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1 Introduction and Overview
In Multi-Agent Path Finding (MAPF), the aim is to find a
set of collision-free paths for a team of agents, each from its
start location to its target, minimizing the sum of path costs.

Conflict-Based Search (CBS) (Sharon et al. 2015) is a
popular two-level optimal MAPF solver. The low level finds
optimal paths for individual agents. If the paths of two
agents collide, the high level, via a split action, imposes con-
straints on the agents to avoid the collision. The search space
of CBS is therefore a binary Constraint Tree (CT), which the
algorithm explores in best-first order. Originally, CBS pri-
oritized CT nodes according to the sum of the costs of the
paths in them, which can be interpreted as the g-values of the
CT nodes. Felner et al. (2018) and Li et al. (2019a) added
an admissible heuristic to CBS that estimated the remain-
ing costs, which are the h-values. CT nodes are now prior-
itized by f = g + h. CBS is complete, optimal, and often
highly performant; e.g., recent variants (Li et al. 2019a,b,c)
can solve MAPF instances with more than 100 agents.

We enhance all known heuristics for CBS by using infor-
mation about the costs of resolving certain conflicts, with
only a small additional computational overhead. Our experi-
ments indicate CBS is more efficient with our heuristics. An
early version of this work was published this year (Boyarski
et al. 2021). In that version, our heuristics resulted only in
a marginal improvement in the number of solved MAPF in-
stances. This work expands on the ideas from that paper and
shows more significant results.

1.1 Heuristics for CBS
The Conflict Graph (CG) heuristic (Felner et al. 2018) is the
first non-trivial admissible heuristic for CBS. Its h-value is
calculated as the size of the minimum vertex cover (MVC)
of the g-cardinal conflict graph of the current CT node. A g-
cardinal conflict (Boyarski et al. 2015b, 2021) in a CT node
N is one where where the cost (g-value) of both child CT
nodes that are generated when resolving the conflict is larger
than the cost of N . The g-cardinal conflict graph contains a
vertex for each agent in N , and an edge exists between two
vertices iff the paths of the corresponding two agents in N
have a g-cardinal conflict.
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Figure 1: Agents, their paths, and their conflicts

The h-values of the Dependency Graph (DG) (Li et al.
2019a) are calculated as the sizes of the MVC of the pair-
wise dependency graphs, which generalize g-cardinal con-
flict graphs. A pairwise dependency graph edge exists be-
tween two vertices iff the cost of the optimal conflict-free
solution for the corresponding two agents is larger than the
sum of the costs of the two individual solutions.

The h-values of the (Edge-)Weighted Dependency Graph
(WDG) heuristic (Li et al. 2019a) are calculated as follows:
The Weighted Dependency Graph is constructed by setting
the weight of each edge between a pair of agents to the dif-
ference between the cost of the optimal conflict-free solution
for the corresponding two agents (computed by a subsolver)
and the sum of the costs of their paths at the current CT node.
Then, the heuristic value h =

∑
i xi is calculated as a min-

imal edge-weighted vertex cover of the resulting graph, that
is, an assignment of non-negative integers xi to each vertex
i so that xi + xj ≥ wij for each edge (vi, vj) with cost wij .

1.2 Adding Near-Vertex Weights to Edges
Boyarski et al. (2021) improved upon each of the three
heuristics (CG, DG, and WDG) by creating heuristics that
are more informed than their baselines because they use
information about the expected g-value increases resulting
from resolving a conflict in each potential child CT node.
They added near-vertex weights to the two ends of each edge
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Figure 2: The near-vertex-weighted weighted dependency
graph for Figure 1, if corridor and target reasoning are used

in all three graphs that are are used by the heuristics. These
weights represent the minimum additional cost needed to
resolve the current conflict between the two agents by re-
planning the path of the agent whose corresponding vertex
in the graph is at that end of the edge. They described how
these weights are calculated for g-cardinal conflicts and tar-
get conflicts (Li et al. 2020), which occur when an agent
conflicts with an agent that has finished its plan. In the cal-
culation of the improved heuristics, it is also required of ev-
ery edge that at least one of its vertices be assigned a value
no less than the weight at its end of the edge.

The near-vertex weights for an edge (vi, vj) representing
a basic g-cardinal conflict are 〈1, 1〉. The minimal additional
cost of the paths to resolve a target conflict is also simple
to compute. Assume that agent ai reaches its target at time
step ci and later has a conflict at time step t > ci with agent
aj . If the conflict is resolved by forcing agent ai away from
its target, the minimal additional cost of its new path is (t +
1)− ci. Hence, the near-vertex weights for the edge (vi, vj)
are 〈(t + 1)− ci, 1〉.

2 Further Improved Heuristics
A corridor conflict (Li et al. 2020) occurs when two agents
attempt to traverse a narrow corridor in opposite directions
at intersecting time intervals. Resolving a corridor conflict
requires one agent to either wait for the other to fully traverse
the corridor, or take a possibly-longer alternative path that
does not go through the corridor.

Near-vertex weights for corridor conflicts require comput-
ing the cost of the shortest path for each agent under the ad-
ditional range constraint it would receive to resolve the corri-
dor conflict. Let those costs be c′i and c′j . We compute c′i and
c′j using state-time A*, similar to Li et al. (2020). For NVW-
CG, we treat all corridor conflicts that, when resolved using
corridor reasoning, cause both child CT nodes to have larger
costs than their parent, as g-cardinal and add their edges to
the conflict graph. This is done even if resolving those con-
flicts with a regular constraint would not increase the costs
of both child CT nodes.

Figure 1 shows an example with 6 agents and their paths
on a 4-neighbor grid in a CT node N . All agents have no
alternative paths of the same costs. Figure 2 shows the near-
vertex-weighted edge-weighted dependency graph for N .

We now examine the expected g-value increases from re-
solving the conflicts in the example. The weights for (X,Y ),
(Y,Z), and (D,E) are the same as in (Boyarski et al. 2021).
If the (E,F ) conflict is resolved in CT node N with corri-
dor reasoning, then the child CT node that constrains agent
E will have ∆g = 6, and the child node that constrains

CG N.-CG h∗ DG N.-DG h∗ WDG N.-WDG h∗

1.50 1.64 4.64 1.93 1.93 5.22 3.62 3.78 4.86

Table 1: Average h-values of the root CT node with each
heuristic and with h∗ on co-solved instances from scen. 1

#Inst. CG N.-CG DG N.-DG WDG N.-WDG

3,904 3,049 3,042 3,671 3,712 3,349 3,361

Table 2: Number of solved MAPF instances with the CG,
NVW-CG, DG, NVW-DG, WDG, and NVW-WDG heuris-
tics for instances from scenario 1

agent F will have ∆g = 2. The asymmetry here is due to
the fact that the agents are planned to arrive at an entrance to
the corridor at different time steps - agent E is closer to the
corridor, so it finishes traversing it earlier than agent F .

The NVW-WDG heuristic would give a value of 6 in our
example: E is assigned a value of zero, D a value of 1, F a
value of 2, and X , Y and Z are assigned values that sum to 3
and satisfy the constraints. The WDG heuristic is only 4 by
assigning E and Y values of 2 and D, F , X , and Z values
of zero.

3 Experimental Results
We experiment on the MAPF benchmarks (Stern et al.
2019), under a time limit of 60 seconds. We use CBS with
bypassing conflicts (Boyarski et al. 2015a) and target and
corridor reasoning (Li et al. 2020) coupled with the follow-
ing heuristics: (1) CG, (2) DG, (3) WDG, (4) NVW-CG, (5)
NVW-DG, and (6) NVW-WDG. We use scenario 1 out of
the 25 scenarios of the benchmark. The MAPF solver used
by WDG for the 2-agent subproblems is CBS with the same
configuration, except that it uses the CG heuristic and rect-
angle reasoning (Li et al. 2019c), a technique that further
speeds up CBS. Previous evaluations of heuristics for CBS
have been performed on small numbers of instances. Here
we examine almost 4,000 MAPF instances, of which 3,838
are successfully solved with at least one of the six heuristics.

Table 1 shows the average h-values of the root CT node on
instances solved by CBS with each of the 6 heuristics. Each
average is computed over co-solved instances of the corre-
sponding pair of solvers: instances solved both by CBS with
CG and CBS with NVW-CG, DG and NVW-DG, and WDG
and NVW-WDG. To the right of each pair of columns, the
average optimal h-value (h∗) over the same set of instances
is given. The table shows that the average h-value of the root
CT node is improved with NVW-CG and NVW-WDG.

Table 2 shows the number of instances that were solved
successfully by each solver. While Table 1 shows NVW-CG
and NVW-WDG improve on their baselines in terms of the
average h-values, this does not translate into better success
rate in the case of NVW-CG. Interestingly, CBS with NVW-
DG, and not the stronger NVW-WDG, has the best success
rate. With the short time limit of 60 seconds, the overhead of
calculating stronger heuristics does not sufficiently pay off.
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