

Toward a String-Pulling Approach to Path Smoothing on Grid Graphs

Jihee Han Tansel Uras Sven Koenig

Department of Computer Science
University of Southern California

Los Angeles, USA
jrjrhan@gmail.com turas@usc.edu skoenig@usc.edu

Abstract

Paths found on grid graphs are often unrealistic looking in the
continuous environment that the grid graph represents and of-
ten need to be smoothed after a search. The well-known al-
gorithm for path smoothing is greedy in nature and does not
necessarily eliminate all heading changes in freespace. We
present preliminary research toward a new path-smoothing
algorithm based on “string pulling” and show experimentally
that it consistently finds shorter paths than the greedy path-
smoothing algorithm and produces paths with no heading
changes in freespace.

 Introduction

Grid graphs are useful discretizations that allow for efficient

path planning in continuous 2D environments via A* and

other graph-search algorithms. Grid graphs are angle-lim-

ited, that is, allow movement in only a fixed number of di-

rections. As a result, shortest grid paths are often longer than

shortest paths in the continuous environments and unrealis-

tic looking due to unnecessary and thus unmotivated head-

ing changes in freespace. This problem can be mitigated by

smoothing grid paths in a post-processing step, typically

with a greedy path-smoothing algorithm that replaces parts

of the paths with straight lines that do not intersect with ob-

stacles (Botea, Müller, & Schaeffer 2004; Thorpe 1984;

Millington & Funge 2009). It can also be mitigated by inter-

leaving the path smoothing with the search, resulting in any-

angle path-planning algorithms (Ferguson & Stentz 2006;

Nash & Koenig 2013; Sislak, Volf, & Pechoucek 2009;

Choi, Lee, & Yu 2010; Yap, Burch, Holte, & Schaeffer

2011; Harabor & Grastien 2013; Uras & Koenig 2015).

Any-angle path-planning algorithms are typically slower

than A* followed by path smoothing, but find shorter paths.

 In this paper, we introduce a path-smoothing algorithm

based on “string pulling:” Imagine that our input path (a

shortest grid path) is a piece of string. If we pull the string

Copyright © 2020, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

taut between the start and goal vertices, then the resulting

configuration of the string corresponds to a shortest (any-

angle) path between the start and goal vertices in the contin-

uous environment that is in the same homotopy class as the

input path (that is, circumnavigates the obstacles in the same

way). Our work is research in progress, and we currently do

not have a proof that our string-pulling algorithm perfectly

simulates string pulling and therefore produces the shortest

(any-angle) path in a given homotopy class. However, we

show experimentally that it consistently finds shorter paths

than the greedy path-smoothing algorithm and produces

paths with no heading changes in freespace.

 This paper is organized as follows. We first describe the

existing greedy path-smoothing algorithm and highlight a

fundamental weakness of this algorithm, namely that its

paths can have heading changes only at vertices along the

input path and thus have heading changes in freespace for

some input paths. We then introduce our string-pulling al-

gorithm and describe how it can efficiently identify new ver-

tices for heading changes. We conclude by presenting ex-

perimental results comparing the two path-smoothing algo-

rithms and Theta*, a prototypical any-angle path-planning

algorithm (Daniel, Nash, Koenig, & Felner 2010).

Preliminaries

A grid is a tessellation of a 2D environment into square cells,

where each cell is either blocked or unblocked. An eight-

neighbor grid graph G = (V, E) is constructed from the grid

by placing vertices at the corners of unblocked cells and

connecting two vertices with an edge iff they belong to the

same unblocked cell. We use s and g to denote the start and

goal vertices, respectively. Two vertices u and v have line-

of-sight (LOS) iff the straight-line segment between them is

contained in the union of unblocked cells (including their

borders). Whether two vertices have LOS can be determined

with a modified version of Bresenham’s line-drawing algo-

rithm (Bresenham 1965), as described in (Botea, Müller, &

Schaeffer 2004).

 A path is a sequence of vertices. An any-angle path is a

sequence of vertices where consecutive vertices on the path

have LOS. A grid path is an any-angle path where consecu-

tive vertices on the path are neighbors. The input path P is

the grid path (s = p1, p2, …, pn = g). According to our defi-

nition of LOS, any-angle or grid paths can pass through the

vertex were diagonally-touching blocked cells touch, an as-

sumption that we make only for simplicity.

Greedy Path-Smoothing Algorithm

Removing an internal vertex 𝑝𝑖 from an any-angle path P

(that is, a vertex on the path that is not the first or last vertex

on the path) produces another any-angle path iff the imme-

diately preceding and succeeding vertices 𝑝𝑖−1 and 𝑝𝑖+1 of

𝑝𝑖 on P have LOS. Removing 𝑝𝑖 from P shortcuts 𝑝𝑖 and

makes the path move directly from 𝑝𝑖−1 to 𝑝𝑖+1 on a straight

line. The greedy path-smoothing algorithm operates by iter-

ating over the internal vertices of the input path and

shortcutting them if possible (Botea, Müller, & Schaeffer

2004). Figure 1 shows an example, where the input path is

shown in grey, the output path is shown in green, and the

shortest any-angle path is shown in blue. The greedy path-

smoothing algorithm removes the first three internal vertices

of the input path after successful LOS checks. It does not

remove the fourth internal vertex after an unsuccessful LOS

check, but removes the fifth internal vertex again, which

does not shorten the path any further. The resulting path is

longer than the shortest any-angle path and has an unmoti-

vated heading change in freespace at the fourth internal ver-

tex of the input path.

Figure 1: Example of the greedy path-smoothing algorithm

 If the greedy path-smoothing algorithm had iterated over

the internal vertices in a different order, it could have pro-

duced a different output path. For example, if it had started

at the fourth internal vertex, it would have successfully

shortened it. However, its output path is always restricted to

be a subsequence of its input path since it only removes ver-

tices but does not add them. Therefore, the heading changes

of its output path can occur only at the internal vertices of

its input path, which is why it cannot produce the shortest

any-angle path in Figure 1, regardless of the order in which

it iterates over the internal vertices of its input path.

String-Pulling Algorithm

Our string-pulling algorithm aims to produce a shortest any-

angle path in the same homotopy class as the input path by

both removing vertices from the input path and, different

from the greedy path-smoothing algorithm, adding vertices

to it. It starts with the empty output path and iterates over

the vertices on the input path in the order in which they ap-

pear on it. We use SP to denote the output path and s𝑝𝑒𝑛𝑑

and 𝑠𝑝𝑒𝑛𝑑−1 to denote the last and next to last, respectively,

vertex on it. During each iteration, it either adds a vertex to

SP or removes a vertex from it. It adds (“appends”) a new

vertex to the end of SP to add a necessary heading change to

it if a LOS check fails, based on the blocked cells that cause

the LOS check to fail. It removes (“truncates”) the last ver-

tex from SP to remove the heading change from it if that

heading change is no longer a taut turn at a convex corner of

a blocked cell. During each iteration, it can append or trun-

cate any number of vertices (including no vertices). Algo-

rithm 1 shows pseudocode of the string-pulling algorithm,

and Table 1 shows a trace of its operations for the example

of Figure 2. We now explain its operations in more detail.

Adding a vertex to SP: The key insight behind adding a

vertex to SP is that, when a LOS check fails, we can deter-

mine which vertex to append based only on the set of

blocked cells that caused the LOS check to fail. For instance,

in the example of Figure 1, once the LOS check to shortcut

the fourth internal vertex on the input path fails, instead of

keeping that vertex on the output path, we replace it with the

blue vertex at the corner of the blocked cell that caused the

LOS check to fail. We now provide details on the approach.

 We consider the last vertex 𝑠𝑝𝑒𝑛𝑑 on the current output

path SP (initially 𝑝1) and vertex 𝑝𝑖 (initially 𝑝3). If the LOS

check between 𝑠𝑝𝑒𝑛𝑑 and 𝑝𝑖 fails (Lines 7-18), we deter-

mine the set icell of cells that the straight line between 𝑠𝑝𝑒𝑛𝑑

and 𝑝𝑖 intersects (by invoking function LOScells on Line 5).

We then determine the set cd of candidate vertices to be ap-

pended to SP as all corners of all cells in icell (by invoking

function GetCorners on Line 7). For each candidate vertex

v’ in cd, we determine the angle 𝑎𝑛𝑔𝑙𝑒𝑣′ =
∠(𝑝𝑖−1, 𝑠𝑝𝑒𝑛𝑑 , 𝑣

′) (by invoking function CalcAngle on Line

9), append the one with the smallest such angle (Lines 8-11)

to SP as the vertex that results in the most taut collision-free

path between 𝑠𝑝𝑒𝑛𝑑 and 𝑝𝑖 , and iterate. For example, in Fig-

ure 2(b), the LOS check fails due to a blocked cell, whose

corners become candidate vertices to be appended to SP

(shown as red circles), among which we choose the one

(namely, B3) with the smallest angle (namely, zero). In case

of ties, we choose the one farthest away from 𝑠𝑝𝑒𝑛𝑑 (Lines

s

g

12-15) to keep the number of iterations small. In Figure 2(d),

two candidate vertices (namely, B3 and A5) have the small-

est angle (namely, zero), and we thus choose the one

(namely, A5) farthest away from 𝑠𝑝𝑒𝑛𝑑 (namely, C1). If we

chose B3 instead, then we would need an additional iteration

to append A5 and the resulting path would contain the un-

necessary vertex B3 since the path passes through it in a

straight line.

Figure 2: Example of the string-pulling algorithm

Iteration Figure Lines SP turn

in the beginning 2(a) 1-3 (C1) NULL

i=3; C1-B3 have LOS:

truncate

2(a) 20-29 no change since size(SP) = 1

i=4; C1-B4 have no LOS:

append

2(b) 7-18 (C1, B3) CalcTurn(C1, B3, B4)

= right

i=4; B3-B4 have LOS:

truncate

2(b) 20-29 no change since turn has not changed

i=5; B3-B5 have LOS:

truncate

2(c) 20-29 (C1) no change since

size(SP) = 1

i=5; C1-A5 have LOS:

truncate

2(c) 20-29 no change since size(SP) = 1

i=6; C1-A6 have no LOS:

append

2(d) 7-18 (C1, A5) CalcTurn(C1, A5, A6)

= right

i=6; A5-A6 have LOS:

truncate

2(d) 20-29 no change since turn has not changed

at the end 2(d) 32-33 (C1, A5, A6) no change

Table 1: Trace of the string-pulling algorithm

Removing a vertex from SP: The key insight behind re-

moving a vertex from SP is that, when SP starts to turn in a

different direction, it is no longer taut and we have to re-

move the last vertex from it. We now provide details on the

approach.

 If the LOS check between 𝑠𝑝𝑒𝑛𝑑 and 𝑝𝑖 succeeds (Lines

20-29), we check whether SP is still taut. If not, then we

truncate the last vertex on SP to make SP taut again and it-

erate. The following iteration will handle the case where the

LOS check between the last vertex on SP after the update

and 𝑝𝑖 fails (by adding a vertex to SP). We determine

whether SP is still taut by using the variable turn (initialized

with NULL) to keep track of the kind of turn (left, straight,

or right) from the next to last vertex on SP via the last vertex

on SP to 𝑝𝑖 (by invoking function CalcTurn). Whenever a

vertex is added to or removed from SP, we update the value

of variable turn (Lines 17 and 25). If the LOS check between

𝑠𝑝𝑒𝑛𝑑 and 𝑝𝑖 succeeds, then we calculate the current kind of

turn (Line 21) and compare it to the one stored in variable

turn. If the two values are different, then SP is no longer taut

and we truncate the last vertex on SP to make SP taut again

(Lines 20-29). In Figure 2(b), B3 is appended and the result-

ing turn of (C1, B3, B4) is to the right. In Figure 2(c), B3 is

truncated because the turn of (C1, B3, C5) is straight and

thus different from the previous one.

Algorithm 1 String-Pulling (P = (𝑝1, 𝑝2, … , 𝑝𝑛))
1: 𝑆𝑃 ← ∅;

2: 𝑆𝑃. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑝1);

3: turn ← NULL;

4: for i = 3, …, n

5: 𝑖𝑐𝑒𝑙𝑙 ← 𝐿𝑂𝑆𝑐𝑒𝑙𝑙𝑠(𝑠𝑝𝑒𝑛𝑑, 𝑝𝑖);

6: if i𝑐𝑒𝑙𝑙 ≠ ∅

7: 𝑐𝑑 ← 𝐺𝑒𝑡𝐶𝑜𝑟𝑛𝑒𝑟𝑠(𝑖𝑐𝑒𝑙𝑙);

8: for each 𝑣′ ∈ 𝑐𝑑

9: 𝑎𝑛𝑔𝑙𝑒𝑣′ ← 𝐶𝑎𝑙𝑐𝐴𝑛𝑔𝑙𝑒(𝑝𝑖−1, 𝑠𝑝𝑒𝑛𝑑, 𝑣
′);

10: end

11: 𝑐𝑑𝑚𝑖𝑛 ← {𝑣 ∈ 𝑐𝑑|𝑎𝑛𝑔𝑙𝑒𝑣 = min𝑣′∈𝑐𝑑 𝑎𝑛𝑔𝑙𝑒𝑣′};

12: for each 𝑣′ ∈ 𝑐𝑑𝑚𝑖𝑛

13: 𝑑𝑖𝑠𝑡𝑣′ ← ||𝑠𝑝𝑒𝑛𝑑 − 𝑣′||;

14: end

15: 𝑢 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑣′∈𝑐𝑑𝑚𝑖𝑛 𝑑𝑖𝑠𝑡𝑣′;

16: 𝑆𝑃. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑢);

17: turn ← 𝐶𝑎𝑙𝑐𝑇𝑢𝑟𝑛(𝑠𝑝𝑒𝑛𝑑−1, 𝑠𝑝𝑒𝑛𝑑, 𝑝𝑖);

18: 𝑖 ← 𝑖 − 1;

19: else

20: if size(𝑆𝑃) > 1

21: 𝑐𝑢𝑟_turn ← 𝐶𝑎𝑙𝑐𝑇𝑢𝑟𝑛(𝑠𝑝𝑒𝑛𝑑−1, 𝑠𝑝𝑒𝑛𝑑, 𝑝𝑖);

22: if turn ≠ 𝑐𝑢𝑟_turn

23: 𝑆𝑃. 𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒();

24: if size(𝑆𝑃) > 1

25: turn ← 𝐶𝑎𝑙𝑐𝑇𝑢𝑟𝑛(𝑠𝑝𝑒𝑛𝑑−1, 𝑠𝑝𝑒𝑛𝑑, 𝑝𝑖);

26: end

27: 𝑖 ← 𝑖 − 1;

28: end

29: end

30: end

31: end

32: 𝑆𝑃. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑝𝑛);

33: return 𝑆𝑃;

Experiments

We used grid maps of size 512x512 from Nathan Sturte-

vant’s repository (http://movingai.com/benchmarks/) in our

experiments, including randomly blocked maps with differ-

ent percentages of blocked cells, real-world street maps with

different shapes of obstacles, and room maps with different

room sizes. We ran our experiments on an Intel i5-6300U

(2.40GHz) CPU with 4GB of RAM and compared A* with-

out path smoothing, A* with the greedy path-smoothing al-

gorithm (A* with G), our A* with string pulling (A* with

s

g

s

g

s

g

s

g

Grid path
String-pulled path

Failed LOS check
Candidate corner

(a) (b)

(c) (d)

A

B

C

1 2 3 4 5 6

SP), and Theta*, all implemented in C++. (We implemented

Theta* both without path smoothing and with the greedy

path-smoothing algorithm, resulting in similar statistics, so

we report results for Theta* without path smoothing here.)

Figure 3 shows the paths of A* without path smoothing, A*

with G, A* with SP, and Theta*, which are drawn with a

thin grey line, dotted green line, solid blue line, and dashed

black line, respectively.

Figure 3: Example paths of different path-planning algorithms

 Path length

(% longer than

shortest)

Runtime

(ms)

Freespace heading

changes

Map

No.

of in-

stanc

es

A*

A*

with

G

A*

with

SP

The

ta*
A*

A*

wit

h G

A*

wit

h

SP

Th

eta

*

A*

A*

with

G

A*

with

SP

The

ta*

Rand 10 1,780 4.39 1.90 1.26 0.15 51 51 53 64 34.68 7.53 0.00 1.6

Rand 20 1,910 4.26 2.27 1.26 0.21 49 49 51 99 24.28 7.66 0.00 1.32

Rand 30 2,070 4.29 2.45 1.15 0.24 51 51 53 135 20.88 8.43 0.00 1.15

Rand 40 3,170 4.29 2.20 0.85 0.25 30 30 31 114 20.88 8.20 0.00 1.45

Str Ber-

lin

1,870 5.08 0.82 0.13 0.08 84 85 86 478 37.48 1.31 0.00 0.25

Str Bos-

ton

1,830 4.42 0.72 0.30 0.08 61 61 62 339 34.84 1.46 0.00 0.39

Str

NewYor

k

1,820 4.86 0.76 0.07 0.11 72 72 74 296 34.56 1.86 0.00 0.56

Str Paris 1,900 4.90 1.06 0.27 0.12 81 81 82 354 35.32 2.44 0.00 0.76

Room 8 2,140 4.91 1.55 0.12 0.16 111 111 113 297 40.50 11.22 0.00 1.87

Room 16 2,010 4.88 1.17 0.11 0.09 123 123 124 308 25.94 5.40 0.00 0.78

Room 32 2,130 5.26 0.98 0.07 0.05 149 149 150 449 20.79 2.89 0.00 0.21

Room 64 2,150 5.22 0.57 0.02 0.01 158 159 160 694 20.84 1.25 0.00 0.09

Table 2: Experimental results

 Table 2 shows the path length, runtime, and number of

heading changes in freespace for each map, averaged over

all instances with random start and goal vertices.

 Path length: The path-planning algorithm with the short-

est path length was Theta* (with an average optimality gap

of 0.13%), followed by A* with SP (0.47%), A* with G

(1.37%), and A* without path smoothing (4.73%). We de-

termined the optimality gaps by finding the shortest paths in

the continuous environments with ANYA (Harabor & Gras-

tien 2013).

 Runtime: The path-planning algorithm with the shortest

runtime was A* without path smoothing (with an average

runtime of 173.17ms), followed by A* with G (173.69ms),

A* with SP (176.71ms), and Theta* (302.74ms) – the oppo-

site of the ordering of the path-planning algorithms accord-

ing to their path lengths (as expected since a longer runtime

should result in shorter paths).

 Freespace heading changes: The path-planning algo-

rithm with the least number of heading changes in freespace

was A* with SP (with an average number of zero heading

changes in freespace), followed by Theta* (0.86), A* with

G (4.97), and A* without path smoothing (29.25).

Conclusions

We introduced a new easy-to-implement path-smoothing al-

gorithm based on “string pulling” and showed experimen-

tally that it consistently finds paths that are shorter than the

ones of the greedy path-smoothing algorithm although it

runs almost as fast as it. In fact, we showed experimentally

that it finds paths that are almost as short as the ones of

Theta* but runs much faster than it. Finally, we showed ex-

perimentally that it finds paths with fewer heading changes

in freespace than the ones of both the greedy path-smooth-

ing algorithm and Theta*, namely paths with no heading

changes in freespace (that is, all heading changes help to cir-

cumnavigate obstacles via taut turns at the convex corners

of blocked cells).

 Our string-pulling algorithm is especially useful for ap-

plications where any-angle path-planning algorithms like

Theta* are impractical to implement or use (for example,

run too slowly) or unmotivated heading changes in

freespace need to be avoided (for example, because they

look unrealistic). It is also useful if an any-time algorithm is

needed since it decreases the length of the input path over

time. Finally, it is also useful if one wants to minimize the

sum of the times for path planning and path following since

it shortens larger and larger prefixes of the input path and an

agent can thus start to move along the path during path

smoothing.

 Future work includes proving the correctness of the

string-pulling algorithm (which might include changing it

appropriately for this purpose), extending it to higher di-

mensions, and combining it with Theta*.

Acknowledgments

This research was performed while Jihee Han visited the

University of Southern California, partially supported by a

grant of the National Research Foundation (NRF) of Korea

funded by the Korean government (MSIT) under grant num-

ber NRF-2019R1C1C1002798. The research was also sup-

ported by grants funded by the National Science Foundation

(NSF) of the US under grant numbers 1724392, 1409987,

1817189, 1837779, and 1935712.

References

Botea, A.; Müller, M.; and Schaeffer, J. 2004. Near optimal hier-
archical path-finding. Journal of Game Development 1(1): 7-28.

Bresenham, J. 1965. Algorithm for computer control of a digital
plotter. IBM Systems Journal 4(1): 25–30.

Choi, S.; Lee, J.; and Yu, W. 2010. Fast any-angle path planning
on grid maps with non-collision pruning. In Proceedings of the
IEEE International Conference on Robotics and Biomimetics,
1051-1056.

Daniel, K.; Nash, A.; Koenig, A.; and Felner, A. 2010. Theta*:
Any-angle path planning on grids. Journal of Artificial Intelligence
Research 39: 533-579.

Ferguson, D. and Stentz, A. 2006. Using interpolation to improve
path planning: The Field D* algorithm. Journal of Field Robotics,
23(2): 79-101.

Harabor, D. and Grastien, A. 2013. An optimal any-angle pathfind-
ing algorithm. In Proceedings of the International Conference on
Automated Planning and Scheduling, 308–311.

Millington, I. and Funge, J. 2009. Artificial Intelligence for Games.
Morgan Kaufmann, second edition.

Nash, A. and Koenig, S. 2013. Any-angle path planning. AI Mag-
azine 34(4): 85-107.

Sislak, D.; Volf, P.; and Pechoucek, M. 2009. Accelerated A* path
planning. In Proceedings of the International Joint Conference on
Autonomous Agents and Multiagent Systems, 1133–1134.

Thorpe, C. 1984. Path relaxation: Path planning for a mobile robot.
In Proceedings of the AAAI Conference on Artificial Intelligence,
318–321.

Uras, T. and Koenig, S. 2015. An empirical comparison of any-
angle path-planning algorithms. In Proceedings of the Annual Sym-
posium on Combinatorial Search.

Yap, P.; Burch, N.; Holte, R.; and Schaeffer, J. 2011. Any-angle
path planning for computer games. In Proceedings of the Confer-
ence on Artificial Intelligence and Interactive Digital Entertain-
ment.

