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Abstract

In bi-objective graph search, each edge is annotated with a
cost pair, where each cost corresponds to an objective to op-
timize. We are interested in finding all undominated paths
from a given start state to a given goal state (called the Pareto
front). Almost all existing works of bi-objective search use
single-valued heuristics, which use one number for each ob-
jective, to estimate the cost between any given state and
the goal state. However, single-valued heuristics cannot re-
flect the trade-offs between the two costs. On the other hand,
multi-valued heuristics use a set of pairs to estimate the Pareto
front between any given state and the goal state and are more
informed than single-valued heuristics. However, they are
rarely studied and have yet to be investigated in explicit state
spaces by any existing work. In this paper, we are interested in
using multi-valued heuristics to improve bi-objective search
algorithms in explicit state spaces. More specifically, we gen-
eralize Differential Heuristics (DHs), a class of memory-
based heuristics for single-objective search, to bi-objective
search, resulting in Bi-objective Differential Heuristics (BO-
DHs). We propose several techniques to reduce the memory
usage and computational overhead of BO-DHs significantly.
Our experimental results show that, with suggested improve-
ment and tuned parameters, BO-DHs can reduce the node ex-
pansion and runtime of a bi-objective search algorithm by up
to an order of magnitude, paving the way for more effective
multi-valued heuristics.

1 Introduction
The task of bi-objective search is to find paths from a given
start state to a given goal state in a graph whose edges are
annotated with a pair of costs. Each cost corresponds to an
objective to optimize, such as travel time, travel distance,
and risk. The cost (or, more precisely, the cost pair) of a
path is the component-wise sum of the costs of its edges. Bi-
objective search is important for many real-world applica-
tions, including route planning for power lines considering
economic and ecological impacts (Bachmann et al. 2018),
inspecting regions of interest with robots considering the
cost of motion and coverage (Fu et al. 2019; Fu, Salzman,
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and Alterovitz 2021), and transporting hazardous materials
considering travel distance and risk (Bronfman et al. 2015).

A path π is said to dominate a path π
′ iff π is not worse

than π
′ on any cost and is better than π

′ on at least one cost.
In this paper, we are interested in finding all undominated
paths, referred to as the Pareto-optimal solution set. Addi-
tionally, we refer to the costs of the Pareto solution set as the
Pareto front.

Several recent works focus on efficiently solving the
bi-objective search problem (Hernández et al. 2023; Ren
et al. 2022; Ahmadi et al. 2021; Maristany de las Casas
et al. 2021; Geißer et al. 2022). Most of them focus on
improving dominance checking (Hernández et al. 2023;
Ren et al. 2022), that is, the procedure to determine if a
node should be pruned, or solving the problem using bi-
directional search (Ahmadi et al. 2021; Maristany de las
Casas et al. 2021). A rarely-explored and recent direction
to improve bi-objective search algorithms is to improve the
heuristic guidance (Geißer et al. 2022). Almost all exist-
ing works of bi-objective search use single-valued heuris-
tics in which the heuristic value for a state is a pair (h1, h2),
where hi, i ∈ {1, 2}, corresponds to a cost-to-go estimation
for the i-th objective. While a single-valued heuristic can es-
timate the cost-to-go for each objective individually, it does
not reflect the trade-off between the two objectives.

Geißer et al. (2022) explore the implications of using a
set of pairs as heuristics to estimate the Pareto front between
a given state and the goal state and show that these heuris-
tics improve a bi-objective search algorithm in many plan-
ning domains. We call such heuristics multi-valued heuris-
tics. However, their heuristics only apply to combinatorial
domains (where a set of variables describes a state and the
graph is implicitly encoded by the available transitions be-
tween states), like classical planning. They are not suitable
for problems in explicit state spaces (where a coordinate or
an index describes a state and the graph is explicitly stored),
like path planning on grids or road networks, which are rel-
evant to many real-world applications.

In this paper, we are interested in using multi-valued
heuristics to improve bi-objective search algorithms in ex-
plicit state spaces, which has not been investigated by any



existing work. More specifically, we generalize Differential
Heuristics (DHs) (Goldberg and Werneck 2005; Sturtevant
et al. 2009), a class of memory-based heuristics for single-
objective search, to bi-objective search. We call the resulting
technique Bi-Objective Differential Heuristics (BO-DHs).
In single-objective search, given an input graph, the pre-
possessing algorithm of DHs selects a set of states (called
landmarks), computes the minimum path costs from every
landmark to every state in the graph, and stores these mini-
mum path costs in a lookup table. During the query phase, a
heuristic is computed using the triangle inequality.

The preprocessing algorithm for BO-DHs computes the
Pareto fronts from every landmark to every state in the graph
and stores them in a lookup table. A multi-value heuristic is
computed using a generalized triangle inequality rule in the
query phase. We show that this heuristic is consistent (which
guarantees that the search algorithm only expands “Pareto-
optimal” nodes).

While BO-DH allows fewer node expansions when com-
pared to using a single-valued heuristic, its downsides in-
clude the computational overhead for computing the heuris-
tic and the memory usage for storing the lookup tables. We
provide an approximation scheme to compress the lookup
tables for BO-DHs, significantly reducing both the compu-
tational overhead and the memory usage in the preprocess-
ing phase while still guaranteeing that the algorithm finds
the entire Pareto front.

In our experiments, we implemented BO-DH with
NAMOA*, an existing bi-objective search algorithm, and
extensively evaluated it with various parameters on grid and
road network graphs. Our experimental results show that,
with tuned parameters, BO-DHs can reduce the node expan-
sion and runtime of NAMOA* by up to an order of magni-
tude. While it is still unclear how to integrate BO-DH with
some other widely used techniques, such as dimensionality
reduction (Mandow and De La Cruz 2010), in state-of-the-
art bi-objective search algorithms, we leave this as a direc-
tion for future work.

2 Terminology and Problem Definitions
We use boldface font to denote pairs and pi, i ∈ {1, 2},
to denote the i-th component of a pair p. We define
the addition (resp. subtraction) of two pairs p and p

′

as p + p
′

= (p1 + p
′
1, p2 + p

′
2) (resp. p − p

′
=

(p1 − p
′
1, p2 − p

′
2)). We define the component-wise maxi-

mum (resp. component-wise minimum) of two pairs p and
p
′ as comax(p,p′) = (max(p1,p′1),max(p2,p′2)) (resp.

comin(p,p′) = (min(p1,p′1),min(p2,p′2))). We say that p
weakly dominates p

′, denoted as p ⪯ p
′, iff p1 ≤ p

′
1 and

p2 ≤ p
′
2. We say that p (strictly) dominates p

′, denoted as
p ≺ p

′, iff p ⪯ p
′ and p ≠ p

′.
Given a set of pairs P , we use ND (P ) to denote the subset

of P that are not dominated by any other pair in P . Addition-
ally, given a pair p, we define P − p (resp. P + p) as the set
of pairs {p′ − p ∣ p′

∈ P } (resp. {p′ + p ∣ p′
∈ P }). Slightly

abusing the notation, given two sets of pairs P and P
′ , we

say that P weakly dominates P ′, denoted as P ⪯ P
′, iff, for

any p
′
∈ P

′, there exists p ∈ P such that p ⪯ p
′.
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Figure 1: An example of admissible multi-valued heuristic
and the ndcomax operation.

A (bi-objective) graph is a tuple G = ⟨S,E, c⟩, where S
is a finite set of states, E ⊆ S × S is a finite set of edges,
and c ∶ E → R2

>0 is a cost function that maps an edge
to a positive pair. succ(s) = {s′ ∈ S ∶ ⟨s, s′⟩ ∈ E} de-
notes the successors of state s. In this paper, we focus on
undirected graphs. However, all the proposed techniques can
be generalized to directed graphs with mild modification. A
path from state s1 to state sℓ is a sequence of states π =

[s1, s2 . . . sℓ] with ⟨sj , sj+1⟩ ∈ E for all j = 1, 2 . . . ℓ − 1.
c(π) = ∑ℓ−1

j=1 c(⟨sj , sj+1⟩) denotes the cost of path π. Path π

dominates (resp. weakly dominates) a path π
′ iff c(π) ≺ c(π′)

(resp. c(π) ⪯ c(π′)). Path π is Pareto-optimal iff it is not
dominated by any other path from s1 to sℓ.

A query q = ⟨sstart, sgoal⟩ consists of a start state sstart
and a goal state sgoal. A path is a solution to q iff it is
from sstart to sgoal. In this paper, we are interested in finding
a (cost-unique) Pareto-optimal solution set, that is, a max-
imal subset of all Pareto-optimal solutions, such that any
two solutions in the subset do not have the same cost. For
a Pareto-optimal solution set Π, we define the Pareto front
P = {c(π) ∣ π ∈ Π} as the set of costs of solutions in Π.

We are interested in a problem setting that consists of
the preprocessing and query phases. During the preprocess-
ing phase, only the input graph G is revealed to the algo-
rithm. The algorithm is allowed to process G and build aux-
iliary data in the memory for future use. During the query
phase, queries on G are given to the algorithm, and the al-
gorithm needs to compute the Pareto-optimal solution sets
for them. This setting is similar to many real-world appli-
cations, where the search algorithm needs to solve multiple
problem instances on the same graph. Our primary focus is
to improve the query phase runtime.

3 Algorithmic Background
In this section, we review multi-valued heuristics, bi-
objective search algorithms, and (single-objective) DHs.

3.1 Multi-Valued Heuristics
A multi-valued heuristic H in bi-objective search is a func-
tion that maps a state to a set of pairs, that is, ∀s ∈ S,H(s) ⊂
R2. Single-valued heuristics can be viewed as a special case
of multi-valued heuristics whose returned values are always



of size one. Heuristic value H(s) estimates the Pareto front
between state s and sgoal. A multi-valued heuristic is said to
be admissible iff it always “lower-bounds” the Pareto front
of the cost-to-go. Formally:

Definition 1. Given a goal state sgoal, let PF (s, sgoal) be
the Pareto front between state s and sgoal. A heuristic H is
admissible iff, for any state s ∈ S, H(s) ⪯ PF (s, sgoal).
Example 1. Fig. 1(a) demonstrates an admissible bi-
objective heuristic. The green stars represent a Pareto front
between a state s and state sgoal with PF (s, sgoal) =

{(1, 3), (3, 1)}. The pink triangle represents the best possible
(admissible) single-valued heuristic for s Hsv(s) = {(1, 1)}.
The blue dots represent an admissible multi-valued heuris-
tic H1(s) = {(1, 2), (3, 1)}. It is easily verifiable that H1(s) ⪯
PF (s, sgoal). H1(s) shows that, for any path π between s
and sgoal, we must have c2(π) >= 2 in order to achieve
c1(π) < 3 and c1(π) >= 3 in order to achieve c2(π) < 2.
However, a single-valued heuristic cannot reflect such infor-
mation. Intuitively, H1 is more informed than Hsv in esti-
mating the cost-to-go from state s.

Definition 2. A heuristic H is consistent iff (i) 0 ∈ H(sgoal)
and, (ii) for every two states s and s

′ and every path π from s
to s

′, H(s) ⪯ H(s′) + c(π).
Similar to heuristics in single-objective search, a multi-

value heuristic is admissible if it is consistent (but not vice
versa). Note that, by definition, removing dominated mem-
bers from heuristic values will not affect the admissibility
or consistency. Therefore, we only consider heuristic val-
ues with dominated members removed, that is, ∀s ∈ S,
H(s) = ND (H(s)).

In single-objective search, the maximization between two
consistent (or admissible) heuristics results in a new con-
sistent (or resp. admissible) heuristic. Geißer et al. (2022)
show that, in bi-objective search, the maximization over two
heuristics can be done by the comax operation between two
sets (defined differently from the comax between two pairs),
and comax also preserves the admissibility and consistency.
Given two sets of pairs P ′ and P

′′, their comax is defined as

comax(P ′
, P

′′) ={comax(p′
,p

′′) ∣ p′
∈ P

′
,p

′′
∈ P

′′}.
Additionally, we apply ND to remove the dominated mem-
bers after computing the comax and define the ndcomax of
P

′ and P
′′ as

ndcomax(P ′
, P

′′) = ND (comax(P ′
, P

′′)).
The following example shows the geometric interpretation
behind the ndcomax operation:

Example 2. We add a new admissible heuristic H2 to
Ex. 1. Specifically, H2(s) = {(1, 3), (2, 1)} and is depicted
by the red dots in Fig. 1(b). The yellow crosses visualize
ndcomax(H1(s), H2(s)) where

ndcomax(H1(s), H2(s)) = ND ({(1, 3), (2, 2), (3, 1), (3, 3)})
= {(1, 3), (2, 2), (3, 1)}.

It is easy to verify that both H2 and ndcomax(H1(s), H2(s))
weakly dominate PF (s, sgoal). Now, given a set of pairs P ,

Algorithm 1: BO-BFS
Input : G = ⟨S,E⟩, sstart, sgoal,H

1 nroot ← new node at sstart with g(nroot) = (0, 0) and
parent (nroot) = None

2 initialize Open and add nroot to it
3 Solutions ← ∅
4 while Open ≠ ∅ do
5 n ← Open.pop()
6 if is dominated 1(n) then continue
7 if s(n) = sgoal then
8 add n to Solutions
9 continue

10 for s
′
∈ succ(s(n)) do

11 for h ∈ H(s′) do
12 n

′
← new node at s′ with

g(n′) = g(n) + c((s, s′)), h(n′) = h, and
parent (n′) = n

13 if is dominated 2(n′) then continue
14 Open.insert (n′)
15 return Solutions

we define its dominated region as the set of all pairs that are
weakly dominated by at least one pair in P . From Def. 1,
if a heuristic H is admissible, PF (s, sgoal) must completely
lie in (i.e., be a subset of) the dominated region of H(s). The
blue and red regions in Fig. 1(b) represent the dominated
regions of H1(s) and H2(s), respectively. We can see that the
dominated region of ndcomax(H1(s), H2(s)) is exactly the
intersection of the dominated regions for H1(s) and H2(s).

3.2 Bi-Objective Search Algorithms
Many bi-objective search algorithms, such as
NAMOA* (Mandow and De La Cruz 2010),
NAMOA*dr (Pulido, Mandow, and De la Cruz 2015),
and BOA* (Hernández et al. 2023), conform to the same al-
gorithmic framework. We call this framework Bi-Objective
Best-First Search (BO-BFS). BO-BFS is similar to A*,
but, most differently, it needs to consider multiple nodes
(with costs that do not weakly dominate each other) for the
same state.

Alg. 1 shows the Pseudo-code for BO-BFS. BO-BFS
maintains a priority queue Open, which contains the gen-
erated but not-yet-expanded nodes. Each node n contains a
state s(n), a g-value g(n), an h-value h(n), and an f -value
f (n) = g(n) + h(n).

In each iteration, BO-BFS extracts a node n with the lex-
icographically smallest f -value from Open (Line 5). BO-
BFS then performs dominance checks for node n to de-
termine if n or n’s child nodes have the potential to be
included in Solutions and discards n if it does not pass
the check (Line 6). If n is not pruned, the algorithm ei-
ther adds it to the solution set if s(n) = sgoal (Lines 7-9)
or expands it (Lines 10-14) otherwise. When expanding a
node n, BO-BFS generates a child node for each succes-
sor s′ of s(n) and each pair h in H(s′). BO-BFS also per-
forms dominance checks for each child node when generat-
ing it (Line 13). Note that the dominance check procedure
for generated nodes can be different from the one for nodes



extracted from Open. When Open becomes empty, the algo-
rithm terminates and returns the solution set. Different BO-
BFS algorithms differ in how functions is dominated 1,
is dominated 2, and insert to open are implemented.

In this paper, we focus on NAMOA* because, different
from NAMOA*dr and BOA*, it is directly compatible with
multi-valued heuristics. When generating a node n′, function
is dominated 2 of NAMOA* checks (i) if g(n′) is domi-
nated by the g-value of any generated node with state s(n′)
and (ii) if f (n′) is weakly dominated by the g-value of any
node in Solutions. When inserting n

′ to Open, NAMOA*
removes nodes with state s(n′) whose g-values are weakly
dominated by g(n′) from Open. When NAMOA* extracts
a node n from Open, it guarantees that g(n) is not domi-
nated by the g-value of any generated nodes with state s(n).
Therefore, function is dominated 1 only checks if f (n) is
weakly dominated by the f -value of any solution node and
g(n) is weakly dominated by the g-value of any expanded
node with state s(n).
Example 3. Fig. 2 shows an example bi-objective graph.
There are two Pareto-optimal paths from sstart to sgoal,
shown in Fig. 2(b). We now consider the behavior
of NAMOA* with the single-valued heuristic shown in
Fig. 2(a). Note that this heuristic is the best-possible single-
valued heuristic since each component of a heuristic value
is exactly the minimum cost-to-go for the corresponding ob-
jective. We use triple (s(n),g(n), f (n)) to refer to a node n.
1. In Iteration 1, NAMOA* generates nodes n1 =

(s1, (1, 1), (3, 5)), n2 = (s2, (1, 1), (4, 4)), and n3 =

(s3, (1, 1), (5, 3)).
2. In Iteration 2, NAMOA* extracts n1 (from Open) and

generates node n4 = (sgoal, (3, 7), (3, 7)). Note that the
child nodes at states sstart and s2 are pruned by domi-
nance checks because of nroot and n2, respectively.

3. In Iteration 3, NAMOA* extracts n4 and finds solu-
tion π1.

4. In Iteration 4, NAMOA* extracts n2 and generates node
n5 = (s4, (2, 2), (6, 6)).

5. In Iteration 5, NAMOA* extracts n3 and generates node
n6 = (sgoal, (7, 3), (7, 3)).

6. In Iteration 6, NAMOA* extracts n5 and does not gener-
ate any node.

7. In Iteration 7, NAMOA* extracts n6 and finds solu-
tion π2.

8. As Open becomes empty, NAMOA* terminates and re-
turn the two Pareto-optimal solutions it has found.

Note that, while no Pareto-optimal solution via s2 or s4 ex-
ists, NAMOA* still expands nodes n2 and n5.

Neither NAMOA*dr nor BOA* can currently work with
multi-valued heuristics because they use a technique called
dimensionality reduction to improve the efficiency of domi-
nance checks. Dimensionality reduction exploits that nodes
are extracted in lexicographically increasing f -values (and
hence also lexicographically increasing g-values for a spe-
cific state when the algorithms use a single-value heuristic).
To compare a node n against all expanded nodes with state
s(n), NAMOA*dr and BOA* do not need to compare g1-
values and hence only check the max g2-value of all these

expanded nodes, which can be done in constant time. Com-
bining dimensionality reduction and multi-valued heuristics
remains an interesting direction for future work.

Notably, other existing algorithms like BDijkstra
(Sedeño-Noda and Colebrook 2019) and BOD (Hernández
et al. 2023) share a similar structure as BO-BFS but
generalize Dijkstra’s algorithm instead of A* to bi-objective
search. These algorithms find the Pareto-optimal solution
sets between a given state s and all other states.

3.3 DHs
A (single-objective) DH is a consistent memory-based
heuristic using a pre-computed lookup table. In the prepro-
cessing phase, a set of landmark states L ⊂ S are selected.
Then, for each landmark state ℓ ∈ L, the preprocessing algo-
rithm computes the minimum path cost between ℓ and every
other state and stores these costs in the lookup table.

During the query phase, the DH value for a state is eval-
uated on-demand using the lookup table: Let d(s, s′), s ∈

S, s
′
∈ S, denote the minimum path cost between states s

and s
′. For each landmark ℓ ∈ L, a given goal state sgoal, and

any state s ∈ S, we have that d(ℓ, sgoal) ≤ d(ℓ, s)+d(s, sgoal}
and d(ℓ, s) ≤ d(s, sgoal) + d(ℓ, sgoal} from the triangle in-
equality. Consequently, the DH is computed as

hDH(s) = max
ℓ∈L

{max(d(ℓ, sgoal) − d(ℓ, s),

d(ℓ, s) − d(ℓ, sgoal))}.

Example 4. Consider the single-objective graph ob-
tained from Fig. 2(a) by only considering the first cost
and assume that state s4 is the only selected land-
mark. It is easy to verify that hDH(s) = max(d(s, s4) −
d(sgoal, s4), d(s4, s) − d(s4, sgoal)) is admissible. For exam-
ple, we have d(sstart, s4) = 2 (following path [sstart, s2, s4])
and d(sgoal, s4) = 4 (following path [sgoal, s1, s2, s4]).
Therefore, we have hDH(sstart) = max(4 − 2, 2 − 4) = 2,
which is not larger than d(sstart, sgoal) = 3 (following path
[sstart, s1, sgoal]).

Intuitively, a “good” landmark selection should well cover
the input graph. We focus on the so-called Avoid strategy,
first proposed by Goldberg and Werneck (2005) and has
been used in many existing works (Goldberg, Kaplan, and
Werneck 2006; Goldenberg et al. 2011). Roughly speaking,
this strategy iteratively selects a new landmark that “avoids”
the states “covered” by already selected landmarks until a
given number of landmarks are selected.

4 BO-DHs
In this section, we first describe BO-DHs, which generalize
DHs to bi-objective search. A BO-DH uses a lookup table
to store the Pareto front between every landmark and ev-
ery state, which can incur large memory usage. The com-
putational overhead for a BO-DH can also be significant.
To address these limitations, we then describe an approach
to compress the lookup table, which reduces memory usage
and computational overhead while retaining admissibility.
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Figure 2: An example bi-objective search instance. (a) Single-valued heuristic (blue numbers). (b) Pareto-optimal solutions
from sstart to sgoal. (c) Pareto-optimal solutions from s4 to sgoal.

4.1 Basic BO-DHs
Given a graph G and a set of landmarks L, let PF (ℓ, s) de-
note the Pareto front between a landmark ℓ ∈ L and any
state s. We show the following lemma:
Lemma 1. For any p

′
∈ PF (ℓ, sgoal) and any s ∈ S, the

set PF (ℓ, s) − p
′ weakly dominates PF (s, sgoal).

Proof. Assume that PF (ℓ, s)−p′ does not weakly dominate
PF (s, sgoal). Thus, there exists some p ∈ PF (s, sgoal) such
that p + p

′ is not dominated by any pair in PF (ℓ, s). Re-
call that p and p

′ are the costs of two paths from s to sgoal
and from ℓ to sgoal, respectively. By connecting these two
paths, we obtain a path from s to ℓ with a cost not weakly
dominated by PF (ℓ, s), which contradicts that PF (ℓ, s) is a
Pareto front.

Let P and P
′ be two sets of pairs and denote

P − P
′
∶= ndcomax

p′
∈P ′

{P − p
′}.

For each landmark ℓ, we define the following heuristics1:

H
ℓ
f (s) ∶= PF (ℓ, s) − PF (ℓ, sgoal) and

H
ℓ
b (s) ∶= PF (ℓ, sgoal) − PF (ℓ, s).

Heuristic H
ℓ
f (s) is the ndcomax of PF (ℓ, s) − p

′ for all
p
′
∈ PF (ℓ, sgoal), which is admissible because ndcomax

preserves admissibility. As the graph is undirected, we can
derive a similar heuristic from the opposite direction, result-
ing in another admissible heuristic Hℓ

b (s). Finally, we derive
the BO-DH by taking the ndcomax over all landmarks ℓ as

HBO-DH(s) = ndcomax
ℓ∈L

{ndcomax (Hℓ
f (s), Hℓ

b (s)) }. (1)

Example 5. Assume that state s4 in Fig. 2 is the only
landmark selected and consider the BO-DH value for
state s2. From Fig. 2(c), we have PF (s4, sgoal) =

{(4, 10), (5, 9), (9, 5), (10, 4)}. It is easy to see that
PF (s4, s2) = {(1, 1)}. Therefore, we have that Hs4

b
(s2) =

PF (s4, sgoal) − PF (s4, s2) = {(3, 9), (4, 8), (8, 4), (9, 3)}
and that H

s4
f
(s2) = PF (s4, s2) − PF (s4, sgoal) =

1Here, ‘f’ and ‘b’ refer to forward and backward, respectively.

ndcomax{{(−3,−9)}, {(−4,−8)}, {(−8,−4)}, {(−9,−3)}} =

{(−3,−3)}. We have that HBO-DH(s2) =

ndcomax(Hs4
f
(s2), Hs4

b
(s2)) = {(3, 9), (4, 8), (8, 4), (9, 3)}.

If we run NAMOA* with HBO-DH, NAMOA* will generate
four nodes at s2, with f -values (4, 10), (5, 9), (9, 5), and
(10, 4), respectively, in the first iteration. None of these
nodes will be expanded because they are weakly dominated
by either c(π1) or c(π2).
Theorem 1. HBO-DH(s) is consistent.

We omit the proof due to the page limit.

4.2 Compressed BO-DHs
In practice, storing the entire Pareto front between every
landmark and every state can require large memory. Addi-
tionally, evaluating Eq. 1 can be time-consuming since it
requires computing the ndcomax of multiple sets of pairs.
However, one might consider using a smaller set of pairs to
“approximate” the entire Pareto front.

Let ℓ ∈ S be a landmark and recall that PF (ℓ, sgoal) de-
notes the Pareto front from ℓ to sgoal. We propose an ap-
proach to compress the lookup table of a BO-CH based on
the following two observations:

O1 Let PF (ℓ, sgoal) be a set of pairs such that PF (ℓ, sgoal) ⪯
PF (ℓ, sgoal), i.e., for any p ∈ PF (ℓ, sgoal), there exists
p
′
∈ PF (ℓ, sgoal) such that p′

⪯ p. Following Lemma 1,
we have that

∀s ∈ S, PF (ℓ, s) − p ⪯ PF (ℓ, s) − p
′
⪯ PF (s, sgoal).

Therefore, we have that PF (ℓ, s) − PF (ℓ, sgoal) weakly
dominates PF (s, sgoal).

O2 Let PF (ℓ, s) be a set of pairs such that PF (ℓ, s) ⪯

PF (ℓ, s) for some s ∈ S. Then PF (ℓ, s) − PF (ℓ, sgoal)
weakly dominates PF (s, sgoal), too.

Conceptually, we can view the weakly dominance relation ⪯

as a bi-objective generalization of the less-than-or-equal-to
relation ≤. We have that

∀s ∈ S PF (ℓ, s) − PF (ℓ, sgoal) ⪯ PF (ℓ, s) − PF (ℓ, sgoal)
⪯ PF (s, sgoal)



Algorithm 2: Compressing Pareto fronts
Input : P ,ε

1 [p1,p2 . . .pN ] ← P sorted in the lexicographically
increasing order

2 L ← [⟨p1,p1⟩]
3 foreach p ∈ [p2,p3 . . .pN ] do
4 AP ← the last element in L
5 APnew ← merge(AP, ⟨p,p⟩)
6 if APnew is ε-bounded then
7 remove AP from L
8 insert APnew into L
9 else insert ⟨p,p⟩ into L

10 P ← {a ∣ ⟨a,p⟩ ∈ L}
11 P ← {p ∣ ⟨a,p⟩ ∈ L}
12 return P ,P

13 Function merge(AP = ⟨a,p⟩, AP
′
= ⟨a′

,p
′⟩):

14 anew ← comin(a,a′)
15 if p′

⪯ε anew then pnew ← p
′

16 else pnew ← p
17 return ⟨anew,pnew⟩

because PF (ℓ, sgoal) ⪯ PF (ℓ, sgoal) and PF (ℓ, s) ⪯

PF (ℓ, s). Thus, we can use PF and PF , whose sizes can
be smaller than the sizes of Pareto fronts, for heuristic com-
putation and hence reduce the memory requirement for BO-
DHs.

We modify the merging procedure of A*pex (Zhang et al.
2022), a state-of-the-art approximate bi-objective search al-
gorithm, and use it to compute PF and PF . The resulting
algorithm takes a parameter ε ≥ 0 as input, and, as we will
see, the sizes of the computed PF and PF decrease as ε
increases. Therefore, we can use ε to control the sizes of
PF and PF . Before we describe the algorithm, we review
the notion of apex-path tuples, introduced by Zhang et al.
(2022): An apex-path tuple AP = ⟨a,p⟩ is a tuple of two
pairs, representing a set of pairs P , with a, called the apex,
being the component-wise minimum of all pairs in P , and
p ∈ P , called the representative pair. An apex-path tuple
AP is said to be ε-bounded iff p ⪯ε a (i.e., p1 ≤ (1 + ε) ⋅ a1
and p2 ≤ (1 + ε) ⋅ a2). We define merging two apex-path
tuples as the operation that creates a new apex-path tuple
whose apex is the component-wise minimum of the two in-
put apexes, and the new representative pair is selected from
the input representative pairs.

We are now ready to describe our approach to compute
PF and PF from a given Pareto front, detailed in Alg. 2.
The input to Alg. 2 is a set of pairs P and an ε ≥ 0. Alg. 2
outputs two sets of pairs P and P with P ⪯ P ⪯ P . Let
[p1,p2 . . .pN ] denote the sequence of pairs in P sorted in
the lexicographically increasing order. Alg. 2 begins with
a list of apex-path tuples L = [⟨p1,p1⟩] and iterates over
[p2 . . .pN ] (Lines 3-9). For each p ∈ [p2 . . .pN ], Alg. 2
tries to merge apex-path tuple ⟨p,p⟩ with the last element
in L if the resulting apex-path tuple is ε-bounded or inserts
⟨p,p⟩ to L otherwise. After iterating over all pairs, Alg. 2
returns P as the set of apexes in L and P as the set of rep-

PF(s4, sgoal)
(4,10)

h1

h2
(4,9)

(5,9)

(9,5)

(10,4)(9,4)

PF(s4, sgoal)
PF(s4, sgoal)

Figure 3: An example of compressing PF (s4, sgoal) from
Ex. 5 with ε = 0.3.

resentative pairs in L (Lines 10-12). We have that P ⪯ P

because, for each pair p ∈ P , there exists a pair p′
∈ P that

is equal to p or is the comin of p and other pairs. We have
that p′

⪯ p in either case. We have that P ⪯ P because P is
a subset of P . Moreover, when a larger ε is used, Alg. 2 is
more likely to merge apex-path tuples and hence outputs P
and P with smaller sizes.
Example 6. Continue Ex. 5 and assume that Alg. 2
receives PF (s4, sgoal) = {(4, 10), (5, 9), (9, 5), (10, 4)}
and ε = 0.3 as the input. The output of Alg. 2
is PF (s4, sgoal) = {(4, 9), (9, 4)} and PF (s4, sgoal) =

{(5, 9), (10, 4)} (see Fig. 3). Note that (4, 10) and (5, 9) are
merged since (5, 9) ⪯0.3 (4, 9). However, the resulting apex-
path tuple is not further merged with (9, 5) since neither
(5, 9) or (9, 5) 0.3-dominates the new apex (4, 5).

Now, we propose BO-DH(ε)s, our compressed variant of
BO-DHs. For each landmark ℓ and every state s, instead
of storing PF (ℓ, s), the lookup table stores only PF (ℓ, s)
and PF (ℓ, s) as computed by Alg. 2. The BO-DH(ε) is then
computed as

HBO-DH(ε)(s) = ndcomax
ℓ∈L

{ndcomax (Hℓ
f,ε(s), Hℓ

b,ε(s)) },
(2)

with
H

ℓ
f,ε(s) = PF (ℓ, s) − PF (ℓ, sgoal) and

H
ℓ
b,ε(s) = PF (ℓ, sgoal) − PF (ℓ, s).

Example 7. Since PF (s4, s2) contains only one pair (1, 1),
PF (s4, s2) is the same as PF (s4, s2). We omit the compu-
tation of H

s2
f,0.3

(s4) since it only contains negative pairs.
Using Eq. 2, we have HBO−DH(0.3)(s4) = PF (s4, sgoal) −
PF (s4, s2) = {(3, 8), (8, 3)}. If we run NAMOA* with
this compressed BO-DH, when expanding the root node,
NAMOA* will generate only two nodes for state s2, with
f -values (4, 9) and (9, 4). These two nodes will not be even-
tually expanded either. Note that NAMOA* generates fewer
nodes here by using the compressed BO-DH.

5 Combining BO-DHs and BO-BFS
In this section, we describe our approach to combining BO-
DHs and BO-BFS. In the preprocessing phase, the algo-
rithm chooses the set of landmarks L using the Avoid strat-
egy and uses BOD (Hernández et al. 2023) to compute the



single-to-all Pareto fronts for each landmark. It also com-
presses the lookup tables for each landmark if a positive ε is
given.

In the query phase, we use both the BO-DH and the best
possible single-valued heuristic (computed by running Dijk-
stra’s algorithm from the goal state for each objective indi-
vidually) by taking the ndcomax of them. The BO-DH for a
state is unknown initially and evaluated only when the algo-
rithm generates nodes with this state (Lines 11-14 of Alg. 1).
We also cache the heuristic for a state and reuse it for ev-
ery node with this state. Our preliminary study shows that
a naive implementation of BO-DHs incurred large computa-
tional overhead and was unpractical. We hence propose the
following speedup techniques.

Active landmarks: We implement a strategy that dy-
namically activates “useful” landmarks during the search
and only uses active landmarks for evaluating the BO-DH.
A similar strategy has also been used in single-objective
DHs (Goldberg and Werneck 2005).

We first describe how we measure the “usefulness” of a
multi-value heuristic to the given query. Consider a state
s and let h

min
1 and h

min
2 denote the minimum c1 and c2

costs between s and sgoal, respectively. Given a multi-valued
heuristic H , we define As(H) as the area of the region
weakly dominated by pair (hmin

1 , h
min
2 ) but not H(s). Fi-

nally, we define Qs(H) ∶= 1+As(H)/(hmin
1 ⋅hmin

2 ), where we
normalize As(H) with (hmin

1 ⋅ hmin
2 ). Conceptually, a larger

value of Qs(H) (or As(H)) means that heuristic H indicates
a larger trade-off that needs to be made for the two objec-
tives (and hence H is more informed). Please refer to the
appendix for the intuition behind Qs.

We now detail our proposed strategy for activating land-
marks, parameterized by an update interval i and an update
threshold δ. The search algorithm begins with an empty set
of active landmarks and attempts to update the active land-
mark set when evaluating the heuristics for every i-th state s
(including the start state). When attempting to update the set
of active landmarks, the algorithm finds the inactive land-
mark that improves the Qs-value the most and activates this
landmark if the new Qs-value is at least 1 + δ better than
the current Qs-value. It repeats this process of adding land-
marks until no inactive landmark can improve the heuristic
value by more than the given threshold.

Speeding up the ndcomax operation: According to its
definition, Computing the ndcomax of two sets P1 and P2

needs to iterate their cross product. When evaluating BO-
DHs, the ndcomax operations are performed multiple times
and can be very time-consuming.

However, as Ex. 2 shows, computing the ndcomax is
equivalent to computing the intersection of the regions that
P1 and P2 individually weakly dominate. Given several
sets of pairs P1, P2 . . . Pn, let N denote the total numbers
of pairs in these sets N = ∑i ∣Pi∣. We sketch our ap-
proach to compute Presult = ndcomax{P1, P2 . . . Pn} in
O(N log(N )) time: For a set of pairs P and the sequence
of its pairs sorted lexicographically p

(1)
,p

(2)
. . .p

(m), we
denote {(p(2)1 , p

(1)
2 ), (p(3)1 , p

(2)
2 ) . . . (p(m)

1 , p
(m−1)
2 )} as the corner

points of P . A set of pairs can be described by (i) its corner
points and (ii) the minimum values of the first and second
components. Following the geometric intuition of ndcomax,
any corner point of Presult is also a corner point of an input
set Pi that does not dominate any other corner points. There-
fore, computing the corner points of Presult is equivalent to
computing its “non-dominating” subset. To do so, we sort
the corner points of P1, P2 . . . Pn in the lexicographically
decreasing order (in N log(N ) time) and iterate over them.
A corner point does not dominate any other corner point (and
hence is a corner point of Presult) iff its p2-value is larger
than the maximum p2-value so far, which can be checked in
constant time.

Our preliminary results indicate that the naive ndcomax
implementation is slower than the improved ndcomax im-
plementation by about two orders of magnitude.

6 Experimental Results
In this section, we evaluate BO-DHs on two grids and two
road networks. The two grids are the 32 × 32 empty grid
and the den520d grid (257 × 256) from an existing bench-
mark.2 For these two grids, we randomly sample each com-
ponent of the edge cost pair from the integers within [1, 10],
which follows the convention in Pulido, Mandow, and De la
Cruz (2015) and Ren et al. (2022). The two road networks
are the NY (264, 346 states and 733, 846 edges) and BAY
(321, 270 states and 794, 830 edges) maps from the 9th DI-
MACS Implementation Challenge: Shortest Path.3 We use
the travel distance and time from the DIMACS data set as
the edge costs. For each graph, we use 100 randomly gener-
ated queries.

We use NAMOA* with the best possible single-valued
heuristics as our baseline algorithm and compare it to
NAMOA* with BO-DHs (denoted as NAMOA*+BO-DH).
Our implementation also follows the lazy dominance check
approach of BOA* and skips the time-consuming iteration of
Open. We implemented all algorithms in C++4 and ran all
experiments on a MacBook Pro with an M1 Pro CPU and
32GB of memory.

Comparing different parameters for BO-DH: We start
by evaluating the impact of different parameters on memory
usage (of the lookup table) and query time. Here, we focus
on the den520d grid. Recall that NAMOA*+BO-DH has
four parameters: number of landmarks ∣L∣, approximation
factor ε, updating interval i, and updating threshold δ.

To study the impact of the approximation factor on mem-
ory usage and query runtime, we evaluated four ε-values 0,
0.001, 0.005, and 0.01. We use L = 128 landmarks, δ =

0.001, and i = ∞ (the algorithm attempts to activate land-
marks only when generating the root search node). Re-
sults, summarized in Table 1, show that a larger approxi-
mation factor significantly decreases the memory usage of
the lookup table. Note that the memory usage of BO-DH

2https://movingai.com/benchmarks/grids.html
3http://users.diag.uniroma1.it/challenge9/download.shtml.
4https://github.com/HanZhang39/BODifferentialHeuristics



Algorithm Memory tquery teval-h #exp
NAMOA* 0 1.13 0 430K
ε = 0 7.2GB 1.84 1.38 57K
ε = 0.001 10.4GB 1.26 0.82 58K
ε = 0.005 2.5GB 0.62 0.12 73K
ε = 0.01 1.3GB 0.73 0.04 99K

Table 1: Experimental results for NAMOA*+BO-DH with
different ε-values on the den520d grid. For each vari-
ant of NAMOA*+BO-DH, we report the memory usage
for the look table, the average runtime for solving an in-
stance (tquery, in seconds), the average runtime for evaluat-
ing heuristics (teval-h, in seconds), and the average number
of expanded nodes (#exp).
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Figure 4: Average runtime for NAMOA*+BO-DH with dif-
ferent parameters over the 100 instances on den520d. The
ε-value is 0.01. The average runtime for NAMOA* is 1.13s.

with ε = 0.001 is larger than that of BO-DH with ε = 0 be-
cause its lookup table needs to store both PF and PF while
the lookup table for BO-DH with ε = 0 only stores PF .
With a smaller ε-values, the search algorithm expands fewer
nodes on average. However, the search algorithms with ε = 0
and ε = 0.001 has larger average runtime than those with
ε = 0.005 and ε = 0.01 because evaluating heuristics in-
curred larger computational overhead.

We also evaluated NAMOA*+BO-DH with different
numbers of landmarks ∣L∣, updating thresholds δ, and updat-
ing intervals i on den520d with an ε-value of 0.01. Fig. 4
shows the average runtime of search algorithms for different
numbers of landmarks. The average runtime of NAMOA*
(1.13s) is larger than the runtimes of all NAMOA*+BO-DH
variants. Each line represents a combination of δ and i. Dif-
ferent colors (blue, yellow, and green) represent different δ
values of 0.01, 0.05, and 0.1, respectively. δ = 0.1 yields the
worst runtime since it does not allow NAMOA*+BO-DH to
activate some landmarks that could be useful. Different line
styles (solid, dashed, and dotted) represent different i-values
of 50, 100, and 200, respectively. In almost every case, an i-
value of 100 yields the best runtime performance since it
balances the benefit and the computational overhead of at-
tempting to activate new landmarks.

Evaluating BO-DHs on different graphs: We compared
NAMOA* and NAMOA*+BO-DH on different graphs.
For each graph, we evaluated all combinations of pa-
rameters ∣L∣ ∈ {64, 128, 256}, ϵ ∈ {0.005, 0.01}, i ∈

Algorithm Memory tquery teval-h #exp
empty-32-32

NAMOA* 1.37ms 899
NAMOA*+BO-DH 17.4MB 1.05ms 0.25ms 370

den520d
NAMOA* 1.13s 430K
NAMOA*+BO-DH 7.2GB 0.45s 0.11s 55K

NY
NAMOA* 0.46s 193K
NAMOA*+BO-DH 9.1GB 0.17s 0.01s 80K

BAY
NAMOA* 0.79s 359K
NAMOA*+BO-DH 2.6GB 0.40s 0.16s 140K

Table 2: Experimental results for BO-DHs on different
graphs. For each algorithm, we report the memory usage for
the lookup table, the average runtime for solving an instance
(in either milliseconds (ms) or seconds (s)), and the average
number of expanded nodes.
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Figure 5: Experimental results on individual instances.

{50, 100, 200, 500}, and δ ∈ {0.01, 0.05, 0.1} and report the
best result for each graph.

Table 2 summarizes the results. NAMOA*+BO-DH has
smaller average runtime and node expansion than NAMOA*
on all graphs. Fig. 5 shows the runtime (in (a)) and node
expansion (in (b)) of NAMOA* and NAMOA*+BO-DH for
each instance. BO-DH yields up to more than 10× reduc-
tion in node expansions and up to more than 8× reduction in
runtime. For many instances on the road networks, BO-DHs
do not yield any improvement in node expansion because no
landmark is activated. However, since the grids have smaller
sizes and are better covered by the landmarks, BO-DH yields
smaller node expansions in almost all instances. In general,
the improvements are more significant for more difficult in-
stances (in the top right corners of the figures).

7 Conclusions
In this paper, we investigate using multi-valued heuristics
to improve bi-objective search in explicit state space and
propose BO-DHs, a bi-objective generalization of DHs. We
propose several techniques to reduce the memory usage
and computational overhead of BO-DH significantly. Future
work includes combining BO-DHs with dimensionality re-
duction and generalizing BO-DHs to more than two objec-
tives.
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