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Abstract 

Paths found on grid graphs are often unrealistic looking in the 
continuous environment that the grid graph represents and of-
ten need to be smoothed after a search. The well-known al-
gorithm for path smoothing is greedy in nature and does not 
necessarily eliminate all heading changes in freespace. We 
present preliminary research toward a new path-smoothing 
algorithm based on “string pulling” and show experimentally 
that it consistently finds shorter paths than the greedy path-
smoothing algorithm and produces paths with no heading 
changes in freespace. 

 Introduction   

Grid graphs are useful discretizations that allow for efficient 

path planning in continuous 2D environments via A* and 

other graph-search algorithms. Grid graphs are angle-lim-

ited, that is, allow movement in only a fixed number of di-

rections. As a result, shortest grid paths are often longer than 

shortest paths in the continuous environments and unrealis-

tic looking due to unnecessary and thus unmotivated head-

ing changes in freespace. This problem can be mitigated by 

smoothing grid paths in a post-processing step, typically 

with a greedy path-smoothing algorithm that replaces parts 

of the paths with straight lines that do not intersect with ob-

stacles (Botea, Müller, & Schaeffer 2004; Thorpe 1984; 

Millington & Funge 2009). It can also be mitigated by inter-

leaving the path smoothing with the search, resulting in any-

angle path-planning algorithms (Ferguson & Stentz 2006; 

Nash & Koenig 2013; Sislak, Volf, & Pechoucek 2009; 

Choi, Lee, & Yu 2010; Yap, Burch, Holte, & Schaeffer 

2011; Harabor & Grastien 2013; Uras & Koenig 2015). 

Any-angle path-planning algorithms are typically slower 

than A* followed by path smoothing, but find shorter paths. 

 In this paper, we introduce a path-smoothing algorithm 

based on “string pulling:” Imagine that our input path (a 

shortest grid path) is a piece of string. If we pull the string 
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taut between the start and goal vertices, then the resulting 

configuration of the string corresponds to a shortest (any-

angle) path between the start and goal vertices in the contin-

uous environment that is in the same homotopy class as the 

input path (that is, circumnavigates the obstacles in the same 

way). Our work is research in progress, and we currently do 

not have a proof that our string-pulling algorithm perfectly 

simulates string pulling and therefore produces the shortest 

(any-angle) path in a given homotopy class. However, we 

show experimentally that it consistently finds shorter paths 

than the greedy path-smoothing algorithm and produces 

paths with no heading changes in freespace.  

 This paper is organized as follows. We first describe the 

existing greedy path-smoothing algorithm and highlight a 

fundamental weakness of this algorithm, namely that its 

paths can have heading changes only at vertices along the 

input path and thus have heading changes in freespace for 

some input paths. We then introduce our string-pulling al-

gorithm and describe how it can efficiently identify new ver-

tices for heading changes. We conclude by presenting ex-

perimental results comparing the two path-smoothing algo-

rithms and Theta*, a prototypical any-angle path-planning 

algorithm (Daniel, Nash, Koenig, & Felner 2010). 

Preliminaries 

A grid is a tessellation of a 2D environment into square cells, 

where each cell is either blocked or unblocked. An eight-

neighbor grid graph G = (V, E) is constructed from the grid 

by placing vertices at the corners of unblocked cells and 

connecting two vertices with an edge iff they belong to the 

same unblocked cell. We use s and g to denote the start and 

goal vertices, respectively. Two vertices u and v have line-

of-sight (LOS) iff the straight-line segment between them is 

contained in the union of unblocked cells (including their 

borders). Whether two vertices have LOS can be determined 

 



with a modified version of Bresenham’s line-drawing algo-

rithm (Bresenham 1965), as described in (Botea, Müller, & 

Schaeffer 2004).  

 A path is a sequence of vertices. An any-angle path is a 

sequence of vertices where consecutive vertices on the path 

have LOS. A grid path is an any-angle path where consecu-

tive vertices on the path are neighbors. The input path P is 

the grid path (s = p1, p2, …, pn = g). According to our defi-

nition of LOS, any-angle or grid paths can pass through the 

vertex were diagonally-touching blocked cells touch, an as-

sumption that we make only for simplicity. 

Greedy Path-Smoothing Algorithm 

Removing an internal vertex 𝑝𝑖  from an any-angle path P 

(that is, a vertex on the path that is not the first or last vertex 

on the path) produces another any-angle path iff the imme-

diately preceding and succeeding vertices 𝑝𝑖−1 and 𝑝𝑖+1 of 

𝑝𝑖  on P have LOS. Removing 𝑝𝑖  from P shortcuts 𝑝𝑖  and 

makes the path move directly from 𝑝𝑖−1 to 𝑝𝑖+1 on a straight 

line. The greedy path-smoothing algorithm operates by iter-

ating over the internal vertices of the input path and 

shortcutting them if possible (Botea, Müller, & Schaeffer 

2004).  Figure 1 shows an example, where the input path is 

shown in grey, the output path is shown in green, and the 

shortest any-angle path is shown in blue. The greedy path-

smoothing algorithm removes the first three internal vertices 

of the input path after successful LOS checks. It does not 

remove the fourth internal vertex after an unsuccessful LOS 

check, but removes the fifth internal vertex again, which 

does not shorten the path any further. The resulting path is 

longer than the shortest any-angle path and has an unmoti-

vated heading change in freespace at the fourth internal ver-

tex of the input path. 

 

Figure 1: Example of the greedy path-smoothing algorithm  

 

 If the greedy path-smoothing algorithm had iterated over 

the internal vertices in a different order, it could have pro-

duced a different output path. For example, if it had started 

at the fourth internal vertex, it would have successfully 

shortened it. However, its output path is always restricted to 

be a subsequence of its input path since it only removes ver-

tices but does not add them. Therefore, the heading changes 

of its output path can occur only at the internal vertices of 

its input path, which is why it cannot produce the shortest 

any-angle path in Figure 1, regardless of the order in which 

it iterates over the internal vertices of its input path. 

String-Pulling Algorithm 

Our string-pulling algorithm aims to produce a shortest any-

angle path in the same homotopy class as the input path by 

both removing vertices from the input path and, different 

from the greedy path-smoothing algorithm, adding vertices 

to it. It starts with the empty output path and iterates over 

the vertices on the input path in the order in which they ap-

pear on it. We use SP to denote the output path and s𝑝𝑒𝑛𝑑  

and 𝑠𝑝𝑒𝑛𝑑−1 to denote the last and next to last, respectively, 

vertex on it. During each iteration, it either adds a vertex to 

SP or removes a vertex from it. It adds (“appends”) a new 

vertex to the end of SP to add a necessary heading change to 

it if a LOS check fails, based on the blocked cells that cause 

the LOS check to fail. It removes (“truncates”) the last ver-

tex from SP to remove the heading change from it if that 

heading change is no longer a taut turn at a convex corner of 

a blocked cell. During each iteration, it can append or trun-

cate any number of vertices (including no vertices). Algo-

rithm 1 shows pseudocode of the string-pulling algorithm, 

and Table 1 shows a trace of its operations for the example 

of Figure 2. We now explain its operations in more detail. 

Adding a vertex to SP: The key insight behind adding a 

vertex to SP is that, when a LOS check fails, we can deter-

mine which vertex to append based only on the set of 

blocked cells that caused the LOS check to fail. For instance, 

in the example of Figure 1, once the LOS check to shortcut 

the fourth internal vertex on the input path fails, instead of 

keeping that vertex on the output path, we replace it with the 

blue vertex at the corner of the blocked cell that caused the 

LOS check to fail. We now provide details on the approach. 

 We consider the last vertex 𝑠𝑝𝑒𝑛𝑑 on the current output 

path SP (initially 𝑝1) and vertex 𝑝𝑖  (initially 𝑝3). If the LOS 

check between 𝑠𝑝𝑒𝑛𝑑  and 𝑝𝑖  fails (Lines 7-18), we deter-

mine the set icell of cells that the straight line between 𝑠𝑝𝑒𝑛𝑑 

and 𝑝𝑖  intersects (by invoking function LOScells on Line 5). 

We then determine the set cd of candidate vertices to be ap-

pended to SP as all corners of all cells in icell (by invoking 

function GetCorners on Line 7). For each candidate vertex 

v’ in cd, we determine the angle 𝑎𝑛𝑔𝑙𝑒𝑣′ =
∠(𝑝𝑖−1, 𝑠𝑝𝑒𝑛𝑑 , 𝑣

′) (by invoking function CalcAngle on Line 

9), append the one with the smallest such angle (Lines 8-11) 

to SP as the vertex that results in the most taut collision-free 

path between 𝑠𝑝𝑒𝑛𝑑 and 𝑝𝑖 , and iterate. For example, in Fig-

ure 2(b), the LOS check fails due to a blocked cell, whose 

corners become candidate vertices to be appended to SP 

(shown as red circles), among which we choose the one 

(namely, B3) with the smallest angle (namely, zero). In case 

of ties, we choose the one farthest away from 𝑠𝑝𝑒𝑛𝑑 (Lines 

s 

g 



12-15) to keep the number of iterations small. In Figure 2(d), 

two candidate vertices (namely, B3 and A5) have the small-

est angle (namely, zero), and we thus choose the one 

(namely, A5) farthest away from 𝑠𝑝𝑒𝑛𝑑 (namely, C1). If we 

chose B3 instead, then we would need an additional iteration 

to append A5 and the resulting path would contain the un-

necessary vertex B3 since the path passes through it in a 

straight line. 

 

Figure 2: Example of the string-pulling algorithm 

 
Iteration Figure Lines SP turn 

in the beginning 2(a) 1-3 (C1) NULL 

i=3; C1-B3 have LOS: 

truncate 

2(a) 20-29 no change since size(SP) = 1 

i=4; C1-B4 have no LOS: 

append 

2(b) 7-18 (C1, B3) CalcTurn(C1, B3, B4) 

= right 

i=4; B3-B4 have LOS: 

truncate 

2(b) 20-29 no change since turn has not changed 

i=5; B3-B5 have LOS: 

truncate 

2(c) 20-29 (C1) no change since 

size(SP) = 1 

i=5; C1-A5 have LOS: 

truncate 

2(c) 20-29 no change since size(SP) = 1 

i=6; C1-A6 have no LOS: 

append 

2(d) 7-18 (C1, A5) CalcTurn(C1, A5, A6) 

= right 

i=6; A5-A6 have LOS: 

truncate 

2(d) 20-29 no change since turn has not changed 

at the end 2(d) 32-33 (C1, A5, A6) no change 

Table 1: Trace of the string-pulling algorithm 

 

Removing a vertex from SP: The key insight behind re-

moving a vertex from SP is that, when SP starts to turn in a 

different direction, it is no longer taut and we have to re-

move the last vertex from it. We now provide details on the 

approach. 

 If the LOS check between 𝑠𝑝𝑒𝑛𝑑  and 𝑝𝑖  succeeds (Lines 

20-29), we check whether SP is still taut. If not, then we 

truncate the last vertex on SP to make SP taut again and it-

erate. The following iteration will handle the case where the 

LOS check between the last vertex on SP after the update 

and 𝑝𝑖  fails (by adding a vertex to SP). We determine 

whether SP is still taut by using the variable turn (initialized 

with NULL) to keep track of the kind of turn (left, straight, 

or right) from the next to last vertex on SP via the last vertex 

on SP to 𝑝𝑖  (by invoking function CalcTurn). Whenever a 

vertex is added to or removed from SP, we update the value 

of variable turn (Lines 17 and 25). If the LOS check between 

𝑠𝑝𝑒𝑛𝑑 and 𝑝𝑖  succeeds, then we calculate the current kind of 

turn (Line 21) and compare it to the one stored in variable 

turn. If the two values are different, then SP is no longer taut 

and we truncate the last vertex on SP to make SP taut again 

(Lines 20-29). In Figure 2(b), B3 is appended and the result-

ing turn of (C1, B3, B4) is to the right. In Figure 2(c), B3 is 

truncated because the turn of (C1, B3, C5) is straight and 

thus different from the previous one. 

 

Algorithm 1 String-Pulling (P = (𝑝1, 𝑝2, … , 𝑝𝑛)) 
1: 𝑆𝑃 ← ∅; 

2: 𝑆𝑃. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑝1); 

3: turn ← NULL; 

4: for i = 3, …, n 

5:  𝑖𝑐𝑒𝑙𝑙 ← 𝐿𝑂𝑆𝑐𝑒𝑙𝑙𝑠(𝑠𝑝𝑒𝑛𝑑, 𝑝𝑖); 

6:  if i𝑐𝑒𝑙𝑙 ≠ ∅ 

7:   𝑐𝑑 ← 𝐺𝑒𝑡𝐶𝑜𝑟𝑛𝑒𝑟𝑠(𝑖𝑐𝑒𝑙𝑙); 

8:   for each 𝑣′ ∈ 𝑐𝑑 

9:    𝑎𝑛𝑔𝑙𝑒𝑣′ ← 𝐶𝑎𝑙𝑐𝐴𝑛𝑔𝑙𝑒(𝑝𝑖−1, 𝑠𝑝𝑒𝑛𝑑, 𝑣
′); 

10:   end 

11:   𝑐𝑑𝑚𝑖𝑛 ← {𝑣 ∈ 𝑐𝑑|𝑎𝑛𝑔𝑙𝑒𝑣 = min𝑣′∈𝑐𝑑 𝑎𝑛𝑔𝑙𝑒𝑣′}; 

12:   for each 𝑣′ ∈ 𝑐𝑑𝑚𝑖𝑛 

13:    𝑑𝑖𝑠𝑡𝑣′ ← ||𝑠𝑝𝑒𝑛𝑑 − 𝑣′||; 

14:   end 

15:   𝑢 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑣′∈𝑐𝑑𝑚𝑖𝑛 𝑑𝑖𝑠𝑡𝑣′; 

16:   𝑆𝑃. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑢); 

17:   turn ← 𝐶𝑎𝑙𝑐𝑇𝑢𝑟𝑛(𝑠𝑝𝑒𝑛𝑑−1, 𝑠𝑝𝑒𝑛𝑑, 𝑝𝑖); 

18:   𝑖 ← 𝑖 − 1; 

19:  else 

20:   if size(𝑆𝑃) > 1 

21:    𝑐𝑢𝑟_turn ← 𝐶𝑎𝑙𝑐𝑇𝑢𝑟𝑛(𝑠𝑝𝑒𝑛𝑑−1, 𝑠𝑝𝑒𝑛𝑑, 𝑝𝑖); 

22:    if turn ≠ 𝑐𝑢𝑟_turn 

23:     𝑆𝑃. 𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒(); 

24:     if size(𝑆𝑃) > 1 

25:      turn ← 𝐶𝑎𝑙𝑐𝑇𝑢𝑟𝑛(𝑠𝑝𝑒𝑛𝑑−1, 𝑠𝑝𝑒𝑛𝑑, 𝑝𝑖); 

26:     end 

27:     𝑖 ← 𝑖 − 1; 

28:    end 

29:   end 

30:  end 

31: end 

32: 𝑆𝑃. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑝𝑛); 

33: return 𝑆𝑃; 

Experiments 

We used grid maps of size 512x512 from Nathan Sturte-

vant’s repository (http://movingai.com/benchmarks/) in our 

experiments, including randomly blocked maps with differ-

ent percentages of blocked cells, real-world street maps with 

different shapes of obstacles, and room maps with different 

room sizes. We ran our experiments on an Intel i5-6300U 

(2.40GHz) CPU with 4GB of RAM and compared A* with-

out path smoothing, A* with the greedy path-smoothing al-

gorithm (A* with G), our A* with string pulling (A* with 
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SP), and Theta*, all implemented in C++. (We implemented 

Theta* both without path smoothing and with the greedy 

path-smoothing algorithm, resulting in similar statistics, so 

we report results for Theta* without path smoothing here.) 

Figure 3 shows the paths of A* without path smoothing, A* 

with G, A* with SP, and Theta*, which are drawn with a 

thin grey line, dotted green line, solid blue line, and dashed 

black line, respectively. 

 

Figure 3: Example paths of different path-planning algorithms 

 

  Path length 

(% longer than 

shortest) 

Runtime 

(ms) 

Freespace heading 

changes 

Map 

No. 

of in-

stanc

es 

A* 

A* 

with 

G 

A* 

with 

SP 

The

ta* 
A* 

A* 

wit

h G 

A* 

wit

h 

SP 

Th

eta

* 

A* 

A* 

with 

G 

A* 

with 

SP 

The

ta* 

Rand 10 1,780 4.39 1.90 1.26 0.15 51 51 53 64 34.68 7.53 0.00 1.6 

Rand 20 1,910 4.26 2.27 1.26 0.21 49 49 51 99 24.28 7.66 0.00 1.32 

Rand 30 2,070 4.29 2.45 1.15 0.24 51 51 53 135 20.88 8.43 0.00 1.15 

Rand 40 3,170 4.29 2.20 0.85 0.25 30 30 31 114 20.88 8.20 0.00 1.45 

Str Ber-

lin 

1,870 5.08 0.82 0.13 0.08 84 85 86 478 37.48 1.31 0.00 0.25 

Str Bos-

ton 

1,830 4.42 0.72 0.30 0.08 61 61 62 339 34.84 1.46 0.00 0.39 

Str 

NewYor

k 

1,820 4.86 0.76 0.07 0.11 72 72 74 296 34.56 1.86 0.00 0.56 

Str Paris 1,900 4.90 1.06 0.27 0.12 81 81 82 354 35.32 2.44 0.00 0.76 

Room 8 2,140 4.91 1.55 0.12 0.16 111 111 113 297 40.50 11.22 0.00 1.87 

Room 16 2,010 4.88 1.17 0.11 0.09 123 123 124 308 25.94 5.40 0.00 0.78 

Room 32 2,130 5.26 0.98 0.07 0.05 149 149 150 449 20.79 2.89 0.00 0.21 

Room 64 2,150 5.22 0.57 0.02 0.01 158 159 160 694 20.84 1.25 0.00 0.09 

Table 2: Experimental results 

 

 Table 2 shows the path length, runtime, and number of 

heading changes in freespace for each map, averaged over 

all instances with random start and goal vertices. 

 Path length: The path-planning algorithm with the short-

est path length was Theta* (with an average optimality gap 

of 0.13%), followed by A* with SP (0.47%), A* with G 

(1.37%), and A* without path smoothing (4.73%). We de-

termined the optimality gaps by finding the shortest paths in 

the continuous environments with ANYA (Harabor & Gras-

tien 2013). 

 Runtime: The path-planning algorithm with the shortest 

runtime was A* without path smoothing (with an average 

runtime of 173.17ms), followed by A* with G (173.69ms), 

A* with SP (176.71ms), and Theta* (302.74ms) – the oppo-

site of the ordering of the path-planning algorithms accord-

ing to their path lengths (as expected since a longer runtime 

should result in shorter paths). 

 Freespace heading changes: The path-planning algo-

rithm with the least number of heading changes in freespace 

was A* with SP (with an average number of zero heading 

changes in freespace), followed by Theta* (0.86), A* with 

G (4.97), and A* without path smoothing (29.25).  

Conclusions 

We introduced a new easy-to-implement path-smoothing al-

gorithm based on “string pulling” and showed experimen-

tally that it consistently finds paths that are shorter than the 

ones of the greedy path-smoothing algorithm although it 

runs almost as fast as it. In fact, we showed experimentally 

that it finds paths that are almost as short as the ones of 

Theta* but runs much faster than it. Finally, we showed ex-

perimentally that it finds paths with fewer heading changes 

in freespace than the ones of both the greedy path-smooth-

ing algorithm and Theta*, namely paths with no heading 

changes in freespace (that is, all heading changes help to cir-

cumnavigate obstacles via taut turns at the convex corners 

of blocked cells). 

 Our string-pulling algorithm is especially useful for ap-

plications where any-angle path-planning algorithms like 

Theta* are impractical to implement or use (for example, 

run too slowly) or unmotivated heading changes in 

freespace need to be avoided (for example, because they 

look unrealistic). It is also useful if an any-time algorithm is 

needed since it decreases the length of the input path over 

time. Finally, it is also useful if one wants to minimize the 

sum of the times for path planning and path following since 

it shortens larger and larger prefixes of the input path and an 

agent can thus start to move along the path during path 

smoothing. 

 Future work includes proving the correctness of the 

string-pulling algorithm (which might include changing it 

appropriately for this purpose), extending it to higher di-

mensions, and combining it with Theta*. 
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