also be required to connect
the subgoals to each other. Our two-level subgoal graphs
have the following two properties: First, the distances be-
tween subgoals through only global subgoals in two-level
subgoal graphs are the same as the distances between them
in the gridworld. Second, all edges connect subgoals that are
h-reachable.

We proceed as follows to construct a two-level subgoal
graph: First, we start with the simple subgoal graph and la-
bel all subgoals as global, at which point both properties are
satisfied. Second, we iterate over all subgoals (in any order)
and check if the current subgoal can be made local without
violating the two properties. We label the current subgoal
s as local iff s is not necessary to connect any pair of its
neighboring subgoals s′ and s′′ in the current two-level sub-
goal graph, that is, iff (a) there is a path between s′ and s′′

through only global subgoals, excluding s, that is no longer
than h(s′, s)+h(s, s′′) (which means that there is a shortest
path between s′ and s′′ that does not pass through s) or (b)
s′ and s′′ are h-reachable (which means that there is a short-
est path between s′ and s′′ that does not pass through s once
we add an edge between s′ and s′′). We add edges between
neighboring subgoals that satisfy (b) but not (a). The result-
ing two-level subgoal graph contains all edges of the simple
subgoal graph plus the ones added during its construction.
Whether a subgoal is labeled local or global might depend
on the order in which the subgoals were iterated over. We
call the subgraph of the two-level subgoal graph that con-
sists of the global subgoals and the edges between them the
global subgoal graph.

We proceed as follows to find a shortest path between a
given start cell s and a given goal cell s′: First, we make
sure that s and s′ are connected to the global subgoal graph.
If they are not subgoals, we add edges connecting them to all
local and global subgoals that they are directly-h-reachable
with. We then add all local subgoals that are directly-h-
reachable from the start or goal cells to the global subgoal
graph and also their edges of the two-level subgoal graph
from these local subgoals to the global subgoals and each
other. Second, we perform an A* search from s to s′. It turns
out that the length of the resulting high-level path is the same
as the distance between s and s′ in the gridworld. Third, we
find a shortest path between s and s′ in the gridworld by
finding shortest paths between consecutive subgoals on the

(a) Edges between two global
subgoals

(b) Edges between a global and
a local subgoal

Figure 2: Two-level subgoal graph

high-level path. This is more runtime intensive than in sim-
ple subgoal graphs since edges now connect h-reachable but
not necessarily safe-h-reachable cells but can be done with
breadth-first search or an A* search that does not generate
cells with f-values that are larger than the octile distance be-
tween the two h-reachable subgoals.

Other Improvements
We also use three other improvements, whose specifics we
omit: (1) We use pre-computed clearance values (namely, for
each unblocked cell s and each cardinal move c, the num-
ber of moves that can be made from s in direction c before
reaching a subgoal or blocked cell) to speed up the iden-
tification of the directly-h-reachable subgoals. We use the
clearance values of directly-h-reachable cells that lie on the
same vertical, horizontal or diagonal line as s (shaded black
in Figure 1(b)) instead of exploring the directly-h-reachable
area around s. (2) We discard all local-local edges (that is,
edges between the local subgoals), which can be up to 70%
of all edges, at the cost of not finding shortest paths on some
rare occasions, which we mitigate somewhat at the cost of
a slight increase in runtime. (3) We pre-compute the pair-
wise distances between all global subgoals and use them to
find shortest paths without A* searches. For the competition,
we use the two-level subgoal graph with pairwise distances
but without local-local edges. If this is not possible within
the given memory limit, we use the two-level subgoal graph
without pairwise distances and local-local edges. If this is
still not possible within the given memory limit, we perform
regular A* searches with buckets.

References
Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal basis for the
heuristic determination of minimum cost paths. IEEE Transactions
on Systems Science and Cybernetics 2:100–107.
Lozano-Pérez, T., and Wesley, M. A. 1979. An algorithm for plan-
ning collision-free paths among polyhedral obstacles. Commununi-
cation of the ACM 22(10):560–570.


