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Abstract
Subgoal graphs can be constructed on top of graphs dur-
ing a preprocessing phase to speed-up shortest path queries.
They have an undominated query-time/memory trade-off in
the Grid-Based Path Planning Competitions. While grids are
useful for path planning, other kinds of graphs, such as state
lattices, have to be used for motion planning. While state lat-
tices are regular graphs like grids, subgoal graphs improve
query times by a much smaller factor on state lattices than
on grids. In this paper, we present a new version of subgoal
graphs that forfeits its optimality guarantee for smaller query
times. It guarantees completeness, and our experimental re-
sults on state lattices suggest that it can find paths that are
close to optimal.

Introduction
Preprocessing-based path-planning algorithms analyze a
given graph in a preprocessing phase to generate auxiliary
information, which can then be used to significantly speed-
up online path queries. The 9th DIMACS implementation
challenge (Demetrescu, Goldberg, and Johnson 2009) fea-
tured a competition on preprocessing the USA road net-
work, which resulted in several new preprocessing-based
path-planning algorithms such as contraction hierarchies
(Geisberger et al. 2008), transit routing (Bast, Funke, and
Matijević 2006; Arz, Luxen, and Sanders 2013), and hub-
labeling (Abraham et al. 2011). More recently, a similar
competition was held on grids (Sturtevant et al. 2015), where
an entry based on subgoal graphs (SGs) (Uras, Koenig, and
Hernández 2013) was undominated with respect to its query-
time/memory trade-off. SGs aim to exploit structure in maps
by capturing it with a reachability relation R and then con-
structing an overlay graph (whose nodes are called subgoals)
that has only R-reachable edges. SGs can be used to find
shortest paths by first connecting the start and goal nodes to
the SG to form a query SG, searching the query SG for a
shortest path, and replacing its R-reachable edges with the
corresponding shortest paths on the original graph.

State lattices can be considered as extensions of grids
where the state space is extended to take into account
discretized poses for an agent. The edges of a state lat-
tice are determined by a set of motion primitives that
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model kinematically feasible actions for the agent (Piv-
toraiko and Kelly 2005; Likhachev and Ferguson 2009;
Kushleyev and Likhachev 2009). As opposed to sampling-
based motion planning algorithms (Kavraki et al. 1996;
Kuffner and LaValle 2000; Karaman and Frazzoli 2011),
state lattices can be used to systematically discretize en-
vironments into graphs which can then be searched with
heuristic search algorithms to find paths that are optimal or
bounded suboptimal (with respect to the state lattice). SGs
have been applied to state lattices (Uras and Koenig 2017)
but only achieved small speed-ups (2-4 times faster than
searching the state lattices directly) since SGs tend to have
more edges than the state lattices and have a high number of
subgoals (∼ 30% of the nodes of state lattices).

In this paper, we explore different methods for improving
the query times of SGs on state lattices. We first try con-
structing SGs using a preprocessing method which guaran-
tees that the set of subgoals is minimal. We then try pruning
some of the edges of SGs while maintaining a suboptimal-
ity bound. Both modifications fail to achieve a significant
speed-up, which motivates us to give up the optimality guar-
antee of SGs to try to achieve smaller query times.

Our main contribution in this paper is a new version of
SGs, called strongly-connected SGs (SC-SGs), which guar-
antees completeness by making sure that any pair of start and
goal nodes can be connected to the SC-SG and that the SC-
SG itself is strongly connected. We believe that this is a good
first step in the direction of developing a bounded subopti-
mal version of SGs that not only modifies the edges of SGs,
but also the placement of subgoals, since any bounded sub-
optimal SG would have to guarantee completeness as well.
We observe that SC-SGs can be used to answer queries 1-
2 orders of magnitude faster than A* on state lattices and
find paths that are not much longer than optimal. Our sec-
ond contribution is a new reachability relation on state lat-
tices, called canonical freespace reachability, that aims to re-
duce the time to connect the start and goal nodes to SC-SGs,
which can take longer than searching the resulting query SC-
SGs. Our experiments show that, using canonical freespace
reachability, SC-SGs can be used to find paths 200 times
faster than A* on a state lattice with 15 million nodes and
333 million edges. Preprocessing takes 295 seconds, and the
lengths of the paths found are on average 9.2% longer than
those found by A*.



(a) arena2.map
(209 × 281).

(b)
Unicycle

primitives.

(c) Aurora.map
(768 × 1024).

(d) Urban challenge primitives.

Figure 1: Maps and primitives used in our experiments. In
(b) and (d), all states shown as blue triangles can be reached
with a single primitive from the state shown as a red triangle.

Preliminaries and Notation
We operate on (x, y, θ) state lattices, which are implicitly
defined by a 2D grid, a set of discrete poses P (directions
that the agent can face towards), and a set of motion primi-
tives (primitives, for short) for each pose. Each primitive p
is defined by a tuple (θsp, θ

e
p, xp, yp, lp, Cp), where θsp is the

start pose of p, θep is the end pose of p, (xp, yp) is the end
cell of p relative to the start cell, lp is the length of p, and
Cp is a set of cells, relative to the start cell, that need to be
unblocked in order to execute p successfully.

We use G = (V,E, c) to denote the (directed, weighted)
graph that corresponds to the state lattice, where V is the
set of nodes, E is the set of edges, and c : E → (0,∞) is
a function that assigns a non-negative length to each edge.
Every node of G corresponds to a state (x, y, θ) of the state
lattice, where θ ∈ P and (x, y) is a grid cell whose center
coincides with a reference point on the agent. For any two
nodes s = (xs, ys, θs) and e = (xe, ye, θe), a primitive p
induces an edge (s, e) with length lm iff: (1) θs = θsp, θe = θep,
(2) xs + xp = xe, ys + yp = ye, and (3) for all (x, y) ∈ Cp,
the cell (xs + x, ys + y) is unblocked.

We use d(s, t) to denote the s-t-distance (length of a
shortest s-t-path) on G. For simplicity, we assume that G is
strongly connected (that is, for any u, v ∈ V , d(u, v) <∞).
If the state lattice is not strongly connected, we assume that
G is its largest strongly connected component. We describe
later how SC-SGs can be extended to graphs that are not
strongly connected.

We report experimental results in various sections of the
paper, using two different setups: The Unicycle setup uses a
small grid of size 209× 281, 16 different discrete poses, and
5 primitives for each pose.1 The Urban setup uses a large

1https://github.com/sbpl/sbpl/blob/master/

grid of size 768 × 1024, 32 different discrete poses, and 36
primitives for each pose.2 We use the Unicycle setup to eval-
uate our various modifications to optimal SGs and use both
the Unicycle and Urban setups to evaluate SC-SGs, using
1000 randomly generated instances for each setup. We use
a PC with a 3.6GHz Intel Core i7-7700 CPU and 32GB of
RAM to run our experiments.

Rather than using an implicit state lattice where each
primitive’s swept cells need to be checked to see if the prim-
itive is executable, we store a bitfield for every state where
each bit indicates whether a specific primitive is executable
from that state. This implementation does not use as much
memory as storing G explicitly and avoids checking dur-
ing searches if primitives are executable, which can signifi-
cantly reduce the search times over G and the preprocessing
and query times of our SG and SC-SG variants. We remove
redundant primitives (those that can be replaced with a se-
quence of other primitives), bringing down the number of
primitives for each pose in the Unicycle setup to 4 and the
Urban setup to between 27 to 32, which allows us to use
32-bit integers as bitfields. Figure 1 shows the maps and the
primitives (for a single pose).

We normalize the edge lengths so that executing a primi-
tive of length l can change both the x and y coordinates of
the agent by at most blc. For Urban primitives, the lengths
of primitives that move the agent backward (with respect
to its current pose) are multiplied by 3. For Unicycle prim-
itives, backward moves are multiplied by 5 and turns are
multiplied by 2. The largest strongly connected compo-
nent of the resulting Unicycle setup has 375,391 nodes and
1,262,812 edges, and the largest strongly connected compo-
nent of the resulting Urban setup has 15,255,281 nodes and
333,465,922 edges. We use an A* search with the Euclidean
Distance heuristic (the straight-line distance between two
nodes’ corresponding cells in the underlying grid), A*-
Euc, as the baseline algorithm when reporting the speed-up
achieved by SGs and SC-SGs. All searches over SGs and
SC-SGs also use the Euclidean Distance heuristic.

Background:
Subgoal Graphs on State Lattices

A subgoal graph (SG) can be constructed as an overlay graph
on G that only contains edges that satisfy a given reachabil-
ity relation R ⊆ V × V . Intuitively, R identifies pairs of
nodes (u, v) such that a shortest u-v-path can be quickly
found by exploiting structure in G. We say that a node t is
R-reachable from a node s (or an edge (s, t) isR-reachable)
iff (s, t) ∈ R. We use R→s to denote the set of nodes that are
R-reachable from s and R←s to denote the set of nodes from
which s is R-reachable. We assume that ∀n ∈ V (n, n) ∈ R
and ∀(u, v) ∈ E (u, v) ∈ R.

A SG can be constructed on G with respect to R by iden-
tifying a set of subgoals and adding R-reachable edges be-
tween them. The set of subgoals S satisfies the cover prop-

matlab/mprim/unicycle_noturninplace.mprim.
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their Urban Challenge entry available to us and for helpful discus-
sions.



(a) Query SG on an undirected graph
with unit-length edges.

(b) Freespace paths up to length 50 (Unicycle). (c) Freespace paths up to
length 50 (Urban).

Figure 2: SGs on state lattices. In (a), (u, v) ∈ R⇔ d(u, v) ≤ 5. In both (b) and (c), corresponding lookup tables for freespace
distances contain |P| entries for each cell in the figure, one for each end pose. (b) is scaled up by a factor of 2.15.

erty: For any (u, v) 6∈ R, at least one shortest u-v-path
passes through (is covered by) a subgoal. SGs can be used to
answer shortest path queries in three steps: (1) Connecting
the start node s to subgoals u ∈ R→s with edges (s, u) and
the goal node t to subgoals v ∈ R←t with edges (v, t), and
adding an edge (s, t) iff (s, t) ∈ R. (2) Searching the result-
ing query SG for a shortest subgoal path πS (that consists
of only R-reachable edges). (3) Refining πS into a short-
est path on G by replacing its edges with the corresponding
shortest paths. Searches over SGs are typically faster than
searches overG because they ignore any non-subgoal nodes.
When constructing a SG or connecting query points to a SG,
it is sufficient to use only direct-R-reachable edges, which
are R-reachable edges that cannot be refined into paths that
pass through subgoals. Figure 2(a) shows a query SG where
(u, v) ∈ R ⇔ d(u, v) ≤ 5. Essentially, SGs can exploit
structure in a domain by capturing it with R and developing
specialized connection and refinement operations that uti-
lize R. We call these operations R-connect and R-refine, re-
spectively, and also distinguish between connecting the start
(R→-connect) and goal (R←-connect) nodes to SGs.

Similarly to SGs on grids, SGs on state lattices use
freespace reachability (FR) as R. Shortest paths between
nodes on a state lattice where the underlying grid has no
blocked cells are called freespace paths. The length of
a freespace s-t-path is called the freespace s-t-distance
df (s, t). A node t is freespace reachable from a node s
iff at least one freespace s-t-path is unblocked (or, equiv-
alently, iff df (s, t) = d(s, t)). SGs on state lattices can ex-
ploit FR as follows: (1) FR→-connect can be implemented as
a breadth-first search that maintains g-values for nodes and
only generates nodes u with g(u) = df (s, u). FR←-connect
can be implemented similarly. (2) FR-refine can be imple-
mented as a depth-first search that only generates nodes u
with df (s, u) + df (u, t) = df (s, t). (3) Edge lengths are
freespace distances and therefore do not need to be stored.

Both FR-connect and FR-refine operations require
freespace distances, which we precompute and store up to
a certain bound B, called the reachability bound. We re-

fer to FR with a reachability bound B as FRB (through-
out the paper, we simply use FR instead of FRB if the
specific B is not important). We exploit the translation in-
variance of freespace distances (that is, changing the x-
or the y-coordinate of two states by the same value does
not change the freespace distance between them) to store
freespace distances more compactly: For each start pose
θ, we store a freespace distance lookup table Tθ with up
to (2B − 1) × (2B − 1) × |P| entries, where each en-
try (xe, ye, θe) in Tθ stores the freespace distance from
(0, 0, θ) to (xe, ye, θe) (equivalently, from any (x, y, θ) to
(x+xe, y+ ye, θe)). Note that, by exploiting symmetries in
the state lattice, we can avoid storing a lookup table for each
start pose (for Unicycle primitives, we can store only 3 ta-
bles rather than 16; for Urban primitives, we can store only
5 tables rather than 32). In our experiments, we do not do
this compression and report results assuming each freespace
distance is stored using 4 Bytes. Figures 2(b) and 2(c) show
all the freespace paths (for a single start pose) up to length
50 for the Unicycle and Urban primitives.

We also use bounded distance reachability (DR) as a
baseline reachability relation in our experiments, to see how
much we gain from exploiting freespace structure with FR.
A node t is bounded distance reachable (with reachability
bound B) from a node s iff d(u, v) ≤ B. We implement
DR→- and DR←-connect as Dijkstra searches that do not
generate nodes n with g(n) > B. We implement DR-refine
as A*-Euc.

Subgoal Graphs on State Lattices Revisited

The current method of constructing SGs on state lattices
starts with an empty set of subgoals S and then grows S
by iterating over every node s ∈ V and adding subgoals to
S to cover at least one shortest path to every node t with
(s, t) 6∈ R (Uras and Koenig 2017). In this section, we try a
different method of constructing SGs on state lattices based
on pruning S rather than growing it, and also experiment
with bounded suboptimal SGs.



Prep. Mem. (MB) Size vs G Sp.
time (s) F SG Nodes Edges up

G-DR50 28 - 12.1 55% 126% 1.50
G-DR75 81 - 15.5 42% 160% 1.77
G-DR100 191 - 19.9 34% 206% 1.90
G-DR125 312 - 24.5 29% 254% 1.94
G-DR150 533 - 29.5 25% 307% 1.95
G-FR50 34 10.0 6.0 55% 125% 1.50
G-FR75 90 22.3 7.2 44% 149% 1.75
G-FR100 173 39.5 8.2 40% 170% 1.77
G-FR125 253 61.5 9.0 38% 187% 1.81
G-FR150 305 88.5 9.7 38% 202% 1.83
P-DR50 676 - 13.9 46% 144% 1.65
P-DR75 13646 - 19.0 33% 198% 1.96
P-FR50 691 10.0 6.9 46% 143% 1.65
P-FR75 10547 22.3 8.8 35% 183% 1.99

Table 1: Comparison of SGs constructed by growing (G) and
pruning (P) the set of subgoals, using DR and FR with differ-
ent reachability bounds, on the Unicycle setup. F: Freespace
distances.

Constructing SGs by Pruning

The pruning-based algorithm of constructing SGs is simi-
lar to constructing N-level SGs (Uras and Koenig 2014) and
constructing k-hop covers on road networks (Funke, Nusser,
and Storandt 2014). We only give an overview of this algo-
rithm since it is not a main contribution of our paper. It starts
by initializing S = V and then tries to remove nodes from
S one by one, while maintaining that S satisfies the cover
property (as discussed in the previous section). To determine
whether a node s can be removed from S without violating
the cover property, the algorithm first generates the list of
nodes u such that s is direct-R-reachable from u (using a
modified version of R←-connect). Then, for each such u, it
checks if there exists a node v such that (u, v) 6∈ R and no
shortest u-v-path is covered by a subgoal (using a modified
version of R→-connect). If no such pair of nodes (u, v) is
found, then s is removed from S. Otherwise, s remains a
subgoal. As noted in Funke, Nusser, and Storandt’s paper,
this method of construction guarantees that the resulting set
of subgoals is minimal (that is, no subgoal can be removed
from S without violating the cover property) and the order
that the nodes are processed in can effect the resulting set
of subgoals. As suggested in their paper, we use a depth-
first search from a random node to determine the order in
which we try to prune nodes (where nodes whose children
are processed first by the depth-first search appear earlier in
the order). Our preliminary results suggest that this ordering
works well for constructing SGs as well (although, it is not
significantly better than a random ordering).

Table 1 shows a comparison of various SGs on the Uni-
cycle setup with respect to their preprocessing times (which
includes the time to calculate freespace distances for FR),
query times (which is the summation of the connection,
search, and refinement times), the number of subgoals and
edges (relative to G), and the memory required to store the
SG and freespace distances. We use DR and FR as R with
varying reachability bounds B ∈ {50, 75, 100, 125, 150}.

w 1 1.5 2 2.5 3
Edge % vs G 182.9 78.0 68.6 68.4 66.2
Speed up 1.99 2.54 2.61 2.61 2.66
Subopt. 1.000 1.023 1.034 1.035 1.037

Table 2: Comparison of graph spanners of P-FR75 with dif-
ferent suboptimality bounds w on the Unicycle setup.

We use P-R to denote a SG constructed with respect to R
by pruning and G-R to denote a SG constructed with re-
spect to R by growing. We observe the following trends:
1) The number of subgoals decreases as R includes more
pairs of nodes (for both FR and DR, as B increases, or as
we switch from FR to DR). However, as the number of sub-
goals decreases, the number of edges increases. G-DR150
has the lowest number of subgoals (25% of |V |) but the high-
est number of edges (307% of |E|). 2) Pruning rather than
growing results in fewer subgoals, since pruning guarantees
minimality. However, the preprocessing times for pruning
become prohibitive as the reachability bound increases. For
instance, P-FR75 has 20% fewer subgoals than G-FR75 and
can be used to answer queries 14% faster. However, prepro-
cessing takes 117 times longer and it has 23% more edges.
3) For all SGs, the combined R-connect and R-refine times
make up less than 10% of the overall query times (not re-
ported in the table) and there is no significant difference be-
tween using FR or DR as R. 4) The speed-up achieved by
various SGs range from 1.5 to 1.99. These results are similar
to earlier ones and indicate that it might be difficult to speed
up optimal path planning on state lattices by using SGs.

Graph Spanners of SGs
We now consider a bounded-suboptimal version of SGs by
greedily constructing their graph spanners (Althöfer et al.
1993). A graph spanner is a subgraph of a graph whose dis-
tances are no longer than the distances on the graph, multi-
plied by a parameter w. The greedy algorithm for construct-
ing a graph spanner iterates over the edges of the graph in or-
der of increasing length, and adds an edge (u, v) with length
d(u, v) to the graph spanner iff the current u-v-distance on
the spanner is greater than wd(u, v). Table 2 compares the
number of edges, query times, and suboptimalities of graph
spanners constructed on P-FR75 from Table 1. We observe
that, even with w = 1.5, constructing the graph spanner
eliminates 57% of P-FR75’s edges. Using w = 3 eliminates
64% of its edges, which results in only 33% faster queries
that return paths that are 3.7% suboptimal.

Strongly Connected Subgoal Graphs
Motivated by the results in the previous section, we now
describe a variant of SGs that aims to speed up queries by
changing the placement of subgoals while forfeiting its opti-
mality guarantee. Ideally, we would like to develop a variant
that can guarantee bounded suboptimality. We believe that
the variant that we describe in this section is a good first step
towards this direction since any bounded-suboptimal version
of SGs would have to guarantee completeness as well.



(a) Identify access subgoals
so that every node can
R-connect to a subgoal.

(b) Construct a graph A of
access subgoals.

(c) Construct a spanning tree
of A.

(d) Add (connecting) subgoals
to split non-R-reachable

edges into R-reachable ones.

Figure 3: High level idea of constructing SC-SGs. Example uses an undirected graph with unit-length edges and DR5 as R.

Definition and Theoretical Guarantees
Strongly-connected subgoal graphs (SC-SGs) guarantee
completeness by ensuring that any node can be both R→-
and R←-connected to the SC-SG and ensuring that the SC-
SG is strongly connected (which is possible since we assume
that G is strongly connected). Definition 1 outlines the min-
imum requirements for SC-SGs to guarantee completeness.
Definition 1. A graph GS = (S,ES , cs) is a strongly con-
nected subgoal graph on G (with respect to a reachability
relation R) iff the following conditions hold: (1) For any
n ∈ V , there exists u, v ∈ S such that (u, n) ∈ R and
(n, v) ∈ R. (2) GS is strongly connected. (3) ∀(u, v) ∈ ES ,
(u, v) ∈ R and cS(u, v) = d(u, v).

SC-SGs can be used to answer queries in the same way as
SGs are used to answer queries, by R-connecting the start
and goal nodes to the SC-SG, searching the resulting query
SC-SG for a path πS (which is guaranteed to have only R-
reachable edges), and finally R-refining the edges on πS . To
guarantee optimality, SGs have edges from every subgoal
to every other subgoal that is direct-R-reachable from it. In
contrast, to guarantee completeness, SC-SGs can have any
set of edges as long as they are allR-reachable and make the
SC-SG strongly connected. Similarly, for SGs, R-connect
needs to identify all direct-R-reachable edges to connect
the start and goal nodes to the SG. For SC-SGs, R-connect
needs to identify at least one R-reachable edge to connect
the start and the goal nodes, respectively, to the SC-SG.
Theorem 1. (Completeness) For any start node s and goal
node t, an SC-SG can be used to find an s-t-path.

Proof. By Definition 1, there exists a u ∈ S with (s, u) ∈ R.
Therefore, R→-connect can find a subgoal u′ ∈ S with
(s, u′) ∈ R. (We make the distinction between u and u′

for generality of the implementation of R→-connect, as it
might connect s to another R-reachable subgoal u′ rather
than u, since identifying only one such subgoal is sufficient.)
Similarly, R←-connect can find a subgoal v′ ∈ S with
(v′, t) ∈ R. Since, by Definition 1, a SC-SG is strongly con-
nected, it must contain a path πu′,v′ = (n1 = u′, . . . , nk =
v′). When the edges (s, u′) and (v′, t) are added to the
SC-SG, the resulting query SC-SG then contains a path
πs,t = (s, n1, . . . , nk, t). All edges of πs,t can be R-refined

since (s, u′), (v′, t) ∈ R and all edges of the SC-SG are R-
reachable by definition.

Constructing SC-SGs
The subgoals of a SC-SG can be identified in two steps: (1)
Identify a set of access subgoals which ensure that any node
can be R→- and R←-connected to a subgoal (Algorithm 1).
(2) Identify a set of connecting subgoals so that the set of
access and connecting subgoals can be strongly connected
using only R-reachable edges (Algorithm 2). Figure 3 pro-
vides an overview of how SC-SGs can be constructed on
undirected graphs. We now explain how Algorithms 1 and 2
operate on directed, strongly connected graphs.

Algorithm 1 Ensuring that all nodes can bothR→- andR←-
connect to a subgoal.

1: function IdentifyAccessSubgoals(G, R)
2: S ← ∅
3: for all n ∈ V do
4: forward[n]← false, backward[n]← false
5: for all n ∈ V do
6: if ¬forward[n] ∨ ¬backward[n] then
7: S ← S ∪ {n}
8: for all t ∈ V : (n, t) ∈ R do
9: backward[t]← true

10: for all s ∈ V : (s, n) ∈ R do
11: forward[t]← true
12: return S

Algorithm 1 starts with an empty set of subgoals S (line
2) and then, for each n ∈ V , adds n to S iff S does not con-
tain a node u with (n, u) ∈ R and a node v with (v, n) ∈ R
(lines 5-7). That is, if n cannot be R→- and R←-connected
to subgoals, it becomes a subgoal. Algorithm 1 maintains
two flags for each node n, forward[n] and backward[n],
that indicate, respectively, whether there exists a subgoal u
with (n, u) ∈ R and whether there exists a subgoal v with
(v, n) ∈ R. These flags are initially set to false for each
node (lines 3-4). When a node n becomes a subgoal, for ev-
ery node t ∈ R→n (that is, (n, t) ∈ R), backward[t] is set
to true and, for every node s ∈ R←n (that is, (s, n) ∈ R),



forward[s] is set to true (lines 8-11). R→n and R←n can be
identified with modified versions of R→- and R←-connect,
respectively. Using the forward- and backward-flags ensures
that the modified versions of R→- and R←-connect are exe-
cuted only for nodes that become subgoals.

Once the access subgoals have been identified (Fig-
ure 3(a)), we can strongly connect them by adding edges
between every pair of access subgoals u and v. Let A de-
note the resulting graph (Figure 3(b)), which might contain
more edges than necessary to make it strongly connected. If
A is undirected (because G is undirected), we can instead
use the edges of a spanning tree of A to make the access
subgoals strongly connected. On directed graphs, we can
use the edges of two directed spanning trees of A, an out-
tree (all edges point away from the root) and an in-tree (all
edges point toward the root) rooted at the same (arbitrarily
chosen) node s to make the access subgoals strongly con-
nected: For any two access subgoals u and v, the in-tree
contains a u-s-path, the out-tree contains an s-v-path, and,
therefore, their combination contains a u-v-path. Note that,
the edges used for strongly connecting access subgoals are
not necessarily R-reachable. We can replace every non-R-
reachable edge (u, v) with a sequence of R-reachable edges
(u, n1), (n1, n2), . . . , (nk, v) and add the nodes n1, . . . , nk
to the set of subgoals (Figure 3(d)) to finalize the construc-
tion of an SC-SG. Algorithm 2 outlines a method of con-
structing SC-SGs that interleaves the construction ofA, con-
struction of the spanning trees on A, and splitting of non-R-
reachable edges into R-reachable ones.

Algorithm 2 Ensuring that the SG-SC is strongly connected
with only R-reachable edges.

1: function StronglyConnectSubgoals(G, R, S)
2: ES ← ∅
3: randomly select s ∈ S
4: for both the forward and backward directions do
5: for all n ∈ V do
6: g[n]←∞, parent[n]← undefined
7: g[s]← 0, OPEN← {s}
8: while OPEN 6= ∅ do
9: v← OPEN.PopMinGValNode()

10: if v ∈ S \ {s} then
11: π ← follow parents from v to a u ∈ S
12: Reverse π if searching backward
13: S′, E′S ← SplitIntoRReachable(π)
14: S ← S ∪ S′, ES ← ES ∪ E′S
15: g[v]← 0
16: for all n ∈ S′ do
17: g[n]← 0, insert/update n in OPEN
18: Expand(v)
19: return S, ES

For both the forward and backward directions (we de-
scribe only the forward direction), Algorithm 2 performs a
Dijkstra search3 from a randomly selected subgoal s (lines
3-9, 18), with the following modifications: (1) When the

3The parent pointer of a node u is updated to v iff the g-value

search selects a subgoal v 6= s for expansion, it follows the
parent pointers to a subgoal u to extract a path π, which
corresponds to an edge (u, v) in the spanning (out-)tree,
and then introduces subgoals to split (u, v) into R-reachable
edges using the procedure SplitIntoRReachable4 (lines 11-
14). (2) The g-values of v and all new connecting subgoals
are set to 0 (lines 15-17), which ensures that the next sub-
goal to be reached is the one that is closest to all the sub-
goals that have been reached so far (which mimics Prim’s
algorithm (Prim 1957) for constructing minimum spanning
trees on undirected graphs).

SC-SGs for Graphs that are not Strongly
Connected
If G is not strongly connected, we can construct its strongly
connected component graph C in linear time (Tarjan 1972).
Each node ci of C corresponds to a strongly connected com-
ponent (subgraph) Ci of G, and each edge (ni, nj) ∈ E
where ni belongs to Ci and nj belongs to Cj 6= Ci induces
an edge (ci, cj) in C. We can apply Algorithms 1 and 2 to
each subgraph Ci to construct a SC-SG Si. To guarantee
completeness, we also need to connect each Si to Sj for ev-
ery edge (ci, cj) of C. We can do this by randomly picking
an edge (ni, nj) ∈ E for every edge (ci, cj) of C, where
ni belongs to Ci and nj belongs to Cj , then add ni to the
access subgoals of Si and nj to the access subgoals of Sj
before running Algorithm 2 on Ci and Cj , which allows us
to connect the resulting Si to the resulting Sj with the R-
reachable edge (ni, nj).

Experimental Results
For our experiments, similar to SGs, we use all direct-R-
reachable edges both when constructing SC-SGs and when
connecting start and goal nodes to them, in order to find
paths that are close to optimal. We therefore use the FR-
connect and DR-connect operations described earlier. We
process nodes in a random order in Algorithm 1.

Table 3 shows a comparison of various SC-SGs (denoted
as C-R) on the Unicycle setup using DR and FR (and canon-
ical freespace reachability (CR) that we introduce and dis-
cuss in the next section). In addition to the metrics we use to
evaluate SGs in Table 1, we also report the number of access
subgoals (relative to |V |), the average and maximum subop-
timalities of the returned paths, and a breakdown of query
times into connection, search, and refinement times. We ob-
serve the following trends: 1) Constructing SC-SGs requires
significantly less preprocessing time than constructing SGs.
2) SC-SGs have significantly fewer subgoals and edges than
SGs. For instance, C-DR150 has 97.87% fewer nodes and
98.90% fewer edges than G-DR150. Similar to SGs, the
number of subgoals decreases as R includes more pairs of
nodes. Contrary to SGs, the number of edges decreases as
the number of subgoals decreases. 3) Queries on SC-SGs

of u is lowered when v is expanded.
4SplitIntoRReachable can be implemented recursively. Our im-

plementation finds the highest index i on π = (n0, . . . , nk) such
that (n0, ni) ∈ R and, if i 6= k, adds ni to the set of connecting
subgoals and repeats for (ni, . . . , nk).



Prep. Memory (MB) Size vs G Query time (ms) Speed Suboptimality
time (s) F SG Access Nodes Edges Cn Sr Rf up Avg Max

C-DR50 6.12 0.00 6.27 8.36% 13.93% 65.08% 0.158 4.188 0.303 7.08 1.329 4.675
C-DR75 11.75 0.00 5.93 3.90% 6.48% 61.53% 0.611 1.861 0.742 10.23 1.287 3.781
C-DR100 13.95 0.00 3.48 1.91% 2.96% 36.13% 1.424 0.730 1.186 9.85 1.314 4.476
C-DR125 7.74 0.00 0.61 0.60% 0.91% 6.29% 2.772 0.210 2.051 6.53 1.467 4.220
C-DR150 7.77 0.00 0.33 0.35% 0.52% 3.37% 4.823 0.119 2.736 4.28 1.495 3.934
C-FR50 5.83 9.96 3.10 8.39% 13.93% 64.43% 0.104 4.108 0.041 7.73 1.309 4.675
C-FR75 10.12 22.27 2.96 4.08% 6.74% 61.37% 0.329 1.926 0.038 14.34 1.213 4.931
C-FR100 9.94 39.45 1.61 2.13% 3.32% 33.50% 0.624 0.841 0.041 21.85 1.181 3.292
C-FR125 5.95 61.52 0.45 0.91% 1.48% 9.30% 0.972 0.357 0.064 23.60 1.169 2.788
C-FR150 5.96 88.48 0.33 0.67% 1.16% 6.91% 1.267 0.283 0.054 20.51 1.154 2.566
C-CR50 1.91 7.47 6.11 8.40% 13.82% 63.44% 0.039 3.951 0.008 8.22 1.296 4.675
C-CR75 2.89 16.69 5.77 4.17% 6.70% 59.93% 0.119 1.799 0.008 17.08 1.188 4.914
C-CR100 3.08 29.58 3.49 2.31% 3.49% 36.19% 0.223 0.885 0.007 29.47 1.165 3.109
C-CR125 2.80 46.12 1.50 1.29% 1.97% 15.57% 0.330 0.524 0.007 38.20 1.153 2.430
C-CR150 3.63 66.33 1.16 0.99% 1.58% 12.02% 0.454 0.427 0.008 37.05 1.144 2.370

Table 3: Comparison of SC-SGs (C) using DR, FR, and CR with different reachabilty bounds on the Unicycle setup. The query
times are split into connection (Cn), search (Sr), and refinement (Rf) times. F: Freespace information.

are faster than queries on SGs. For instance, queries on C-
FR125 are 13 times faster than queries on G-FR125, but re-
turn paths that are 18% longer. 4) AsB increases for FR and
DR, the search times decrease (since the resulting SC-SGs
get smaller), but the connection times increase and become
the dominant factor for the query times. For instance, for C-
FR150, the connection times are 4.48 times longer than the
search times, and, for C-DR150, the connection times are
40.5 times longer than the search times. As a result, SC-SGs
constructed with respect to FR are consistently faster than
SC-SGs constructed with respect to DR, due to significantly
faster R-connect and R-refine operations. Contrary to SGs,
increasing the reachability bound does not result in faster
queries for SC-SGs. For instance, C-FR150 is slower than
C-FR125 due to its longer connection times.

Canonical Freespace Reachability
Canonical orderings break symmetries between shortest
paths by fixing, among multiple symmetric shortest paths,
one as the canonical path. A successor v of a node u,
with respect to a start node s, is called a canonical suc-
cessor of u iff v extends the canonical s-u-path to the
canonical s-v-path. Search algorithms can exploit canon-
ical orderings to avoid generating duplicate nodes during
searches by only generating the canonical successors of
expanded nodes, which can significantly reduce the num-
ber of node expansions if duplicate detection is not pos-
sible due to memory limitations (Taylor and Korf 1993;
Holte and Burch 2014), or reduce the average node expan-
sion time if canonical successors of nodes can be efficiently
identified (Harabor and Grastien 2011; Sturtevant and Ra-
bin 2016). In this section, we impose a canonical ordering
on freespace paths to develop a new reachability relation on
state lattices, called canonical freespace reachability (CR),
with the aim to implement a faster CR-connect operation
than FR-connect.

We can represent any path π = (n0, . . . , nk) on a state
lattice as a sequence of primitives πp = (p0, . . . , pk−1)

where each pi induces the edge (ni, ni+1) in the state lat-
tice. Let <L be a total ordering on all primitives. For any
two paths πp = (p0, . . . , pk) and π′p = (p′0, . . . , p

′
k′) 6= πp,

we say that πp is lexicographically smaller than π′p, denoted
as πp <L π′p iff: ∃j (pj <L p′j and ∀i < j pi = p′i),
or, if no such j exists, if k < k′. Among all symmet-
ric freespace paths, we fix the lexicographically smallest
one as the canonical freespace path. A node t is canonical
freespace reachable from a node s iff the canonical freespace
s-t-path is unblocked.

Lemma 1. For any canonical freespace path π, any subpath
π′ of π is also a canonical freespace path.

Proof. Suppose a symmetric path π′′ = (b0, . . . , bm) of
π′ = (a0, . . . , an) exists with π′′ <L π′. Let i be the small-
est number for which ai 6= bi (i must exist since π′ and
π′′ are not prefixes of each other because, otherwise, one of
them would be longer). Since π′′ <L π′, bi <L ai. Then,
substituting π′′ for π′ in π generates a path that is symmet-
ric to π but lexicographically smaller, contradicting our as-
sumption that π is a canonical freespace path.

Lemma 2. The collection of all canonical freespace paths
that originate at a node s form an out-tree rooted at s
(forward canonical tree). The collection of all canonical
freespace paths that terminate at a node t form an in-tree
rooted at t (backward canonical tree).

Proof. Let π and π′ be two canonical freespace paths that
originate at s and intersect at a node n. By Lemma 1, the
prefixes of π and π′ up to nmust also be canonical freespace
paths. Since, by definition, there is a unique s-n-canonical
path, the prefixes of π and π′ up to n must be the same. We
can similarly show that if two canonical freespace paths that
terminate at t intersect at a node n, then their suffixes from
n must be the same.

Following Lemma 2, we implement CR→-connect as a
breadth-first traversal of the forward canonical tree rooted



Prep. Memory (MB) Size vs G Query time (ms) Speed Suboptimality
time (s) F SG Access Nodes Edges Cn Sr Rf up Avg Max

C-FR50 979.74 39.85 24.53 1.02% 1.78% 1.93% 6.357 17.787 0.295 128.52 1.116 1.637
C-FR75 1781.37 89.07 25.03 0.63% 1.18% 1.97% 22.025 11.413 0.436 92.72 1.092 1.358
C-FR100 2520.5 157.82 23.68 0.49% 0.94% 1.86% 47.353 9.117 0.747 54.89 1.087 1.374
C-FR125 3097.43 246.10 22.35 0.42% 0.82% 1.76% 79.590 8.381 1.067 35.28 1.095 1.728
C-FR150 3389.96 353.91 21.44 0.39% 0.76% 1.69% 99.687 7.535 1.394 28.92 1.093 1.427
C-CR50 207.45 89.66 62.80 1.14% 2.03% 2.47% 0.807 21.192 0.016 142.67 1.110 1.657
C-CR75 295.08 200.40 57.67 0.67% 1.27% 2.27% 2.777 12.874 0.015 200.49 1.092 1.481
C-CR100 355.78 355.09 51.44 0.51% 0.99% 2.02% 5.795 9.790 0.015 201.34 1.088 1.458
C-CR125 415.97 553.72 47.66 0.44% 0.86% 1.87% 9.534 8.943 0.015 169.85 1.089 1.760
C-CR150 475.05 796.30 44.78 0.40% 0.80% 1.76% 12.119 7.922 0.015 156.61 1.096 1.613

Table 4: Comparison of SC-SGs (C) using FR and CR with different reachabilty bounds on the Urban setup. The query times
are split into connection (Cn), search (Sr), and refinement (Rf) times. F: Freespace information.

wA*-Euc; w = 1 1.5 2 2.5 3
Speed up 1.00 3.78 7.24 10.60 13.09
Avg. subopt. 1.000 1.052 1.140 1.214 1.286
Max. subopt. 1.000 1.370 1.731 1.920 2.156
wA*-2D; w = 1 1.5 2 2.5 3
Speed up 4.88 36.08 53.12 61.60 61.45
Avg. subopt. 1.007 1.073 1.139 1.196 1.433
Max. subopt. 1.030 1.227 1.574 1.731 2.965

Table 5: Comparison of weighted A* searches using the Eu-
clidean distance heuristic (wA*-Euc) and the 2D heuristic
(wA*-2D) with different suboptimality bounds w on the Ur-
ban setup.

at the start node. CR→-connect does not perform dupli-
cate detection and therefore requires less time to expand
each node compared to FR→-connect. Our implementation
uses precomputed canonical successor lookup tables (sim-
ilar to freespace distance lookup tables used in FR): Each
entry (xe, ye, θe) in the canonical successor lookup table Tθ
is a bitfield where the ith bit indicates whether extending
the canonical freespace (0, 0, θ)-(xe, ye, θe)-path with the
ith primitive (for pose θe) results in a canonical freespace
path. We populate the canonical successor lookup tables by
depth-first searches that generate freespace paths in increas-
ing lexicographic order. CR←-connect is implemented sim-
ilarly by using precomputed canonical predecessor lookup
tables.5 We implement CR-refine as a series of canonical
parent lookups to generate the canonical freespace path be-
tween a given pair of CR-reachable nodes. Whereas canon-
ical successor lookup tables store the children of nodes in
forward canonical trees, canonical parent lookup tables store
their parents instead. Each entry (xe, ye, θe) in the canonical
parent lookup table Tθ identifies the last primitive (using its
ID) on the canonical freespace (0, 0, θ)-(xe, ye, θe) path.6

We compare SC-SGs using FR and CR on the Unicycle
(Table 3) and Urban (Table 4) setups. We observe the fol-

5Since there are at most 4 (32) primitives per pose in the Uni-
cycle (Urban) setup, we use 1 Byte (4 Bytes) to store each entry in
the canonical successor/predecessor lookup tables.

6We use 1 Byte to store each entry in the canonical parent
lookup tables for both the Unicycle and Urban setups, which can
distinguish between 256 primitive IDs per pose.

lowing trends: (1) CR-connect is 2.6-2.9 times faster than
FR-connect (for the same reachability bound) on the Unicy-
cle setup and 7.8-8.2 times faster on the Urban setup. Com-
pared to the Unicycle setup, FR-connect is 60.9-81.8 times
slower and CR-connect is 20.6-28.9 times slower on the Ur-
ban setup, which has up to 8 times more primitives per pose.
These results suggest that connection times scale better with
the number of primitives per pose when using CR rather
than FR. (2) CR-refine is 4.8-9 times faster than FR-refine
on the Unicycle setup and 18.9-96.1 times faster on the Ur-
ban setup. Although this is a significant improvement, it is
not reflected in query times since refinement times make up
at most 4.6% of query times for FR. (3) SC-SGs using CR
have up to 35% more subgoals on the Unicycle setup and
up to 14% more subgoals on the Urban setup. As a result,
searches using CR are up to 34% slower on the Unicycle
setup and up to 17% slower on the Urban setup. CR induces
more subgoals in SC-SGs because if a canonical freespace s-
t-path is unblocked, then it must be the case that a freespace
s-t-path is unblocked (that is, if (s, t) ∈ CR, then (s, t) ∈
FR) and, therefore, the SC-SG for CR can be used as an
SC-SG for FR. (4) Paths found by using FR and CR are of
similar length. (5) Preprocessing using CR is 1.6-3.5 times
faster than FR on the Unicycle setup and 4.7-7.4 times faster
on the Urban setup. These results mirror the speed-up CR-
connect achieves over FR-connect, since R-connect is used
when identifying the access subgoals and edges of SC-SGs.
(6) Using CR requires slightly less memory than using FR
on the Unicycle setup (where we can use 1 Byte to store each
entry in the canonical successor/predecessor tables), but re-
quires more than double the memory on the Urban setup.

Table 5 shows a comparison of weighted A* searches on
the Urban setup’s state lattice, using the Euclidean Distance
heuristic (wA*-Euc) and the 2D heuristic7 (wA*-2D), us-
ing different suboptimality bounds w. wA*-2D with w = 2
achieves a speed-up of 53.1 and finds paths that are 13.9%
longer than optimal. C-CR100 achieves a speed-up of 201.3
and finds paths that are only 8.8% longer than optimal.

7The 2D-heuristic is the distance between the cells correspond-
ing to two nodes in the underlying (8-neighbor) grid and is not
necessarily admissible.



Conclusions and Future Work
We have tried to improve the query times of SGs on state lat-
tices by using a construction strategy which guarantees that
the set of subgoals is minimal and by pruning the edges of
SGs while maintaining a suboptimality bound. Both meth-
ods failed to significantly improve the query times of SGs.
Motivated by these results, we proposed a variant of SGs
that try to minimize the number of subgoals while maintain-
ing completeness, which we believe to be a good first step in
the direction of developing a bounded-suboptimal version
of SGs that not only modifies the edges of SGs but also
the placement of the subgoals. Our new variant, SC-SGs,
achieved a speed-up of 200 over A* on a state lattice with 15
million nodes and 333 million edges, using our new reach-
ability relation, canonical freespace reachability. Although
SC-SGs do not guarantee bounded suboptimality, they seem
to find paths that are close to optimal in practice.

We believe that there are several ways to improve SC-
SGs or augment them to achieve different trade-offs of query
times, memory, and suboptimality. For instance, our prelim-
inary experiments showed that iterating over nodes in a dif-
ferent order in Algorithm 1 can result in fewer subgoals, or
adding more subgoals to SC-SGs can result in slower queries
that find shorter paths. We believe that a similar result can
be achieved with a smaller increase in runtime by smooth-
ing subgoal paths using CR-refine with a higher reachability
bound, by iteratively identifying two CR-reachable nodes on
the subgoal path that are not consecutive and bypassing the
nodes between them. We also envision a version of SC-SGs
that uses a smaller reachability bound for connecting start
and goal nodes to the SC-SG and a larger reachability bound
for strongly connecting the subgoals.
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