
Goal-Directed Acting with Incomplete Information

Sven Koenig

November 3, 1997
CMU-CS-97-199

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee

Reid Simmons, Chair
Tom Mitchell

Andrew Moore
Richard Korf (UCLA)

Submitted in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy

c
�

1997, Sven Koenig

This research was sponsored by the National Aeronautics and Space Administration, the Wright Laboratory, the
Aeronautical Systems Center, the United States Air Force Materiel Command, and the Defense Advanced Research
Projects Agency. The views and conclusions contained in this document are those of the author and should not be
interpreted as representing the official policies, either expressed or implied, of the sponsoring organizations and agencies
or the U.S. Government.

Keywords: actuator uncertainty, agent architecture, agent-centered search, artificial intelligence, Baum-
Welch method, deadlines, decision theory, decomposability of planning tasks, delivery robots, discounting,
dynamic programming, Edge Counting method, Euler graphs (Eulerian domains), exponential utility func-
tions, grid-worlds, high-stake decision making, interleaving of planning and plan execution, landmark-based
navigation, localization, map uncertainty, metric-based navigation, minimax search, Min-Max Learning
Real-Time A* (Min-Max LRTA*) method, moving-target search, Node Counting method, non-deterministic
planning domains, one-shot planning (single-instance planning), passive learning, path planning, position
estimation, preference models for planning, Q-Learning method, quicksand state space, race-track domain,
real-time heuristic search, reinforcement learning, representation changes, reset state space, risk attitudes,
robot navigation, sensor uncertainty, sliding-tilepuzzles (eight puzzle), test-bed selection, totally and partially
observable Markov decision process models, unsupervised learning, utility theory, Value-Iteration method.

Abstract

In the not too distant future, delivery robots will distribute parcels in office buildings and exploratory robots
will roam the surface of other planets. Such situated agents must exhibit goal-directed behavior in real-
time, even if they have only incomplete knowledge of their environment, imperfect abilities to manipulate
it, limited or noisy perception, or insufficient reasoning speed. In this thesis, we develop efficient general-
purpose decision-making methods for one-shot (that is, single-instance) planning tasks that enable situated
agents to exhibit goal-directed behavior in the presence of incomplete information. The decision making
methods combine search and planning methods from artificial intelligence with methods from operations
research and utility theory.

We demonstrate how to use Partially Observable Markov Decision Process (POMDP) models to act, plan,
and learn despite the uncertainty that results from actuator and sensor noise and missing information about
the environment. We show how to use exponential utility functions to act in the presence of deadlines or
in high-risk situations and demonstrate how to perform representation changes that transform planning tasks
with exponential utility functions to planning tasks that standard search and planning methods from artificial
intelligence can solve. Finally, we show how to decrease the planning time by interleaving planning and plan
execution and present a real-time search method that allows for fine-grained control over how much planning
to do between plan executions, uses heuristic knowledge to guide planning, and improves its performance
over time as it solves similar planning tasks.

We use goal-directed robot-navigation tasks to illustrate the methods throughout the thesis, and present
theoretical analyses, simulations, and experiments on a real robot.

1

Acknowledgements

Thanks to my advisor, Reid Simmons, for seven years of help. The other members of my thesis committee
were Tom Mitchell, Andrew Moore, and Richard Korf. Thanks to them for their support during the whole
process. Thanks also to the other academic mentors that I had over the years, both in computer science and
business administration. This includes Ramakrishna Akella, Avrim Blum, Matthias Jantzen, Eric Krotkov,
Bernd Neumann, Peter Norvig, Martha Pollack, Bernd Pressmar, Stuart Russell, Frieder Schwenkel, and Lotfi
Zadeh.

The following colleagues influenced my thinking greatly: Lonnie Chrisman, Richard Goodwin, Matthias
Heger, Illah Nourbakhsh, Jiřı́ Sgall, Yury Smirnov, and Sebastian Thrun. Lonnie Chrisman, Richard Goodwin,
Karen Haigh, Reid Simmons, and Joseph O’Sullivan implemented the parts of the robot system that my
methods use. Swantje Willms performed some of the experiments. Boleslaw Szymanski thought about
one of my open problems and apparently solved it (page 63). Joseph Pemberton made his maze generation
program available to me. Other researchers that provided help and comments on this or earlier work include
Jim Blythe, Justin Boyan, Howie Choset, Alan Christiansen, Fabio Cozman, Marek Druzdzel, Eugene Fink,
Diana Gordon, Geoffrey Gordon, Karen Haigh, Robert Holte, Toru Ishida, Long-Ji Lin, Michael Littman, Matt
Mason, Joseph O’Sullivan, Ronald Parr, Joseph Pemberton, Antony Stentz, Thomas Stricker, and Michael
Wellman. Thanks to them for their help.

Lots of other people contributed indirectly to this thesis – far too many to list all of them. Thanks to all
members of Reid Simmons’ mobile robotics group, Tom Mitchell’s learning lab, and the reinforcement
learning group for many valuable discussions on a variety of topics. Thanks also to all of my friends and
colleagues at Carnegie Mellon University, the University of California at Berkeley, the University of Hamburg,
and elsewhere. I am sorry that I could not list all of your names here.

Most importantly, thanks to my wife and my parents for being so patient with me. Thanks for everything!

2

Contents

1 Introduction 1

2 Acting with Agent-Centered Search 7

2.1 Traditional Approaches ��� 8

2.2 LRTA* ��� 10

2.3 Min-Max LRTA* ��� 13

2.3.1 Overview and Assumptions ��� 13

2.3.2 Description of the Method ��� 14

2.3.3 Performance Analysis ��� 18

2.3.3.1 Properties of U-Values ��� 19

2.3.3.2 Upper Complexity Bound ��� 21

2.3.3.3 Lower Complexity Bound for Uninformed Min-Max LRTA* ������������� 23

2.3.3.4 Lower Complexity Bound for Fully Informed Min-Max LRTA* ��������� 25

2.3.3.5 Complexity Bounds and Performance Prediction ������������������������� 26

2.3.3.6 Convergence ��� 28

2.3.4 Summary of Results on Min-Max LRTA* ��� 30

2.4 An Application: Robot-Navigation Tasks ��� 30

2.4.1 Formalizing the Robot-Navigation Tasks ��� 31

2.4.2 Features of Min-Max LRTA* for the Robot-Navigation Tasks ����������������������� 32

2.4.3 Extensions of Min-Max LRTA* for the Robot-Navigation Tasks ��������������������� 33

2.4.4 Related Search Methods ��� 33

2.4.4.1 Goal-Directed Navigation: IG Method ����������������������������������� 34

2.4.4.2 Localization: Homing Sequences ��� 35

2.4.4.3 Moving-Target Search: MTS Method ������������������������������������� 36

2.4.5 Experiments with a Simulator ��� 37

2.5 LRTA*-Type Real-Time Search Methods and Domain Properties ��������������������������� 38

2.5.1 Skeleton of LRTA*-Type Real-Time Search Methods ������������������������������� 38

3

2.5.2 Example LRTA*-Type Real-Time Search Methods and Their Complexity ����������� 39

2.5.2.1 Inefficient LRTA*-Type Real-Time Search Methods ��������������������� 41

2.5.2.2 Efficient LRTA*-Type Real-Time Search Methods: Min-LRTA* ��������� 45

2.5.3 Undirected Domains and Other Eulerian Domains ��������������������������������� 50

2.5.3.1 Inefficient LRTA*-Type Real-Time Search Methods ��������������������� 52

2.5.3.2 Efficient LRTA*-Type Real-Time Search Methods: The BETA Method ��� 54

2.5.3.3 Min-LRTA* ��� 56

2.5.3.4 Experimental Average-Case Results ������������������������������������� 57

2.5.3.5 Interpretation of the Results ��� 59

2.5.3.6 Summary of Results on Undirected Domains and Other Eulerian Domains 60

2.5.3.7 Extensions: Larger Look-Aheads ��� 62

2.5.4 Domains with a Small Value of ��� ��� 64

2.5.5 Selection of Test-Beds for LRTA*-Type Real-Time Search Methods ��������������� 67

2.5.6 Selection of Representations for Reinforcement-Learning Methods ����������������� 69

2.5.6.1 Representations for Reinforcement-Learning Methods ������������������� 71

2.5.6.2 An Intractable Representation ��� 73

2.5.6.3 Tractable Representations ��� 74

2.5.6.4 Other Reinforcement-Learning Methods ��������������������������������� 77

2.5.6.5 Reinforcement Learning in Probabilistic Domains ����������������������� 78

2.5.6.6 Summary of Results on Reinforcement Learning ������������������������� 79

2.6 Extensions ��� 80

2.7 Future Work ��� 81

2.8 Conclusions ��� 82

3 Acting with POMDPs 83

3.1 Traditional Approaches ��� 84

3.2 POMDPs ��� 85

3.2.1 State Estimation: Determining the Current State ����������������������������������� 86

3.2.2 POMDP Planning: Determining which Actions to Execute ������������������������� 87

3.2.3 POMDP Learning: Determining the POMDP from Observations ������������������� 89

3.2.4 Most Likely Path: Determining the State Sequence from Observations ������������� 92

3.3 The POMDP-Based Navigation Architecture ��� 93

3.3.1 Interface to the Obstacle Avoidance Layer ��� 94

3.3.1.1 Directives ��� 94

3.3.1.2 Sensor Interpretation: Motion and Sensor Reports ����������������������� 94

3.3.2 POMDP Compilation ��� 96

3.3.2.1 States and the Initial State Distribution ����������������������������������� 97

3.3.2.2 Observations and Observation Probabilities ������������������������������� 97

3.3.2.3 Actions and Transition Probabilities ��������������������������������������� 98

3.3.2.3.1 Modeling Actions ��� 98

3.3.2.3.2 Modeling Corridors ��� 99

3.3.2.3.3 Modeling Corridor Junctions, Doorways, Rooms, and Foyers ��� 100

3.3.3 Using the POMDP for Planning and Acting ��� 102

3.3.3.1 Pose Estimation ��� 102

3.3.3.2 Policy Generation and Directive Selection ��������������������������������� 103

3.3.3.3 Experiments ��� 105

3.3.3.3.1 Experiments with the Robot ������������������������������������� 108

3.3.3.3.2 Experiments with the Simulator ��������������������������������� 108

3.3.4 Using the POMDP for Learning ��� 109

3.3.4.1 The Baum-Welch Method ��� 114

3.3.4.2 The Extended Baum-Welch Method ������������������������������������� 114

3.3.4.2.1 Memory Requirements ��� 114

3.3.4.2.2 Training-Data Requirements ����������������������������������� 117

3.3.4.3 GROW-BW ��� 119

3.3.4.4 Experiments ��� 122

3.3.4.4.1 Experiments with the Extended Baum-Welch Method ��������� 123

3.3.4.4.2 Experiments with GROW-BW ����������������������������������� 125

3.3.4.4.3 Further Experiments ��� 127

3.4 Related Work ��� 127

3.5 Future Work ��� 128

3.6 Conclusions ��� 129

4 Acting with Nonlinear Utility Functions 131

4.1 Traditional Approaches ��� 132

4.2 Nonlinear Utility Functions ��� 136

4.2.1 Immediate Soft Deadlines ��� 136

4.2.2 Risk Attitudes in High-Stake One-Shot Planning Domains ������������������������� 137

4.3 Maintaining Decomposability: Exponential Utility Functions ������������������������������� 140

4.4 Advantages of Exponential Utility Functions ��� 143

4.4.1 Expressiveness of Exponential Utility Functions ������������������������������������� 143

4.4.2 Handling Continuous Reward Distributions with Exponential Utility Functions ����� 145

4.5 Planning with Exponential Utility Functions ��� 146

4.5.1 The Additive Planning-Task Transformation ��������������������������������������� 148

4.5.2 The Multiplicative Planning-Task Transformation ����������������������������������� 152

4.5.3 Suboptimal Planning with the Planning-Task Transformations ��������������������� 156

4.6 Extension: Cyclic Plans ��� 158

4.6.1 Modeling the Planning Task ��� 159

4.6.2 Applying the Multiplicative Planning-Task Transformation ������������������������� 160

4.6.3 Example: A Blocks-World Planning Task ��� 164

4.6.4 Discounting ��� 167

4.6.5 Other Cases ��� 169

4.7 Future Work ��� 171

4.8 Conclusions ��� 172

5 Conclusions 175

6 Appendices 179

6.1 Complexity of Edge Counting ��� 179

6.2 Dirichlet Distributions ��� 185

6.3 Plans with Large Approximation Errors ��� 187

6.4 Continuum of Risk Attitudes ��� 189

Bibliography

6

Chapter 1

Introduction

20cm

In the not too distant future, autonomous robots will traverse the surface of Mars, delivery robots will
distribute parcels in office buildings, and softbots will help users navigate the World Wide Web. This thesis
is about how agents like these should act in the world. It centers around efficient general-purpose decision-
making methods for one-shot (that is, single-instance) planning tasks that enable them to exhibit goal-directed
behavior in the presence of incomplete information. This uncertainty can arise from incomplete knowledge
of the environment, imperfect abilities to manipulate it, limited or noisy perception, and insufficient reasoning
speed. We develop component technologies for goal-directed acting in the presence of incomplete information
and show where they might be useful (that is, provide a “proof of concept”).

The Problem: An agent acts in a goal-directed way if it executes actions that change the current state of the
domain to a goal state. Search and planning methods from artificial intelligence have investigated acting in
this way, but traditionally they do not handle incomplete information. They solve tasks that can be interpreted
as graph-search tasks in which the agent corresponds to a token, the domain to a graph, the states to vertices,
and the actions to directed edges. The token always occupies a vertex and moves along the edges. The task
is to find a plan that moves the token from its current vertex to a given goal vertex on the known graph.
Since there is no uncertainty, this plan can be executed blindly in the world. These plans are called open-loop
plans, sequential (or linear) plans, action sequences, or paths. Notice that we have not specified the planning
process: artificial intelligence has investigated a variety of methods for finding such plans.

Incomplete information complicates the graph-search tasks. For example, the graph might not be known in
advance, the current vertex of the token might not be certain, and edge traversals might move the token to
one of a set of successor vertices. In all of these cases, the vertex of the token after an edge traversal cannot
be predicted with certainty, and sensing might be required to solve the graph-search tasks. However, sensing
might not uniquely identify the current vertex of the token either. Thus, the task is to find a plan with sensing
that moves the token from its current vertex to a given goal vertex despite the uncertainty. These plans are
called closed-loop plans or conditional plans.

Figure 1.1 illustrates the problem of goal-directed acting in the presence of incomplete information from the
agent’s point of view [Genesereth and Nilsson, 1986]. We develop solutions for the following problems:
Problem 1: The agent needs to generate plans that reach the goal state although it might never be sure what
its current state is. – If more than one such plan exists, the agent needs to choose one of them. Preferring
the plan that minimizes the average plan-execution cost is an obvious choice, but this preference model has
two problems for one-shot planning tasks (where a plan can be used only once). Problem 2a: First, search
and planning methods that minimize the average plan-execution cost are time-consuming in the presence of
incomplete information, and planning has to take this cost into account. A good plan for one-shot planning
tasks is often one that minimizes the sum of planning and plan-execution cost. Problem 2b: Second, people
tend not to minimize average cost for one-shot planning tasks but rather maximize average utility, for example,
to take risk aspects into account. This is why the general public buys insurance even though the insurance

1

2

Agent

State Space

actsense
noisy actuatorsnoisy sensors

sensors of limited range

unknown (dynamics of the) state space
unknown initial state

preference model

Figure 1.1: Sources of Incomplete Information

premium is usually much larger than the average loss from the insurance cause.

Our Approach: Search and planning methods from artificial intelligence provide a good basis for goal-
directed acting since they can solve large search tasks efficiently. Contributions of artificial intelligence
that we make use of in this thesis include, for example, taking advantage of heuristic knowledge (such as
estimates of the goal distances) and the graph structure. This includes representing the graphs compactly (for
example, with STRIPS rules), decomposing planning tasks into subtasks that can be solved independently
(for example, with means-ends analysis), and planning on abstractions of the graphs. However, search and
planning methods from artificial intelligence need to be extended to handle incomplete information. Research
in artificial intelligence has recently begun to address this issue. We believe that it is promising to combine
existing search and planning methods from artificial intelligence with other methods, including methods from
artificial intelligence and methods from related disciplines, such as operations research and utility theory. We
use the following methods to handle incomplete information:

� Artificial Intelligence and Robotics: We use agent-centered search methods to reduce the sum of
planning and plan-execution cost. Agent-centered search methods are search methods that interleave
planning and plan execution and plan only in the part of the domain around the current state of the
agent. This is the part of the domain that is immediately relevant for the agents in their current situation.
We also use minimax search from game-playing to plan with incomplete information if probabilities
are not available.

� Operations Research: We use completely and partially observable Markov decision process models
to model incomplete information with probabilities. Completely observable Markov decision process
models are graphs with transition uncertainty. Partially observable Markov decision process models
also have sensor uncertainty (and thus uncertainty about the current state). Operations research has
investigated how to plan with these models and how to learn them. We also use methods from Markov
game theory to efficiently represent and reason with minimax trees.

� Utility Theory: We use exponential utility functions to model both immediate soft deadlines and risk
attitudes of people in high-stake one-shot planning domains, including risk-seeking behavior (such as
gambling) and risk-averse behavior (such as holding insurance). Utility theory has investigated how to
use utility functions to express preferences over plans.

This thesis presents three efficient methods for goal-directed acting in the presence of incomplete information.
We apply them to different preference models and different kinds of incomplete information. We provide
feasibility studies as “proof of concept” whenever necessary, but the emphasis of the thesis is on the develop-
ment of the methods, and not their detailed experimental evaluation. Whether we stress theoretical results or
applications depends on the subfield. If many applications already exist but the theory is not well understood,
we concentrate on the theoretical aspects, and vice versa.

The thesis is organized as follows: It consists of three main chapters that are self-contained and can be read in
any order. Each chapter contains a method that addresses one aspect of goal-directed acting in the presence
of incomplete information. The chapters are structured similarly. They start with a general overview of
the method. Then, the first section “Traditional Approaches” motivates the method and contrasts it with

3

traditional methods. The following sections explain the method, describe formal and experimental results,
and contain pointers to related work. The section “Future Work” points out limitations and describes possible
extensions. Finally, the section “Conclusions” summarizes the results of the chapter.

Chapter 2 on Acting with Agent-Centered Search addresses Problem 2a. It is about interleaving planning
and plan execution to reduce the sum of planning and plan-execution cost. It assumes that probabilities are
not available and develops minimax methods that attempt to minimize the worst-case plan-execution cost.
Chapter 3 on Acting with POMDPs addresses Problem 1. It is about using partially observable Markov
decision process models (POMDPs) to represent uncertainty and reason with it, including planning and
learning improved models. It assumes that probabilities are available and develops methods that attempt to
minimize the average plan-execution cost. Finally, Chapter 4 on Acting with Nonlinear Utility Functions
addresses Problem 2b. It is about using exponential utility functions to plan in the presence of immediate
soft deadlines and in high-stake one-shot planning domains. It assumes that probabilities are available and
develops methods that attempt to maximize the average utility of the plan-execution cost, where the utility is
an exponential function of the cost.

An Application: Although our methods apply to a variety of agents and tasks, we believe in using a common
domain to ground the research and illustrate the resulting search and planning methods. We use autonomous
mobile robots and goal-directed navigation tasks (how to get to a given goal location) as examples. These are
real-world tasks that are important for delivery robots, including office or hospital delivery robots. They are
interesting for us because robots have to deal with various kinds of incomplete information, and the amount
of uncertainty can be fairly substantial.

� Actuator Uncertainty: For example, motion commands are not always carried out perfectly due to
wheel slippage and mechanical tolerances, resulting in dead-reckoning error (Chapter 3).

� Sensor Uncertainty: Noisy sensors can produce false positives (report features that are not present)
or false negatives (fail to detect features that are present). For example, ultrasonic waves can bounce
around several surfaces before returning to the robot and therefore do not necessarily give correct
information on the distance to the closest surface (Chapter 3).

� Limited Sensing Information: For example, ultrasonic sensors provide only distance information to
nearby objects. They are not able to perceive other information (such as colors) and their sensing range
is restricted to only a few meters around the robot (Chapters 2, 3, and 4).

� Uncertainty in the Interpretation of the Sensor Data: For example, ultrasonic sensor data often do
not allow the robot to clearly distinguish between walls, closed doors, and lines of people blocking a
corridor opening (Chapter 3).

� Map Uncertainty: For example, the lengths of corridors might not be known exactly. It might only be
known, for instance, that a particular corridor is between two and nine meters long (Chapter 3).

� Uncertainty about the Initial Pose of the Robot (Position and Orientation) (Chapters 2 and 3)

� Uncertainty about the Dynamic State of the Environment: For example, blockages can change over
time as people close and open doors and block and unblock corridors (Chapter 4).

Robots have to deal with more than just incomplete information. They also have to service navigation requests
efficiently, otherwise people will not use them: time is an extremely limited resource for robots. Also, the
memory, running time, and (for learning) training data requirements of the methods have to be reasonably
small, making goal-directed robot navigation a challenging task for goal-directed acting in the presence of
incomplete information.

Throughout the chapters, we show how our search and planning methods fit into a standard mobile robot
architecture (Figure 1.2). Such an architecture is usually based on layers that reflect the various functions
that mobile robots have to perform. Higher layers work with more abstract representations of the sensor

4

Real-Time Control

Task Planning

Path Planning

Navigation

Obstacle Avoidance

Figure 1.2: Robot Architecture

Real-Time Control

Navigation

Obstacle Avoidance

Task and Path Planning
with

Min-Max LRTA*

Figure 1.3: Robot Architecture (Chapter 2)

Navigation Task goal-directed maze navigation or localization
Actuator Uncertainty perfect actuators
Sensor Uncertainty perfect sensors with limited range
Map Uncertainty known map
Initial Pose Uncertainty arbitrary pose uncertainty

Figure 1.4: Robot-Navigation Tasks (Chapter 2)

data and control actions and thus less detail. This allows them to concentrate on the essentials and be more
efficient. Robots have to determine which location to visit next (task planning), plan a path to that location
(path planning), follow that path reliably (navigation), and avoid obstacles in the process (obstacle avoidance).
They also have to control the motors and interpret the raw sensor data (real-time control). We apply our
search and planning methods to the higher layers: the navigation, path-planning, and task-planning layers.

Overview of Chapter 2 on Acting with Agent-Centered Search: In Chapter 2, we study agent-centered
search methods. Our goal is to reduce the sum of planning and plan-execution time over planning methods
that first plan and then execute the resulting optimal plan, which can be intractable. Interleaving planning and
plan execution is a general principle for reducing the planning time, that also decreases the sum of planning
and plan-execution time for sufficiently fast moving agents that solve one-shot planning tasks.

We develop Min-Max LRTA*, an efficient agent-centered search method for nondeterministic domains that
is a generalization of LRTA* [Korf, 1990]. Min-Max LRTA* assumes that probabilities are not available
and uses a minimax method to attempt to minimize the worst-case plan-execution cost. We apply Min-Max
LRTA* to path and task planning for goal-directed navigation and localization in mazes (Figure 1.3). The
robot has perfect actuators, perfect sensors, and perfect knowledge of the maze, but is uncertain about its
start pose (Figure 1.4). Min-Max LRTA* allows the robot to gather information early that can be used to
reduce its pose uncertainty, which can cut down the planning time needed. Min-Max LRTA* differs from
previous methods that interleave planning and plan execution in nondeterministic domains in that it allows
for fine-grained control over how much planning to do between plan executions, uses heuristic knowledge to
guide planning, and improves its performance over time as it solves similar planning tasks.

5

Real-Time Control

Task Planning

Path Planning

Metric-Based or Landmark-Based

Obstacle Avoidance

Navigation

Real-Time Control

Task Planning

Path Planning

POMDP-Based Navigation

Obstacle Avoidance

before after

Figure 1.5: Robot Architecture (Chapter 3)

Navigation Task goal-directed office navigation
Actuator Uncertainty noisy (that is, unreliable) actuators
Sensor Uncertainty noisy sensors with limited range
Map Uncertainty known topology, but uncertain or unknown distances
Initial Pose Uncertainty limited (in our implementation) or arbitrary (in theory) pose uncertainty

Figure 1.6: Robot-Navigation Tasks (Chapter 3)

Min-Max LRTA* is a general-purpose (domain-independent) search method that applies not only to robot
navigation but to all search tasks in nondeterministic domains in which the minimax goal distance of every
state is finite. We study its performance, and the performance of related agent-centered search methods, to
understand better why they work, when they work, and how well they work. The complexity results provide a
theoretical foundation for interleaving planning and plan execution. They can, for example, be used to choose
test-beds for real-time search methods and representations of reinforcement-learning tasks that allow them to
be solved quickly by reinforcement-learning methods.

Overview of Chapter 3 on Acting with POMDPs: In Chapter 3, we study partially observable Markov
decision process models. POMDPs represent uncertainty with probabilities and reason with them, including
planning and learning improved models. Our goal is to make goal-directed acting with incomplete information
more reliable. This addresses the problem that agents have to cope with a substantial amount of uncertainty,
more than we assumed in Chapter 2.

We develop efficient methods for POMDP planning and POMDP learning that have small memory, running
time, and training data requirements. The POMDP planning methods assume that probabilities are available
or can be learned and use methods that attempt to minimize the average plan-execution cost. We use them
to implement the navigation layer of a robot architecture, including pose estimation, planning how to follow
a given path, navigation, and learning (Figure 1.5). We also show how they could be used to implement the
path-planning layer. In our experiments, the robot has to move to a goal pose in an office environment with
known topology but perhaps unknown distances as well as unreliable hardware (Figure 1.6). Our POMDP-
based navigation architecture provides the robot with a uniform and theoretically grounded framework for
modeling uncertainty in actuation, uncertainty in sensing and sensor data interpretation, uncertainty in the
start pose of the robot, and uncertainty of the distance information in the topological map. It maintains a
probability distribution over all poses (rather than a single estimate of the current robot pose) and updates
the probability distribution using both motion reports and sensor reports about landmarks in the environment.
Using both kinds of information improves upon metric-based navigation methods, that do not utilize sensor
reports, and landmark-based navigation methods, that do not utility motion reports. It also improves upon
Kalman filter-based navigation methods, that utilize both sensor and motion reports but cannot represent
arbitrary probability distributions. To summarize, our work results both in a new robot navigation architecture
and a novel application area for POMDPs.

Overview of Chapter 4 on Acting with Nonlinear Utility Functions: In Chapter 4, we study exponential

6

preference model of path planning:
maximize the average utility of the delivery

(this is more general than to minimize the average delivery time)

Real-Time Control

Task Planning

Path Planning

Obstacle Avoidance

Real-Time Control

Task Planning

Path Planning

Navigation

Obstacle Avoidance

before after

Navigation

Real-Time Control

Task Planning

Path Planning

Navigation

Obstacle Avoidance

 preference model of path planning:

Planning Task Transformation

minimize the average delivery time

preference model:
minimize the average delivery time

preference model:
maximize the average utility

preference model:

delivery time or maximize the
either minimize the average

probability of goal achievement
of the delivery

Figure 1.7: Robot Architecture (Chapter 4)

utility functions. In Chapters 2 and 3, we studied planning methods that attempt to find plans that achieve the
goal with minimal worst-case plan-execution cost or minimal average plan execution cost. Most probabilistic
search and planning methods from artificial intelligence attempt to find plans with maximal probabilityof goal
achievement or, if the goal can be achieved for sure, plans that achieve the goal with minimal average plan-
execution cost. Many planning methods from robotics, on the other hand, attempt to find plans that achieve
the goal with minimal worst-case plan-execution cost. Our goal is to extend these preference models to enable
planning with immediate soft deadlines (as specified for delivery tasks) and planning in high-stake one-shot
planning domains with a continuum of risk attitudes, including risk-seeking behavior (such as gambling) and
risk-averse behavior (such as holding insurance).

We develop efficient planning methods that assume that probabilities are available and attempt to find plans
that achieve the goal with maximal average utility, where the utility is an exponential function of the plan-
execution cost. Exponential utility functions preserve the decomposability of planning tasks, which allows
for efficient planning. They can also trade-off between minimizing the worst-case, average, and best-case
plan-execution cost. The key idea of our methods is to perform representation changes that transform
planning tasks with exponential utility functions to planning tasks that standard search and planning methods
from artificial intelligence can solve, including those that do not reason about plan-execution costs at all.
The transformations, which we call the additive and multiplicative planning-task transformations, are simple
context-insensitive representation changes that can be performed locally on various representations of planning
tasks. We use path-planning for goal-directed navigation tasks in the presence of blockages to motivate the
planning-task transformations and argue that they can easily be integrated into robot architectures by first
transforming the path-planning task and then using the existing path planner of the architecture unchanged
on the resulting planning task (Figure 1.7).

The results of Chapter 4 apply more generally to finding plans that achieve the goal with maximal average
utility, where the utility is an exponentially decreasing function of the consumption of exactly one resource,
such as time, energy, or money.

Summary: To summarize, we develop efficient general-purpose search and planning methods that solve
one-shot planning tasks for goal-directed acting in the presence of incomplete information. We do this by
combining search and planning methods from artificial intelligence with methods from other disciplines,
namely, operations research and utility theory. We illustrate the resulting methods using goal-directed robot-
navigation tasks and present theoretical analyses, simulations, and experiments on a real robot.

Now sit back, relax, and enjoy the rest of the thesis!

Chapter 2

Acting with Agent-Centered Search

20cm

Traditional search methods from artificial intelligence, such as the A* method [Nilsson, 1971], first plan
and then execute the resulting plan. Agent-centered search methods, on the other hand, are similar to game-
playing programs in that they interleave planning and plan execution, and plan only in the part of the domain
around the current state of the agents. This is the part of the domain that is immediately relevant for the
agents in their current situation. We study Learning Real-Time A* (LRTA*)-type real-time search methods,
those agent-centered search methods that search forward from the current state of the agents and associate
information with the states to prevent cycling. Experimental evidence indicates that LRTA*-type real-time
search methods are efficient, and often outperform traditional search methods in deterministic domains. They
have, for example, been applied to STRIPS-type planning tasks [Bonet et al., 1997] and satisfiabilityproblems
[Smirnov and Veloso, 1997].

We illustrate that LRTA*-type real-time search methods can also be used to speed up problem solving in
nondeterministic domains, where the successor states of action executions are not uniquely determined.
LRTA*-type real-time search methods allow agents to gather information early. This information can then be
used to resolve uncertainty caused by nondeterminism and reduce the amount of planning done for irrelevant
(unencountered) situations. Instead of planning for every contingency, LRTA*-type real-time search methods
execute the partial plan obtained after a bounded amount of planning, observe the resulting successor state,
and then plan for only the resulting successor state, not for all states that could have resulted from the
plan execution. We develop Min-Max LRTA*, a generalization of LRTA* [Korf, 1990] to nondeterministic
domains. Min-Max LRTA* allows for fine-grained control over how much planning to do between plan
executions, uses heuristic knowledge to guide planning, and improves its performance over time as it solves
similar planning tasks. To illustrate its advantages, we apply Min-Max LRTA* to path and task planning for
robots that have to perform goal-directed navigation and localization tasks in mazes, but are uncertain about
their start pose (position and orientation).

The few existing performance characterizations of LRTA*-type real-time search methods are mostly of an
experimental nature. We feel that it is not only important to extend the application domains of LRTA*-type
real-time search methods, but also to provide some of the foundations for understanding their performance.
We therefore study, both formally and experimentally, how heuristic knowledge and domain properties
influence the performance of Min-Max LRTA* and related LRTA*-type real-time search methods. We study
the influence of the number of states and actions of the domains, their maximal goal distance, and whether
they are Eulerian. We show, for example, that Eulerian domains (a superset of undirected domains) are easy
to search with many LRTA*-type real-time search methods, even those that can be intractable, and introduce
reset state spaces, quicksand state spaces, and “complex state spaces” that are not as easy to search. We
also introduce measures of task size that predict how easy it is to search domains with LRTA*-type real-time
search methods. The measures explain, for example, why LRTA*-type real-time search methods can easily
solve sliding-tile puzzles, grid-worlds, and other traditional search domains from artificial intelligence. The

7

8 Chapter 2. Acting with Agent-Centered Search

search-in-memory action executions

Planning Followed by Plan Execution

Interleaving Planning and Plan Execution

s ae s ae s ae s ae s ae s ae

Figure 2.1: Planning and Plan Execution

measures can also be used to choose test-beds for LRTA*-type real-time search methods and representations
of reinforcement-learning tasks that allow them to be solved quickly by reinforcement-learning methods.

To summarize, we study how to act efficiently by interleaving planning and plan execution. Our main
contributions are the following: First, we develop Min-Max LRTA*, an LRTA*-type real-time search method
for nondeterministic domains and apply it to robot-navigation tasks. Second, we study the performance of
LRTA*-type real-time search methods, both formally and experimentally, and apply the results to choosing
test-beds for LRTA*-type real-time search methods and representations of reinforcement-learning tasks that
allow them to be solved quickly by reinforcement-learning methods.

In the following, Section 2.1 contrasts traditional search methods with LRTA*-type real-time search methods.
Section 2.2 describes LRTA* as a prototypical example. Section 2.3 introduces Min-Max LRTA*, discusses its
advantages and disadvantages, and presents both theoretical complexity results and experimental average-case
performance results. Section 2.4 introduces the robot-navigation tasks, applies Min-Max LRTA* to them, gives
experimental average-case performance results, and discusses related search methods. Section 2.5 studies
in more detail how domain properties influence the performance of LRTA*-type real-time search methods
and shows how these results can be used to choose test-beds for LRTA*-type real-time search methods and
representations of reinforcement-learning tasks that allow them to be solved quickly by reinforcement-learning
methods. Finally, Section 2.6 describes possible extensions, Section 2.7 lists future work, and Section 2.8
summarizes our conclusions.

2.1 Traditional Approaches

Situated agents are agents that have to act in the world to achieve their goals. A central problem for them
is how to achieve given goal states. Traditional search methods usually solve given search tasks off-line in
a mental model of the world (search-in-memory). The agents then execute the resulting plans. This way,
planning and plan execution are completely separated. Situated agents, however, can solve search tasks
on-line by interleaving planning and plan execution (Figure 2.1). Search methods that interleave planning
and plan execution have been developed in artificial intelligence and other disciplines of computer science,
for example in the areas of

� Planning

Examples include [Morgenstern, 1987, Ambros-Ingerson and Steel, 1988, Sanborn and Hendler, 1988,
Boddy and Dean, 1989, Olawsky et al., 1993, Dean et al., 1995, Stone and Veloso, 1996].

� Reinforcement Learning (see Section 2.5.6)

Examples include [Ring, 1992, McCallum, 1995b, Wiering and Schmidhuber, 1996].

� Applied Robotics

Examples include [Balch and Arkin, 1993, Choset and Burdick, 1994, Stentz and Hebert, 1995,
Nourbakhsh and Genesereth, 1996].

� Theoretical Computer Science and Theoretical Robotics

Examples include [Lumelsky, 1987, Blum et al., 1991, Papadimitriou and Yannakakis, 1991, Rao et
al., 1991, Zelinsky, 1992, Foux et al., 1993, Betke et al., 1995].

2.1. Traditional Approaches 9

goal state

goal state

goal state

goal state

goal state

goal state

goal state

goal state

goal state

goal state

goal state

start
state

Figure 2.2: Planning Followed by Plan Execution

goal state

goal state

goal state
start
state

Figure 2.3: Interleaving Planning and Plan Execution

Interleaving planning and plan execution has several advantages [Koenig, 1995]. In this chapter, we study the
following advantage: Situated agents have to take their planning time into account to make rational decisions
[Good, 1971]. For one-shot (that is, single-instance) planning tasks, for example, they should attempt to
minimize the sum of planning and plan-execution time. Finding plans that minimize the plan-execution time
is often intractable. Thus, finding and then executing such plans is often not optimal. Interleaving planning
and plan execution is a general principle that can decrease the sum of planning and plan-execution time for
sufficiently fast moving agents because it reduces the planning time. Since actions are executed before their
complete consequences are known, interleaving planning and plan execution is likely to incur some overhead
in terms of the number of actions executed, but this is often outweighed by the computational savings gained.
In the following, we illustrate this point for nondeterministic domains, where interleaving of planning and
plan execution reduces the amount of planning done for irrelevant (unencountered) situations.

In nondeterministic domains, the successor states of action executions are not uniquely determined. Instead of
planning for every contingency, an agent that interleaves planning and plan execution executes the partial plan
obtained after a bounded amount of planning, observes the resulting successor state, and then plans for only
the resulting successor state, not for all states that could have resulted from the execution of the partial plan.
Figures 2.2 and 2.3 illustrate the ideal situation [Nourbakhsh, 1997]. Without interleaving of planning and
plan execution, the agent has to find a large conditional plan that solves the planning task. When interleaving
planning and plan execution, on the other hand, the agent has to find only the beginning of such a plan. After
the execution of this partial plan, the agent repeats the process from the state that actually resulted from the
execution of the partial plan. Assume that the planning effort is roughly linear in the size of a plan (the area
of its triangle in Figures 2.2 and 2.3). One can then hope that the number of partial plans executed when
interleaving planning and plan execution is small enough so that the total size of all partial plans is smaller
than the size of the complete plan that solves the planning task without interleaving of planning and plan
execution. This is not guaranteed since the agent executes partial plans before their complete consequences
are known and thus cannot be sure that their execution is really as advantageous as anticipated. It follows that
it is important to study the performance in detail that results from interleaving of planning and plan execution.

Figure 2.4 visualizes our classification of search methods that interleave planning and plan execution and
gives examples of search methods that we discuss later in this chapter: Agent-centered search methods
[Koenig, 1995, Koenig, 1996] or, synonymously, agent searching methods [Dasgupta et al., 1994], restrict
the search-in-memory to a small part of the domain that can be reached from the current state of the agent
with a small number of action executions (Figure 2.5). This is the part of the domain that is immediately

10 Chapter 2. Acting with Agent-Centered Search

search methods that interleave planning and plan execution

agent-centered search methods

real-time search methods

LRTA*

Min-LRTA*
Edge Counting

Node Counting
MTS

BETA

IG (DPA)

Min-Max LRTA*

LRTA*-type real-time search methods

LRTA*-type real-time search methods
with minimal look-ahead

RTA*

Figure 2.4: Subsets of Search Methods (including Example Search Methods)

Figure 2.5: Agent-Centered Search

relevant for the agent in its current situation. Real-time search methods are agent-centered search methods
that search forward from the current state of the agent. LRTA*-type real-time search methods are real-time
search methods that associate information with the states to prevent cycling. Finally, LRTA*-type real-time
search methods with minimal look-ahead do not even project one action execution ahead. We discuss them
in the second part of this chapter.

LRTA*-type real-time search methods are promising search methods for interleaving of planning and plan
execution because they are efficient general-purpose (domain-independent) search methods that allow for
fine-grained control over how much planning to do between plan executions, use heuristic knowledge to guide
planning, and improve their performance over time as they solve similar planning tasks. We therefore study
them in more detail in the following.

2.2 LRTA*

In this section, we describe the prototypical example of an LRTA*-type real-time search method: the
Learning Real-Time A* method (LRTA*) [Korf, 1990]. A more comprehensive introduction to LRTA* and
other LRTA*-type real-time search methods is given in [Ishida, 1997]. We use the following notation:

�
denotes the finite set of states of the domain, �������	�
��� �

the start state, and �� �
the set of goal states.��� �������� is the finite, nonempty set of actions that can be executed in state ��� �

. ������� is the transition
function, a function from states and actions to sets of states: ������� � � �"!#� denotes the set of successor states that
can result from the execution of action !�� �$� ��� in state �%� �

. We measure distances in action executions,
which is reasonable if every action has the same immediate cost, for example, can be executed in the about the
same amount of time. Section 2.6 discusses how to extend the results of this chapter to actions whose costs
are nonhomogeneous. The number of states is & := ' � ' , and the number of state-action pairs (loosely called
actions) is � := (�*),+ ' ��� ����' , that is, an action that is applicable in more than one state counts more than once.
We also use two operators with the following semantics: Given a set - , the expression “one-of - ” returns an
element of - according to an arbitrary rule (that can, for example, include elements of chance). A subsequent

2.2. LRTA* 11

Initially, the u-values � ����� are approximations of the negative goal distances (measured in action executions) for all
���	�

.

1.
�

:=
��
�������

.

2. If
���	�

, then stop successfully.

3. � := one-of arg max
��������
�� � ��� ����� ��� � � �!� .

4. � �"�#� := min
� � �����$��% 1 &'� �"� ����� �"��� � �!�� .

5. Execute action � , that is, change the current state to
� ����� ��� � � � .

6.
�

:= the current state.

7. Go to 2.

Figure 2.6: LRTA* with Look-Ahead One

invocation of “one-of - ” can return the same or a different element. The expression “arg max ()*),+ �- � ”
returns the elements

- � - that maximize + �!- � , that is, the set . - � - ' + �- � � max (*/)*)0+ �!-21 � 3 . We use
this notation and these assumption throughout this chapter. In particular, we always assume that the number
of states is finite and that at least one action can be executed in every state. LRTA* operates on deterministic
domains only. Thus, the set ����� � � � �"!#� contains only one state and we use ����� � � � �"!#� also to denote this state.

LRTA* associates a small amount of information with the states that allows it to remember where it has
already searched. In particular, it associates a u-value � � ��� with each state � � �

.1 The u-values approximate
the negative goal distances of the states. The negative goal distance of the start state of the domain in
Figure 2.8 is, for example, 4 14 action executions.2 The u-values are updated as the search progresses and
used to determine which actions to execute. Here, we describe LRTA* with look-ahead (search horizon)
one (Figure 2.6). It consists of a termination-checking step (Line 2), an action-selection step (Line 3), a
value-update step (Line 4), and an action-execution step (Line 5). LRTA* first checks whether it has already
reached a goal state and thus can terminate successfully (Line 2). If not, it decides which action ! to execute
in the current state � (Line 3). It looks one action execution ahead and always greedily chooses an action that
leads to a successor state with a maximal u-value (ties are broken arbitrarily). If the u-value of this successor
state minus one is smaller than the u-value of the current state, then it replaces the u-value of the current
state (Line 4). Finally, LRTA* executes the selected action (Line 5), updates the current state (Line 6), and
iterates the procedure (Line 7). The planning time of LRTA* between plan executions is linear in the number
of actions available in the current state. If this number does not depend on the number of states, then the
planning time between plan executions does not depend on the number of states either.

The action-selection and value-update steps of LRTA* can be explained as follows. The action-selection
step attempts to get to a goal state as fast as possible by always choosing an action that leads to a successor
state with a maximal u-value. Since the u-values approximate the negative goal distances, this is a successor
state that is believed to have a smallest goal distance. The value-update step makes the u-value of the current
state approximate the goal distance of the state better. The goal distance of a nongoal state equals one plus
the minimum of the goal distances of its successor states. Consequently, 4 �

1 5 min ��)*687 ��9 : 4 � � ������� � � �"!#� �<;��
approximates the negative goal distance of nongoal state � . Assume that all u-values overestimate the
negative goal distances. (This corresponds to admissible heuristic values for A* search, except that we use
negative heuristic values instead of positive ones.) Then, both 4 �

1 5 min ��)*687 ��9 : 4 � � ��� ��� � �,�	!#� �<; � and � � ���
overestimate the negative goal distance of nongoal state � and the smaller of these values is the better estimate.
The value-update step uses this value to replace the u-value of nongoal state � . LRTA* was originally stated
with a different value-update step, namely “ � � ��� := 4 1 5 � � ��� ��� � �,�	!#� � ” [Korf, 1990]. This is a simplified
variant of the value-update step, that we explain in Section 2.3.3.1.

This description shows that LRTA* is an asynchronous incremental dynamic programming method [Barto et

1The term “u-values” is commonly used in reinforcement learning (Section 2.5.6) for values that are associated with the states.
2LRTA* is usually stated with u-values that approximate the positive goal distances. We deviate from this to be consistent with the

subsequent chapters. This has the added advantage that our terminology is consistent with the terminology of reinforcement learning,
to which we apply our complexity results later in this chapter. Reinforcement learning associates immediate rewards, not costs, with
actions. The immediate rewards are obtained when the correspondingactions are executed. We use negative immediate rewards to model
costs.

12 Chapter 2. Acting with Agent-Centered Search

1 2 3

4 5 6

7 8

1 2 3

8 4

7 6 5

Eight Puzzle with “American” Goal StateEight Puzzle with “European” Goal State

Figure 2.7: Two Possible Goal States of the Eight Puzzle

goal state

start state

goal

Figure 2.8: Grid-World

al., 1989]. It has the following properties (under reasonable assumptions): It interleaves planning with plan
execution, and its look-ahead determines how much it plans between plan executions. Planning is guided
via the u-values, that are initialized using heuristic knowledge of the domain, namely with approximations
of the negative goal distances of the states. Finally, LRTA* reaches a goal state with a finite number of
action executions and, if it is reset to the start state whenever it reaches a goal state, eventually converges to a
behavior that reaches a goal state with a minimal number of action executions [Korf, 1990, Koenig, 1992]. We
discuss these and other properties of LRTA* and the underlying assumptions in more detail in Section 2.3.3
when we discuss a generalization of LRTA*.

LRTA* and other LRTA*-type real-time search methods have mostly been applied to deterministic domains,
predominantly to traditional search domains from artificial intelligence. Later in this chapter, we discuss the
performance of LRTA*-type real-time search methods in these domains. They include:

Sliding-Tile Puzzles: Examples include [Korf, 1987, Korf, 1988, Korf, 1990, Russell and Wefald, 1991,
Knight, 1993, Korf, 1993, Ishida, 1995]. Sliding-tile puzzles consist of a square frame that is completely
filled with square tiles, except for one tile that is missing. An agent has to achieve a specified configuration
of the tiles. It can repeatedly slide a tile that is adjacent to the empty square into the empty square. Two
popular variants of sliding-tile puzzles are the eight puzzle with the “American” goal state and the eight puzzle
with the “European” goal state (Figure 2.7). Calling these two goal states “American” and “European” is
nonstandard, but makes it easy for us to refer to them. Both variants of the eight puzzle have 181,440 states
from which the goal state can be reached, but the American goal state cannot be reached from the European
goal state and vice versa.

Grid-Worlds (Figure 2.83): Examples include [Barto et al., 1989, Korf, 1990, Pirzadeh and Snyder, 1990,
Sutton, 1990, Ishida and Korf, 1991, Ishida, 1992, Pemberton and Korf, 1992, Thrun, 1992b, Peng and
Williams, 1992, Singh, 1992, Whitehead, 1992, Matsubara and Ishida, 1994, Stentz, 1995, Ishida, 1995].
Grid-worldsare popular abstractions of robot navigationdomains. They discretize two-dimensional space into
square cells. An agent has to move to a specified cell. It can repeatedly move to one of the four neighboring
squares of its current square as long as it stays on the grid and the target square does not contain an obstacle.

LRTA*-type real-time search methods have also been applied to other domains, for example blocks-worlds.
Examples include [Knight, 1993]. In all of these domains, LRTA*-type real-time search methods have proved
to be efficient alternatives to traditional search methods, such as the A* method [Nilsson, 1971]. For example,

3In the figure, we abbreviate two edges
��� � �

and
��� ���

with one edge
��� ���

.

2.3. Min-Max LRTA* 13

they are among the few search methods that are able to find (possibly suboptimal) plans for the twenty-four
puzzle, a sliding-tile puzzle with more than 7 � 1024 states [Korf, 1993]. The reason why LRTA*-type
real-time search methods are efficient in deterministic domains is because they trade-off minimizing planning
cost and minimizing plan execution cost. In the following, we extend LRTA* to nondeterministic domains.

2.3 Min-Max LRTA*

Traditional search domains from artificial intelligence are deterministic, but many domains from robotics,
control, and scheduling are not. We study an example in Section 2.4. The Min-Max Learning Real-Time
A* Method (Min-Max LRTA*) [Koenig and Simmons, 1995b] uses minimax search to extend LRTA* to
nondeterministic domains. Both Min-Max LRTA* and LRTA* behave identically in deterministic domains.
Min-Max LRTA* also generalizes the IG method [Genesereth and Nourbakhsh, 1993] (Section 2.4.4.1) and
the Q̂-Learning method [Heger, 1996] (Section 2.5.6.4). In the following, we first give an overview of
Min-Max LRTA* and describe its assumptions, then describe Min-Max LRTA* itself, and finally analyze its
performance.

2.3.1 Overview and Assumptions

Acting in nondeterministic domains can be viewed as a two-player game: the search method chooses an action
from the actions available in the current state. The action determines the possible successor states from which
a fictitious agent, called nature, chooses one. Acting in deterministic domains is then simply a special case
where every action uniquely determines the successor state. Min-Max LRTA* uses minimax search to solve
search tasks in nondeterministic domains, a worst-case search method that assumes that nature is vicious and
always chooses the worst possible successor state. Minimax search decreases the goal distance with every
action execution as much as possible under the assumption that nature increases it as much as possible. It is
commonly used in game-playing and robotics (Section 4.4.1).

An advantage of minimax search is that it does not depend on assumptions about the behavior of nature. If
it can reach a goal state for the most vicious behavior of nature, it also reaches a goal state if nature uses
a different and therefore less vicious behavior. If one could make reliable assumptions about the behavior
of nature, one would not necessarily use minimax search. For example, if one knows that nature chooses
successor states randomly according to given probabilities, then one can use Trial-Based Real-Time Dynamic
Programming [Barto et al., 1995], another generalization of LRTA*. Unfortunately, it is often not possible to
make reliable assumptions about the behavior of nature. Consider the following example: Agents with limited
capabilities, such as actuator uncertainty, imperfect sensors, imprecise world models, or limited knowledge,
can perceive deterministic domains to be nondeterministic. Such an agent might model a deterministic domain
with only low granularity, for example to keep the model small and thus decrease the memory, running time,
and training-data requirements of search and learning methods that operate on them. In this case, a state
of the coarse domain really corresponds to a set of system states. The agent can predict the successor state
that results from an action execution with certainty if it knows which system state it executed the action in.
However, the agent might not be able to predict the exact successor state if all it knows is the coarse state
it executed the action in. In this case, the agent might only be able to predict the set of possible successor
states, and many planning approaches, including approaches that assume that nature chooses successor states
randomly according to given transition probabilities, suffer from the perceptual aliasing problem [Chrisman,
1992]. The main reason why we use an approach based on minimax search is that minimax search does
not suffer from this problem. In Section 2.4, we discuss a another example with perceptual aliasing and use
Min-Max LRTA* to solve it. A side benefit of minimax search is that methods that are based on worst-case
action outcomes are easier to analyze than methods that are based on average action outcomes.

We use the following notation to explain the assumptions behind Min-Max LRTA*: The minimax distance
� � � �"� 1 � � : 0 ��� ; from state ��� �

to state � 1 � �
is the smallest number of action executions with which state

14 Chapter 2. Acting with Agent-Centered Search

� 1 can be reached from state � , even for the most vicious behavior of nature. The minimax distances can be
calculated by solving the following set of equations:

��������� �	��
� 0 if
�
 � �

1 � min
� �*� ��
��

max

 / / �
���������
�� ��� ����� � � ��� � � otherwise

for all
����� �����

with 0 � � � �,�	� 1 ��� � for all �,�	� 1 � �
. The minimax goal distance � � � ��� of state � � �

is� � � ��� := min � /)�� � � � �"� 1 � . The maximal minimax goal distance is � := max �),+�� � � ��� . In determinis-
tic domains, the definitions of minimax distances and minimax goal distances simplify to the traditional
definitions of distances and goal distances, respectively.

Min-Max LRTA* interleaves minimax searches with plan execution and thus is not guaranteed to solve all
search tasks. A minimax search limits the solvable search tasks because it is overly pessimistic. It is only
guaranteed to solve search tasks for which the minimax goal distance of the start state is finite. Interleaving
planning and plan execution limits the solvable search tasks because it executes actions before their complete
consequences are known. Thus, even if the minimax goal distance of the start state is finite, it is possible that
Min-Max LRTA* accidentally executes actions that lead to a state with infinite minimax goal distance, such
as actions that “blow up the world,” at which point the search task becomes unsolvable for the agent. Robots,
for instance, can fall down staircases if they are not careful.

We avoid both problems by assuming that the domains are safely explorable. Domains are safely explorable
if the minimax goal distances of all states are finite, that is, �! � . (A finite � implies that � � & 4 1,
where & is the number of states). To be precise: First, all states of the domain that cannot possibly be
reached from the start state, or can be reached from the start state only by passing through a goal state can
be deleted. The minimax goal distances of all remaining states have to be finite.4 Safely explorable domains
guarantee that Min-Max LRTA* is able to reach a goal state no matter which actions it has executed in the
past and what the behavior of nature is. Sliding-tile puzzles and grid-worlds are deterministic domains that
are safely explorable (provided that a solution exists) because they are undirected. Although the precision
of robot actuators is limited, many nondeterministic domains from robotics are safely explorable, including
many manipulation and assembly domains. Consequently, robotics often uses minimax methods in either
real-world or prototypical test domains, including the “peg in the hole” domain.

We also assume throughout this chapter that every action execution in a nongoal state necessarily results in
a state change. In other words, action executions cannot leave the current state unchanged. This assumption
is not necessary but simplifies the complexity results. Section 2.6 describes in more detail which results are
affected when the assumption is dropped. Sliding-tile puzzles and grid-worlds satisfy the assumption, and all
domains can be modified to satisfy it by removing all actions whose execution could leave the current state
unchanged. These actions can safely be deleted because there always exists a minimax solution that does not
use them if there exists a minimax solution at all. For example, the optimal minimax solution does not use
them.

2.3.2 Description of the Method

Min-Max LRTA* with look-ahead one is shown in Figure 2.9. The only difference between Min-Max
LRTA* with look-ahead one and LRTA* with look-ahead one (Figure 2.6) is the following: LRTA* operates
in deterministic domains. Its u-values approximate the negative goal distances of the states and it uses
� � ������� � � �"!#� � in the action-selection and value-update steps. This expression is the u-value of the state
that results from the execution of action ! in state � . Min-Max LRTA*, on the other hand, operates in
nondeterministic domains. Its u-values approximate the negative minimax goal distances of the states and it

4This requirement can be relaxed in known domains by increasing the look-ahead of Min-Max LRTA* to ensure that the action
that it is about to execute does not make it impossible to achieve the goal. For this purpose, one can use the techniques described in
[Nourbakhsh, 1996].

2.3. Min-Max LRTA* 15

Initially, the u-values � ����� are approximations of the negative minimax goal distances (measured in action executions) for all
��� �

.
1.

�
:=

��
�������
.

2. If
���	�

, then stop successfully.

3. � := one-of arg max
��������
��

min

 / �
������$��
�� �#� � �"� � � .

4. � �"�#� := min
� � �����$��% 1 & min

 / ��
���������
�� �#� � �"� � �!� .
5. Execute action � , that is, change the current state to a state in

� ����� ��� � � � (according to the behavior of nature).

6.
�

:= the current state.

7. Go to 2.

Figure 2.9: Min-Max LRTA* with Look-Ahead One

Initially, the u-values � ����� are approximations of the negative minimax goal distances (measured in action executions) for all
��� �

.

1.
�

:=
�
�������

.

2. If
���	�

, then stop successfully.

3. Generate a local search space
���
�

with
���	���
�

and
���
�
�� �����

.

4. Update � ����� for all
��� � �
�

(Figure 2.11).

5. � := one-of arg max
��������
��

min

 / �
������$��
�� �#� � �"� � � .

6. Execute action � , that is, change the current state to a state in
� ����� ��� � � � (according to the behavior of nature).

7.
�

:= the current state.

8. (If
�8� ���
�

, then go to 5.)

9. Go to 2.

Figure 2.10: Min-Max LRTA* (with Arbitrary Look-Ahead)

The minimax-search method uses the temporary variables � � ����� for all
��� � �
�

.

1. For all
�8� � �
�

: � �"�"�#� := � �"�#� and � �"�#� :=
%	�

.

2. If � ������
 %��
for all

�8� ���
�

, then return.

3.
� �

:= one-of arg max

����������� � ��
��������

min
� � � �����$��% 1 & max

� �*� ��
��
min

 / / ��
������$��
�� �#� � �"� � � �� .
4. If min

� � � ��� � ���#% 1 & max
���*� ��
 / � min

 / / �
���������
 / � ��� � �"� � � ���� %��
, then return.

5. � �"� � � := min
� � � ��� � ����% 1 & max

��������
 / � min

 / / �
������$��
 / � �#� � ��� � � �� .

6. Go to 2.

Figure 2.11: Minimax-Search Method

uses min � /),������� 7 ��� � 9 � � � 1 � in the action-selection and value-update steps. This expression is the worst u-value
of all states that can result from the execution of action ! in state � .
Min-Max LRTA* with arbitrary look-ahead (short: Min-Max LRTA*) is shown in Figure 2.10. It generalizes
Min-Max LRTA* with look-ahead one to arbitrary look-aheads by searching an arbitrary part of the domain,
the local search space

�! �
�$� �
, before deciding which action to execute in the current state � . While we

require only that ��� � � � and
� � �#" � � , in practice we construct

� �
� by searching forward from � .5
Min-Max LRTA* allows for fine-grained control over how much planning to do between plan executions.
Thus, it is an any-time contract algorithm [Russell and Zilberstein, 1991]. For example, Min-Max LRTA*
with

� �
� � �%$ � � " (that is, sufficiently large look-ahead) performs a complete minimax search
without interleaving planning and plan execution, which is slow but produces plans that are worst-case
optimal. On the other hand, Min-Max LRTA* with

�� �
� � . �*3 performs almost no planning between plan
executions. It behaves identically to Min-Max LRTA* with look-ahead one (provided that, as we assume
throughout this chapter, every action execution in a nongoal state necessarily results in a state change). This
is so, because the value-update step of Min-Max LRTA* with

�� � � � . �*3 updates only one u-value, namely

5Thus, Min-Max LRTA* does not have to be used as a real-time search method. It could, for example, also be used in conjunction
with the DYNA framework [Sutton, 1991], which allows search methods to update the u-values of arbitrary states and has been used to
study in which order to update the u-values [Peng and Williams, 1992, Moore and Atkeson, 1993].

16 Chapter 2. Acting with Agent-Centered Search

the u-value of the current state, and the action-selection step does not depend on this u-value. This makes
the value-update and action-selection steps interchangeable. Furthermore, the minimax search of Min-Max
LRTA* with

� �
� � . �*3 sets the u-value of the current state temporarily to minus infinity but never uses this
value. Thus, this assignment can be skipped. After these two changes, that do not change the behavior of
Min-Max LRTA* with

� � � � . � 3 , it has been transformed to Min-Max LRTA* with look-ahead one.

Small look-aheads can have advantages for sufficiently fast moving agents, especially if the heuristic knowl-
edge guides the search sufficiently: First, small look-aheads minimize the time required to determine which
plan to execute next. This prevents the agents from being idle if planning and plan execution are overlapped.
Second, small look-aheads have the potential to minimize the total planning time, which in turn can also
minimize the sum of total planning and plan-execution time if planning and plan execution are interleaved.
Korf [Korf, 1990], for example, studies which look-ahead minimizes the planning time of the Real-Time A*
method (RTA*) [Korf, 1987], a variant of LRTA*. He reports that a look-ahead of one is optimal for the eight
puzzle and a look-ahead of two is optimal for the fifteen and twenty-four puzzles if the Manhattan distance is
used to initialize the u-values. Knight [Knight, 1993] reports similar results. Notice that both advantages of
small look-aheads apply only to agents that can execute plans with a similar speed as they can generate them.
Thus, they apply only to sufficiently fast moving agents (such as simulated agents) and larger look-aheads are
better for more slowly moving agents (such as robots).

Line 4 in Figure 2.10 implements the value-update step of Min-Max LRTA*, that is, the minimax search in the
local search space. Min-Max LRTA* could represent the local search space as a minimax tree. Minimax trees
can be searched with traditional minimax-search methods, including variants of alpha-beta search. However,
this has the disadvantage that the number of states contained in the tree and thus both the memory requirements
and the search effort can be exponential in the depth of the tree (the look-ahead of Min-Max LRTA*). Since
the number of different states contained in the tree often grows only polynomially in the depth of the tree,
Min-Max LRTA* represents the local search space more compactly as a graph that contains every state at
most once. This requires a more sophisticated minimax-search method because there can now be paths of
different lengths between any two states in the graph. Figure 2.11 shows our minimax search method. It
updates all states in the local search space in the order of their decreasing new u-values. This ensures that the
u-value of each state is updated only once. More general dynamic programming methods from Markov game
theory, such as the ones described by Littman [Littman, 1996], could also be used to perform the minimax
search.

The following theorem proves the correctness of the u-values after the minimax search. The time superscript�
refers to the values of the variables immediately before the

� � 5 1 � st value-update step of Min-Max LRTA*
(Line 4 in Figure 2.10).

Theorem 1 For all times
� � 0 � 1 � 2 � � � � (until termination), assume that 4 � � � � � ��� � for all �$� �

.
Define

�
���

1��� � ��� �
 � min
� � � ��� � ��� 1 � max

� �*� ��
��
min

 / ��
�� ���$��
�� �#� � ��� 1��� � ��� � ��� if
� � � ��
�

�
� ��� �

otherwise
for all

� � �
with 4 � � � �
	 1�� � � ��� � for all � � �

. Then, the minimax search terminates with � �
	 1 � ��� � � �
	 1�� � � ��� for
all � � �

.

Proof: We first prove that the minimax search terminates and then that it determines the correct u-values.

The minimax search terminates: It terminates if the u-values of all states in the local search space are larger
than minus infinity (Line 2). Otherwise, it either changes the u-value of another state from minus infinity to
some other value (Line 5) or, if that is not possible, terminates (Line 4). Thus, it terminates eventually.

The minimax search determines the correct u-values: Consider the
� � 5 1 � st execution of the minimax-search

method for any time
� � 0 � 1 � 2 � � � � (until termination). The u-values � �
	 1 � ��� are correct for all states �

2.3. Min-Max LRTA* 17

that do not belong to the local search space
� � �
� because they do not change during the minimax search

and thus � �
	 1 � ��� � � � � ��� � � �
	 1��� � � ��� . To show that the u-values � �
	 1 � ��� are also correct for all states
of the local search space consider any time during the minimax search. Then, � � ��� � � �
	 1�� � � ��� for all
��� � � � � with � � ����� 4 � , as we prove below. It follows that, after the minimax search, the u-values are
correct for all states of the local search space whose u-values are larger than minus infinity. To show that
the u-values are also correct for all states of the local search space whose u-values equal minus infinity,
suppose that this is not the case. Then, the minimax search terminates on Line 4 and there are states in the
local search space whose u-values are, incorrectly, minus infinity. Among these states, consider the state
� with the maximal value � �
	 1�� � � ��� , any action ! := one-of arg max ��)*687 �#9 min � /),������� 7 ��� � 9 � �
	 1�� � � � 1 � , and any
state � 1 � ��� ��� � �,�	!#� . Since � �
	 1�� � � � 1 ��� � �
	 1�� � � ����� 4 � , it holds that either � 1 � � $ � � � � , which implies
� � � 1 � � � �
	 1�� � � � 1 ��� 4 � , or � 1 � � � � � with � � � 1 ��� 4 � according to our choice of � . Also, � � � ����� 4 �

since � �
	 1�� � � ����� 4 � . Then, however, the minimax search could not have terminated on Line 4 because
min

� � � � ������4 1 5 max �)�687 ��9 min � /),������� 7 � � � 9 � � � 1 � ��� 4 � , which is a contradiction. Thus, the minimax
search determines the correct u-values.

We prove by induction that, at any time during the
� � 5 1 � st execution of the minimax-search method,

� � ��� � � �
	 1�� � � ��� for all �$� � � � � with � � ����� 4 � . This holds initially since � � ��� � 4 � for all � � � � � � .
Now suppose that the induction hypothesis holds when an � � � � � � is chosen on Line 3 and let � � ���
denote the u-values at this point in time. Suppose further that the subsequent assignment on Line 5 results
in ���
	�� � � � �� � �
	 1�� � � ��� . In general, � � � 1 �!� � �
	 1�� � � � 1 � for all � 1 � � � � � since either � � � 1 � � 4 � or
� � � 1 � � � �
	 1�� � � � 1 � according to the induction hypothesis. Then,

������ � � �

min

� � � � � � ��� 1 � max���*� �
�� min
 / ��
������$�
�� ��� � ��� �	����
min

� � � � � � ��� 1 � max���*� �
�� min
 / ��
������$�
�� ��� � ��� 1��� � ��� �	���
 �
���

1��� � � � ���
Since ���
	�� � � � Assumption

�� � �
	 1�� � � � � , it holds that ����	�� � � � � min
� � � � ������4 1 5 max ��)*687 � 9 min � /),������� 7 � � � 9 � � � 1 � �

� �
	 1�� � � � � . Now consider any state � := one-of arg max �*),+
�������� � 7 �#9������ � �
	 1��� � � ��� , any action

! := one-of arg max �)�687 ��9 min � /),������� 7 � � � 9 � �
	 1��� � � � 1 � , and any state � 1 � ��� ��� � �,�	!#� . Since � �
	 1�� � � � 1 ���
� �
	 1�� � � ���� �� �
	 1�� � � � ��� � �
	�� � � ��� 4 � , it holds that either � 1 � � $�� � � � or � 1 � � � �
� with � � � 1 ��� 4 �

according to our choice of � . In either case, � �
	 1��� � � � 1 � � � � � 1 � according to the definition of � �
	 1��� � � � 1 � or the
induction hypothesis. Then,

min
� � � � � � ��� 1 � max�������
�� min
 / ��
�� ���$�
�� �#� � ��� � ���
! �

� �
1��� � � � �� �

� �
1��� � ��� �

min
� � � ��� � � � 1 � max���*� ��
�� min
 / �
������$��
�� �#� � ��� 1��� � ��� �	���

min
� � � ��� � � � 1 � max���*� ��
�� min
 / �
������$��
�� �#� � ��� � �����

But then the minimax search could not have chosen � . This is a contradiction. Thus, � ��	�� � � � � � �
	 1��� � � ��� .
After � has been assigned this value on Line 5, it cannot be assigned another value later, since � ��	�� � ���"� 4 � .

Min-Max LRTA* with Line 8 is a special case of Min-Max LRTA* without Line 8: After one has run the
minimax-search method (Figure 2.11) on some local search space, the u-values do not change if one runs it

18 Chapter 2. Acting with Agent-Centered Search

again on the same local search space or a subset thereof. Whenever Min-Max LRTA* with Line 8 jumps to
Line 5, the new current state is still part of the local search space and thus not a goal state. Consequently,
Min-Max LRTA* can skip the termination-checking step (Line 2). Min-Max LRTA* could now generate a
subset of the previous local search space that contains the new current state (Line 3). Since the minimax
search in this local search space does not change the u-values, Min-Max LRTA* can, in this case, also skip
the value-update step (Line 4). In the experiments, we use Min-Max LRTA* with Line 8, because it utilizes
more information of the searches in the local search spaces.

2.3.3 Performance Analysis

Min-Max LRTA* is similar to game-playing programs that use minimax search, except that Min-Max LRTA*
modifies its evaluation function during the search. This is interesting since LRTA* was originally inspired
by game-playing programs. Both game-playing programs and Min-Max LRTA* have to search large nonde-
terministic domains where the behavior of the opponent is unknown. Both make the search task tractable by
combining real-time search with minimax search. However, their planning objectives differ. Game-playing
programs distinguish terminal states of different quality (wins, losses, and draws). Their objective is to get to
a winning terminal state. How long this takes is usually unimportant. Min-Max LRTA*, on the other hand,
has only winning terminal states (the goal states). Its objective is to get to a terminal state fast. Thus, we have
to analyze how quickly Min-Max LRTA* reaches a goal state. We have already argued in Section 2.1 that
such an analysis is important. In this section, we therefore study the performance of Min-Max LRTA* and
how it depends on the number of states of a domain, its maximal and average minimax goal distance, and the
heuristic knowledge that one has about the domain (that is, the initial u-values).

The performance of Min-Max LRTA* is the number of actions that it executes until it reaches a goal state.
Thus, its performance coincides with its solution quality. This is motived by the fact that, for sufficiently fast
moving agents that solve one-shot planning tasks, the sum of planning and plan execution time is determined
by the planning time, which is roughly proportional to the number of action executions if Min-Max LRTA*
performs only a constant amount of computations between action executions. (Thus, the performance measure
cannot be used to choose how much planning to do between plan executions but it can be used to compare
two LRTA*-type real-time search methods that both perform about the same amount of planning between
plan executions. We make use of this property in Section 2.3.3.6.) For sufficiently slowly moving agents that
solve one-shot planning tasks, on the other hand, the sum of planning and plan-execution time is determined
by the plan-execution time, which is roughly proportional to the number of action executions if every action
can be executed in about the same amount of time.

The complexity of Min-Max LRTA* is its worst-case performance (often expressed in big-O notation) over all
possible topologies of domains with a given property (such as safely explorable domains), all possible start
and goal states, all tie-breaking rules among indistinguishable actions, and all strategies of nature. We are
interested in determining how the complexity of Min-Max LRTA* scales as the tasks get larger. We measure
the size of the tasks as nonnegative integers and use five different measures: First,

- � � , the maximal
minimax goal distance; second,

- � & , the number of states; third,
- � � , the number of actions; fourth,- � & � , the product of the number of states and the maximal minimax goal distance; and fifth,

- � ��� ,
the product of the number of edges and the maximal minimax goal distance. In the following, we formalize
how we characterize the complexity of Min-Max LRTA* as a function of the task size. An upper complexity
bound (a function of

-
) has to hold for every

-
that is larger than some constant, that is, basically every

domain. Since this thesis is about artificial intelligence and not theoretical computer science, we are mostly
interested in the general trend (but not outliers) for the lower complexity bound. A lower complexity bound
(also a function of

-
) thus has to hold only for infinitely many different

-
. Furthermore, we vary only

-
. If

-
is a product, we do not vary both of its factors independently. This is sufficient for our purposes.

Let + be a positive function of
-

. We say that the complexity of Min-Max LRTA* is at most + �- � action
executions if Min-Max LRTA* needs at most + �- � action executions for all domains whose

-
is larger than

some constant. We say that the complexity of Min-Max LRTA* is at least + �!- � action executions if Min-Max

2.3. Min-Max LRTA* 19

LRTA* needs at least + �!- � action executions for infinitely many domains with different
-

. We say that the
complexity of Min-Max LRTA* is tight at + �!- � action executions if it is both at most + �- � action executions
and at least + �- � action executions. Similarly, we say that the complexity of Min-Max LRTA* is at most� � + �!- �
� action executions if there is a positive constant � such that Min-Max LRTA* needs at most � + �- �
action executions for all domains whose

-
is larger than some constant. We say that the complexity of

Min-Max LRTA* is at least
� � + �- � � action executions if there is a positive constant � such that Min-Max

LRTA* needs least � + �- � action executions for infinitely many domains with different
-

. Finally, we say that
the complexity of Min-Max LRTA* is tight at

� � + �!- �
� action executions if it is both at most
� � + �- � � action

executions and at least
� � + �!- �
� action executions.

Experimental researchers sometimes consider a complexity analysis of search methods to be unimportant,
because they are more interested in their average-case performance than their worst-case performance. The
reason why upper complexity bounds are interesting is because they provide performance guarantees (the
complexity is an upper bound on the average-case performance). A proof that Min-Max LRTA* has a small
complexity, for example, prevents unpleasant surprises since we are guaranteed that there are no domains
beyond a certain size in which its actual performance deteriorates completely. In the following, we analyze
the complexity of Min-Max LRTA*.

2.3.3.1 Properties of U-Values

In this section, we define the properties of u-values needed for the complexity results.

Definition 1 U-values are uniformly initialized with
-

(or, synonymously,
-

-initialized) if and only if initially

� ��� �
 � 0 if
� ���

� otherwise
for all

� � � �
Definition 2 U-values are consistent if and only if, for all � � , � � ��� � 0, and, for all � � � $,
4 1 5 max ��)*687 ��9 min � /),� ����� 7 � � � 9 � � � 1 � � � � ��� � 0. U-values are admissible if and only if, for all ��� �

,
4 � � � ��� � � � ����� 0.

Consistency (or, equivalently, monotonicity) means that the triangle inequality holds and admissibility means
that the negative u-values never overestimate the minimax goal distances. In deterministic domains, these
definitions reduce to the traditional definitions of consistent and admissible heuristic values for A* search,
except that we use negative heuristic values instead of positive ones. Notice that zero-initialized u-values are
consistent, and consistent u-values are admissible.

For deterministic domains, consistent (or admissible) initial u-values can be obtained as follows: Assume
that heuristic values � � ��� are known that are consistent (or admissible) for A* search. Then, the u-values
� � ��� � 4�� � ��� are consistent (or admissible). Consistent (or admissible) heuristic values are known for
many deterministic domains, including sliding-tile puzzles and grid-worlds. For nondeterministic domains,
consistent (or admissible) u-values can be obtained as follows: One can assume that nature decides in advance
which successor state � � � �"!#� � ����� � � � �"!#� to choose whenever action !$� �$� ��� is executed in state ��� �

; all
possible states are fine. If nature really behaved this way, then the domain would effectively be deterministic.
U-values that are consistent (or admissible) for this deterministic domain are consistent (or admissible) for
the nondeterministic domain as well, regardless of the actual behavior of nature. This is so because additional
action outcomes allow a vicious nature to cause more harm: U-values that are consistent in the deterministic
domain are also consistent in the nondeterministic domain because, for each state, the maximal u-value that
the agent is guaranteed to reach from this state after one action execution in the nondeterministic domain
is at most as large as the maximal u-value that the agent is guaranteed to reach from this state after one
action execution in the deterministic domain. U-values that are admissible in the deterministic domain are

20 Chapter 2. Acting with Agent-Centered Search

also admissible in the nondeterministic domain because, for each state, its minimax goal distance in the
nondeterministic domain is at least as large as its goal distance in the deterministic domain. In both cases,
how informed the obtained u-values in the nondeterministic domain are depends on how close the assumed
behavior of nature is to its most vicious behavior.

Consistent or admissible u-values have the following important property.

Theorem 2 Consistent (or admissible) initial u-values remain consistent (or admissible) after every action
execution of Min-Max LRTA* and are monotonically nonincreasing.

Proof: In the following, the time superscript
�

refers to the values of the variables immediately before the� � 5 1 � st value-update step of Min-Max LRTA* (Line 4 in Figure 2.10). Thus, � � � ��� denotes the u-values
before the

� � 5 1 � st execution of the minimax search and � �
	 1 � ��� the u-values after its termination. The
u-values are monotonically nonincreasing because either they do not change or, according to Line 5 of the
minimax-search method, � �
	 1 � ��� � min

� � � � ��� � � � � ��� � � � ��� . We distinguish two cases:

� The u-values � � � ��� are consistent.

For all � � , � �
	 1 � ��� � � � � ��� Consistency� 0. Furthermore, for all � � � $ ��� � � ��� � , 4 1 5
max ��)*687 �#9 min � /),������� 7 � � � 9 � �
	 1 � � 1 � Monotonicity� 4 1 5 max ��)*687 �#9 min � /),� ����� 7 � � � 9 � � � � 1 � Consistency� � � � ��� �
� �
	 1 � ��� � � � � ��� Consistency� 0. Finally, for all � � � � �
� (which implies � � ��$ per definition of

� � �
�)

�
1 � max����� ��
�� min
 / �
������$��
�� �#� � ��� 1 ��� � �

min
� �

1 � max���*� ��
�� min
 / ��
������$��
�� �#� � ��� 1 ��� �	� ��� 1 � max��������
�� min
 / ��
���������
�� �#� � � � 1 ��� �	���
Monotonicity�

min
� �

1 � max���*� ��
�� min
 / ��
������$��
�� �#� � � ��� �	� ��� 1 � max����� ��
�� min
 / ��
���������
�� �#� � ��� 1 ��� � ���
Consistency�

min
� � � ��� � � � 1 � max����� ��
�� min
 / �
������$��
�� �#� � ��� 1 ��� �	���

Theorem 1
 �
� �

1 ��� � Monotonicity� �
� ��� � Consistency�

0
�

(2.1)

Therefore, the u-values � �
	 1 � ��� are consistent as well.

� The u-values � � � ��� are admissible.

For all � � � $ � � � � , 4 � � � ��� Admissibility� � � � ��� � � �
	 1 � ��� � � � � ��� Admissibility� 0. Furthermore, for all � � � � � � ,
4 � � � ��� ��� � 	 1 � ��� as we show below. It follows that, for all � � � � � � , 4 � � � ��� ��� �
	 1 � ��� Monotonicity�
� � � ��� Admissibility� 0. Therefore, the u-values � � 	 1 � ��� are admissible as well.

We prove by induction that, for all � � � � �
� , 4 � � � ��� � � � 	 1 � ��� . Consider an ordering ��� for� � 1 � 2 � � � � , ' � � � � ' of all � � � � � � according to their increasing minimax goal distance. We
show by induction on

�
that 4 � � � � � �!� � �
	 1 � � � � . We consider two cases: First, � � � � � � � � .

Then, it holds trivially that 4 � � � � � � � � � 	 1 � � � � . Second, � � � � � � � . Then, � � � � � �
� implies
� � � � $ per definition of

� � �
� . Thus, � � � � � � � 1 5 min �)�687 ����9 max � /),������� 7 ��� � � 9 � � � � 1 � . Let
! 1 := one-of arg min ��)*687 ����9 max � /),������� 7 ��� � ��9 � � � � 1 � . Then, � � � � � � � 1 5 max � /),������� 7 ��� � � / 9 � � � � 1 � and
thus � � � � 1 � � � � � � � for all � 1 � ��� ��� � � � �"! 1 � . In general, 4 � � � � 1 � � � �
	 1 � � 1 � for all � 1 � ����� � � � � �"! 1 �
since either � 1 � ��$ � � �
� (see above) or � 1 � �	� with
 �

per induction hypothesis. Then,

��� ������ �

min

� ���������� � ����� ������ ���

2.3. Min-Max LRTA* 21

min

� ��������� � ��� �
1 � max
 / �
���������
 � � � / � � ����� �	�����

min
� ���������� � ���

1 � min
 / �
���������
 � � � / ��� ��� ����� � ��� ��
min

� ��������� � ���
1 � min
 / �
���������
 � � � / � � ��� 1 ��� � ���

�
min

� ���������� � ���
1 � max����� ��
 � � min
 / ��
�� ���$��
 � � �#� � ��� 1 ��� �	���

Admissibility�
min

� � � ���� � � � 1 � max����� ��
 � � min
 / �
���������
 � � �#� � � � 1 ��� �	���
Theorem 1
 �

���
1 ��� ���

This theorem generalizes a theorem in [Ishida and Korf, 1991], that they state only for initially admissible
u-values of LRTA* in deterministic domains. Their theorem is about the Moving-Target Search method
(MTS) [Ishida and Korf, 1991], but MTS behaves identically to LRTA* if the target does not move.

Theorem 2 enables us to simplify the value-update step of Min-Max LRTA* if its initialu-values are consistent.
Consider the

� � 5 1 � st value-update step of Min-Max LRTA* (Line 4 in Figure 2.10). Let � � � ��� and � �
	 1 � ���
refer to the u-values immediately before and after, respectively, the value-update step. Let � � ��� and � 1�� ���
denote the u-values and u’-values, respectively, of the minimax-search method at any point in time directly
before Line 5 in Figure 2.11 is executed and let � 1 be any state in the local search space with � � � 1 � � � . Then,
� � � 1 1 � � � � 	 1 � � 1 1 � for all � 1 1 � �

since either � � � 1 1 � � 4 � or � � � 1 1 � � � �
	 1 � � 1 1 � . Furthermore, u-values that
are initially consistent remain consistent according to Theorem 2 and thus the u-values � � � ��� are consistent.

Put together, 4 1 5 max ��)*687 � / 9 min � / /),������� 7 � / � � 9 � � � 1 1 � � 4 1 5 max �)�687 � / 9 min � / /),������� 7 � / � ��9 � �
	 1 � � 1 1 � Formula 2.1�
� � � � 1 � � � 1�� � 1 � . Therefore, Line 5 can be simplified to � � � 1 � := 4 1 5 max ��)*687 � / 9 min � / /),� ����� 7 � / � � 9 � � � 1 1 �
without changing the u-value assigned to � 1 . (Lines 3 and 4 can be simplified in the same way.) LRTA* was
originally stated with this value-update step only [Korf, 1990]. We refer to it as the simplified value-update
step of Min-Max LRTA*.

2.3.3.2 Upper Complexity Bound

In this section, we provide an upper bound on the complexity of Min-Max LRTA*. The upper complexity
bound is smaller the fewer states the domain has, the smaller the maximal minimax goal distance is, and the
better the initial heuristic knowledge is (that is, the more negative the initial u-values are).

Our complexity analysis is centered around the invariant from Theorem 3. This invariant shows that the
number of executed actions is always bounded from above by an expression that depends only on the initial
and current u-values. The time superscript

�
refers to the values of the variables immediately before the� � 5 1 � st value-update step of Min-Max LRTA* (Line 4 in Figure 2.10).

Theorem 3 For all times
� � 0 � 1 � 2 � � � � (until termination)

� � �
����� � 0 ��� � � �
� ��� ��� � � � 0 ��� 0 � � �

� ��� � ���

for Min-MaxLRTA* with initiallyadmissibleu-values in safely explorable domains (regardless of the behavior
of nature).6

6Sums have a higher precedence than other operators. For example, (
	 &�� � (� 	�� &�� � � (� 	�� � &�����,� (� 	 &�� � � .

22 Chapter 2. Acting with Agent-Centered Search

Proof by induction: The u-values are admissible at time
�

according to Theorem 2. Thus, they are finite, since
the domain is safely explorable. For

� � 0, the inequality reduces to
� � 0, which is true. Now assume that

the theorem holds at time
�
. The left-hand side of the inequality increases by one between time

�
and

� 5 1.
The right-hand side of the inequality increases by

�
��������
 ���
�
� ��� � � �
��������
 ��� 1 �

�
���

1 ��� �

 �
�������#
 � �
 ��� 1 �

� � � ��� � � �
���

1 ��� ��� � �
� ��� ��� 1

� � �
���

1 ��� � �
Theorem 1
 �
�������#
 � �
 ��� 1 �

� � � ��� � � �
���

1 ��� ��� � �
� ��� ��� 1 � �

min
� � � ��� � � ��� 1 � max����� ��
 � � min
 / ��
�� ���$��
 � � �#� � ��� 1 ��� � ���

	 �
�������#
 � �
 ��� 1 �
� � � ��� � � �

���
1 ��� ��� � �

� ��� ��� 1
� � 1

�
max����� ��
 � � min
 / ��
������$��
 � � �#� � ��� 1 ��� � �

	 �
�������#
 � �
 ��� 1 �
� � � ��� � � �

���
1 ��� ��� � �

� ��� ��� 1
� � 1

� �
� �

1 ��� ��� 1
�

 �
�������#
 � �
� � � ��� � � �

���
1 ��� ��� � 1

Theorem 2	
1
�

According to the proof of Theorem 3, the potential (�),+�
�"� ��� � � � ��� decreases with every action execution by
at least one. The potential is bounded from below since the u-values are bounded from below by the negative
minimax goal distances. This follows directly from the definition of admissible u-values and the fact that
they remain admissible after every action execution (Theorem 2). Theorem 4 uses this fact to derive an upper
bound on the number of action executions.

Theorem 4 Min-Max LRTA* with initially admissible u-values reaches a goal state in safely explorable
domains after at most (�*)�+ : � 0 � ����5 � � � ���<;�4 � 0 � � 0 � action executions (regardless of the behavior of nature).

Proof:

� Theorem 3� �
����� � 0 ��� � � �
� ��� � � �!� � 0 ��� 0

� � �
� ��� � ���

Admissibility� �
����� � 0 ��� � � ������� � � � � 0 ��� 0
���

Now, let � denote the average minimax goal distance over all states. Then, (�*),+ : � 0 � ��� 5 � � � ���!;24 � 0 � � 0 � �
(�),+ � � � ��� � & � � & � for initially admissible u-values in safely explorable domains. Notice that the
minimax goal distances of all states influence the upper complexity bound, not merely the minimax goal
distance of the start state. In general, Theorem 4 implies that Min-Max LRTA* with initially admissible
u-values has a complexity of at most

� � & � � action executions. If the domain is not safely explorable, then �

is infinite and so is the upper complexity bound since Min-Max LRTA* might not reach a goal state. In safely
explorable domains, however, � � & 4 1, and Min-Max LRTA* with initially admissible u-values reaches
a goal state after at most & � � & � & 4 1 � action executions or, in big-O notation,

� � & 2 � action executions.
Thus, it reaches a goal state after a finite number of action executions, which proves its correctness.

2.3. Min-Max LRTA* 23

0

5000

10000

15000

20000

25000

0 5 10 15 20 25 30 35

nu
m

be
r

of
 s

ta
te

s

goal distance

american goal state
european goal state

Figure 2.12: Goal Distances of the Eight Puzzle

start state

goal state

s1

...s2 s3 s4 sn-1 sn

Figure 2.13: Worst-Case Domain for Min-Max LRTA*

To understand the usefulness of the upper complexity bound consider sliding-tile puzzles, which are sometimes
considered to be hard search tasks because they have a small goal density. The eight puzzle, for example, has
181,440 states from which the goal state can be reached, but only one goal state. Although increasing the goal
density tends to decrease the average minimax goal distance, there are search tasks with small goal density
and small average minimax goal distance. The eight puzzle is an example: Figure 2.12 shows for every
goal distance how many of the 181,440 states have this particular goal distance. It turns out that the average
goal distance of the eight puzzle with the American goal state (Figure 2.7) is only 21.5 and its maximal goal
distance is 30. Similarly, the average goal distance of the eight puzzle with the European goal state is 22.0
and its maximal goal distance is 31. (Reinefeld [Reinefeld, 1993] contains extensive statistics on the eight
puzzle.) In both cases, the average goal distances are much smaller than the number of states. Thus, the eight
puzzle is not particularly hard to search with Min-Max LRTA* among all domains with the same number of
states: even if Min-Max LRTA* executes actions that do not decrease its goal distance, it can never move
far away from the goal state. This does not imply, of course, that Min-Max LRTA* can search sliding-tile
puzzles with a huge number of tiles, since its complexity depends not only on the average goal distance of the
sliding-tile puzzle (relative to the number of states), but also the number of states, which is exponential in the
number of tiles. This makes large sliding-tile puzzles difficult to search with any search method. Section 2.5
discusses this and other domain properties in more detail.

2.3.3.3 Lower Complexity Bound for Uninformed Min-Max LRTA*

Min-Max LRTA* is uninformed if its u-values are initialized with zero, that is, � � ��� := 0 for all � � �
.

Theorem 4 predicts that uninformed Min-Max LRTA* reaches a goal state after at most (�),+ � � � ��� �
(� � 1� � 0

� � & 2 � 2 4 & � 2 action executions in safely explorable domains. In this section, we prove, by example,
that this upper complexity bound is tight for uninformed Min-Max LRTA* with look-ahead one. We use
only deterministic example domains. This shows that the upper complexity bound is tight for this important
subclass of nondeterministic domains and that deterministic domains, in general, are not easier to search
with Min-Max LRTA* than nondeterministic domains. It also shows that the upper complexity bound is
tight for uninformed LRTA* with look-ahead one since, in deterministic domains, Min-Max LRTA* behaves
identically to LRTA*.

Theorem 5 Zero-initialized Min-Max LRTA* with look-ahead one has a tight complexity of
� � & � � action

executions over all nondeterministic domains and over all deterministic domains. It has a tight complexity of� � & 2 � action executions over all safely explorable, nondeterministic domains and over all safely explorable,
deterministic domains.

24 Chapter 2. Acting with Agent-Centered Search

...

start state goal state

s1 s3 s5 sn-3
sn-1

...s2 s4 sn-2
sns6

Figure 2.14: Rectangular Grid-World

Proof: (Upper Bound) Zero-initialized u-values are consistent and thus admissible. Theorem 4 implies
that zero-initialized Min-Max LRTA* has a complexity that is at most (�),+ � � � ��� � & � action executions
over all nondeterministic domains and thus also over all deterministic domains, a subset of nondeterministic
domains. Thus, zero-initialized Min-Max LRTA* has a complexity that is at most

� � & � � action executions
over all nondeterministic domains and over all deterministic domains. (�),+ � � � ����� (� � 1� � 0

� � & 2 � 2 4 & � 2
for safely explorable domains. Thus, zero-initialized Min-Max LRTA* has a complexity that is at most� � & 2 � action executions over all safely explorable, nondeterministic domains and over all safely explorable,
deterministic domains.

(Lower Bound) Figure 2.13 shows an example of a safely explorable, deterministic (and thus nondeterministic)
domain for which the number of action executions that zero-initialized Min-Max LRTA* with look-ahead
one needs in the worst case to reach a goal state is at least & 2 � 2 4 & � 2. Rather than explaining what occurs,
we provide pseudo-code that prints the sequence of states that Min-Max LRTA* traverses. The scope of
the for-statements is shown by indentation. The statements in their scope get executed only if the range of
the for-variable is not empty. The default step size of the for-statements is either one (“to”) or minus one
(“downto”). It is easy to determine from an inspection of the code how many actions Min-Max LRTA*
executes. Min-Max LRTA* traverses the state sequence that is printed by the following program in pseudo
code if ties are broken in favor of successor states with smaller indices.

for i := 1 to n-1
for j := i downto 1

print j
print n

In this case, Min-Max LRTA* executes & 2 � 2 4 & � 2 actions before it reaches the goal state (for & 1). For
example, for & � 5, it traverses the state sequence � 1, � 2, � 1, � 3, � 2, � 1, � 4 , � 3, � 2, � 1, and � 5. Notice that
� � & 4 1 for the domain in Figure 2.13 (for & 1). Thus, the complexity is both at least

� � & � � and
� � & 2 �

action executions.

The domain in Figure 2.13 was artificially constructed. Zero-initialized Min-Max LRTA* with look-ahead
one has a tight complexity of

� � & � � action executions or, over all safely explorable domains,
� � & 2 � action

executions even for more realistic domains, such as grid-worlds. In fact, the complexity of zero-initialized
Min-Max LRTA* with look-ahead one is tight at

� � & � � action executions and, over all safely explorable
domains,

� � & 2 � action executions even if the domains are undirected and the number of actions that can be
executed in any state is bounded from above by a small constant (here: three). Figure 2.14 shows a safely
explorable grid-world for which the number of action executions that zero-initialized Min-Max LRTA* with
look-ahead one needs in the worst case to reach a goal state is at least

� � & � � or, alternatively,
� � & 2 � . In

particular, it can traverse the state sequence that is printed by the following program in pseudo code.

for i := n-3 downto n/2 step 2
for j := 1 to i step 2

print j
for j := i+1 downto 2 step 2
print j

for i := 1 to n-1 step 2
print i

2.3. Min-Max LRTA* 25

s1

start state

...

goal state

s2 s3 sn-3 sn-2 sn-1 sn

X

Figure 2.15: One-Dimensional Grid-World (1)

In this case, Min-Max LRTA* executes 3 & 2 � 16 4 3 � 4 actions before it reaches the goal state (for & 2 with
& mod 4 � 2). For example, for & � 10, it traverses the state sequence � 1, � 3, � 5, � 7 , � 8, � 6, � 4, � 2, � 1, � 3, � 5,
� 6, � 4, � 2, � 1, � 3, � 5, � 7, and � 9. Notice that � � & � 2 for the domain in Figure 2.14 (for even & 2). Thus,
the complexity of zero-initialized Min-Max LRTA* with look-ahead one is both at least

� � & � � and
� � & 2 �

action executions.

2.3.3.4 Lower Complexity Bound for Fully Informed Min-Max LRTA*

Min-Max LRTA* is fully informed if its u-values are initialized with the negative minimax goal distances of
the states, that is, � � ��� := 4!� � � ��� for all �%� �

. Theorem 4 predicts that fully informed Min-Max LRTA*
reaches a goal state after at most � � � � � ���	�
� � � & 4 1 action executions in safely explorable domains. In this
section, we prove, by example, that this upper complexity bound is tight for fully informed Min-Max LRTA*
with arbitrary look-ahead, including look-ahead one. No method can do better in the worst case. We use only
deterministic example domains. This also shows that the upper complexity bound is tight for fully informed
LRTA* since, in deterministic domains, Min-Max LRTA* behaves identically to LRTA*.

Theorem 6 Min-Max LRTA* with arbitrary look-ahead whose u-values are initialized with the negative goal
distances of the states has a tight complexity of

� � � � action executions over all nondeterministic domains and
over all deterministic domains. It has a tight complexity of

� � & � action executions over all safely explorable,
nondeterministic domains and over all safely explorable, deterministic domains. Furthermore, the complexity
of every method is at least as large over these domains.

Proof: (Upper Bound) The u-values of fully informed Min-Max LRTA* are consistent and thus admissible.
Theorem 4 implies that fully informed Min-Max LRTA* has a complexity that is at most � � � � �����	�
� � � �

action executions over all safely explorable, nondeterministic domains and thus also over all safely explorable,
deterministic domains, a subset of nondeterministic domains. Thus, fully informed Min-Max LRTA* has a
complexity that is at most

� � � � action executions over all nondeterministic domains and over all deterministic
domains. Its complexity is also bounded by � � � �������*� ��� for domains that are not safely explorable since fully
informed Min-Max LRTA* cannot accidentally execute actions that lead to a state with infinite minimax goal
distance. � � � ��� ���	�
� � � & 4 1 for safely explorable domains. Thus, fully informed Min-Max LRTA* has a
complexity that is at most

� � & � action executions over all safely explorable, nondeterministic domains and
over all safely explorable, deterministic domains.

(Lower Bound) Figure 2.15 shows an example of a safely explorable, deterministic (and thus nondeterministic)
domain for which the number of action executions that fully informed Min-Max LRTA* needs in the worst
case to reach a goal state is at least & 4 1. Min-Max LRTA* traverses the state sequence that is printed by the
following program in pseudo code.

for i := 1 to n
print i

In this case, Min-Max LRTA* executes & 4 1 actions before it reaches the goal state (for & 1). For example,
for & � 5, it traverses the state sequence � 1, � 2 , � 3, � 4, and � 5 . Every other method also traverses either this
state sequence or a super sequence thereof. Notice that � � & 4 1 for the domain in Figure 2.15 (for & 1).
Thus, the complexity is both at least

� � � � and
� � & � action executions.

26 Chapter 2. Acting with Agent-Centered Search

informedness of

complexity of
Min-Max LRTA*

with look-ahead one

upper complexity bound

uninformed totally informed

(as a function of n)
over safely explorable domains

1/2 n2 - 1/2 n

n - 1

we proved that the upper bound is tight

the initial u-values
|ΣsεS u(s)|ΣsεS gd(s)0

Figure 2.16: Upper Complexity Bound

initial u-values informedness rank average-case performance rank
Manhattan distance 2,661,120 1 326.61 1
Gaschnig’s heuristic 1,461,168 2 2,235.62 3
tiles-out-of-order 1,290,240 3 1,409.81 2
zero heuristic 0 4 85,570.42 4

Figure 2.17: Informedness for the Eight Puzzle with the American Goal State

initial u-values sum of goal distances � informedness � average initial u-value � average upper average-case
complexity bound performance

Manhattan distance 3,901,468 � 2,661,120 	 2,661,120 / 181,440 � 1,240,362.67 326.61
Gaschnig’s heuristic 3,901,468 � 1,461,168 	 1,461,168 / 181,440 � 2,440,308.05 2,235.62
tiles-out-of-order 3,901,468 � 1,290,240 	 1,290,240 / 181,440 � 2,611,235.11 1,409.81
zero heuristic 3,901,468 � 0 	 0 � 3,901,468.00 85,570.42

Figure 2.18: Upper Complexity Bound for the Eight Puzzle with the American Goal State

2.3.3.5 Complexity Bounds and Performance Prediction

In this section, we show that the upper complexity bound of Theorem 4 does not necessarily reflect the
performance of Min-Max LRTA* well for common test-beds of Min-Max LRTA*. We show that it can
underestimate the performance dramatically. Furthermore, we show that the performance of Min-Max
LRTA* can deteriorate as the initial u-values become better informed although the upper complexity bound
is guaranteed to decrease. Ishida [Ishida, 1995] contains other experimental results on how properties of
heuristic values affect the performance of LRTA*-type real-time search methods.

In the previous sections, we showed that uninformed Min-Max LRTA* with look-ahead one has a tight
complexity of & 2 � 2 4 & � 2 action executions over all safely explorable domains. Fully informed Min-Max
LRTA* with look-ahead one has a tight complexity of & 4 1 action executions over all safely explorable
domains. Thus, the complexity of Min-Max LRTA* eventually decreases as it becomes better informed
(Figure 2.16). This does not mean, however, that the performance of Min-Max LRTA* in a given domain
monotonically increases as the admissible u-values become better informed. We use two examples to
illustrate this. Both example domains are deterministic. This also shows that the performance of LRTA* does
not increase monotonically either since, in deterministic domains, Min-Max LRTA* behaves identically to
LRTA*.

2.3. Min-Max LRTA* 27

First Example: Consider the following heuristic functions for A* search on the eight puzzle with the
American goal state (Figure 2.7) [Pearl, 1985]:

� the Manhattan distance heuristic: the smallest number of moves needed to achieve the goal configura-
tion if two or more tiles can occupy the same square and it counts as one move when a tile is slid from
its current square to an adjacent square (up, down, left, or right);

� Gaschnig’s heuristic: the smallest number of moves needed to achieve the goal configuration if it
counts as one move when a tile is removed from its current square and placed on the empty square;

� the Tiles-Out-Of-Order heuristic: the smallest number of moves needed to achieve the goal configuration
if two or more tiles can occupy the same square and it counts as one move when a tile is removed from
its current square and placed on any other square;

� the zero-heuristic, which always returns zero.

All four heuristic functions are consistent. Thus, consistent initial u-values can be obtained by using the
negative of their heuristic values to initialize the u-values of Min-Max LRTA*. We use the absolute value of
the sum of the u-values over all 181,440 states to measure how informed the resulting u-values are. We use
this measure since it directly influences the upper complexity bound from Theorem 4: If we draw a start state
randomly, then the average upper complexity bound is

�
��� � � 0 ��� � � ������� ��� � � 0 ��� 0 �
 �
��� � � 0 ��� � � � ����� ��� � 1
�
�
��� � 0 ��� �

 �
��� ������� � � �
1

� 1
�
� �
��� � 0 ��� �

 �
��� ������� � � �
1

� 1
�
��� �
��� � 0 ��� ��� �

Thus, the larger the informedness, the smaller the average upper complexity bound. Table 2.17 lists both
the informedness and the number of actions executed by Min-Max LRTA* with look-ahead one averaged
over 25,000 runs with randomly broken ties. The same 25,000 randomly chosen start states were used for all
heuristic functions. Table 2.18 uses this data to show that the actual performance of Min-Max LRTA* can be
much better than the upper complexity bound of Theorem 4 suggests. Table 2.17 shows that better informed
initial u-values do not necessarily increase the performance of Min-Max LRTA* for a given domain. We
say that u-values � � ��� are state-wise better informed than u-values � 1�� ��� if and only if � � ��� � � 1�� ��� for all
��� �

and � � ��� � 1�� ��� for at least one �%� �
. The u-values of both the Manhattan distance and Gaschnig’s

heuristic are state-wise better informed than the u-values of the tile-out-of-order heuristic, which in turn are
state-wise better informed than the u-values of the zero heuristic. The table shows that the average number
of actions executed by Min-Max LRTA* with look-ahead one is larger for Gaschnig’s heuristic than for the
tiles-out-of-order heuristic although Gaschnig’s heuristic is state-wise better informed than the tiles-out-of-
order heuristic. Min-Max LRTA* with look-ahead one and the tiles-out-of-order heuristic needs, on average,
1,410 action executions to reach the goal state, compared to 2,236 action executions for Min-Max LRTA*
with look-ahead one and Gaschnig’s heuristic. Out of the 25,000 runs, Min-Max LRTA* with look-ahead
one and the tiles-out-of-order heuristic outperforms Min-Max LRTA* with look-ahead one and Gaschnig’s
heuristic 15287 times, is beaten 9682 times, and ties 31 times.

Second Example: The first example involved sampling: the start states were determined randomly and ties
among indistinguishable actions were broken randomly as well. We therefore present another example that
is not subject to sampling error. Consider the one-dimensional grid-world in Figure 2.15. Zero-initialized
Min-Max LRTA* with look-ahead one traverses the state sequence printed by the followingprogram in pseudo
code.

28 Chapter 2. Acting with Agent-Centered Search

for i := 1 to n
print i

Thus, Min-Max LRTA* executes & 4 1 actions before it reaches the goal state (for & 1). For example, for
& � 5, it traverses the state sequence � 1, � 2 , � 3, � 4, and � 5. Now assume that the u-value of the state marked
X is decreased to -1. The resulting u-values are still consistent and state-wise better informed than before.
However, Min-Max LRTA* with look-ahead one can now traverse the state sequence printed by the following
program in pseudo code if ties are broken in favor of successor states with smaller indices.

for i := 1 to n-2
print i

for i := n-3 downto 1
print i

for i := 2 to n
print i

In this case, Min-Max LRTA* executes 3 & 4 7 actions before it reaches the goal state (for &� 3), and
3 & 4 7 � & 4 1 for & � 3. For example, for & � 5, it traverses the state sequence � 1, � 2, � 3, � 2 , � 1, � 2, � 3, � 4,
and � 5.

Both examples illustrate that the performance of Min-Max LRTA* is not completely correlated with the
informedness of the initial u-values. Why is this so? In deterministic domains, the action-selection step
of Min-Max LRTA* always chooses the action that leads to the successor state with the maximal u-value.
We therefore expect Min-Max LRTA* to do well if there is a good chance that it comes across a goal
state when it mostly performs steepest ascent on the initial u-values. This means that the differences in
u-values of the successor states are more important than how close the u-values are to the negative goal
distances. Consequently, the fewer local maxima there are in the initial u-value surface, the better we expect
the performance of Min-Max LRTA* to be. Ishida [Ishida, 1992] calls these local maxima “depressions” (the
local optima are local minima for him, since he works with u-values that approximate the positive minimax
goal distances). Min-Max LRTA* differs in this respect from A*, that cannot expand more states if consistent
heuristic values are state-wise better informed than others, except maybe for states whose f-values equal the
goal distance of the start state [Pearl, 1985].

2.3.3.6 Convergence

If Min-Max LRTA* solves the same search task repeatedly (even with different start states) it improves its
behavior over time. This is an important difference between Min-Max LRTA* and many other planning
methods that interleave planning and plan execution, because no method that executes actions before it knows
their complete consequences can guarantee a good behavior right away. One-shot planning methods do not
anticipate that they might have to solve a planning task more than once. If they are not able to improve their
behavior over time if they unexpectedly have to solve the same planning tasks multiple times, then they are
not efficient in the long run.

Min-Max LRTA* improves its behavior over time by transferring domain knowledge, in the form of u-values,
between search tasks in the same domain with the same set of goal states. This is a familiar concept: One
can argue that the searches that Min-Max LRTA* performs between plan executions are independent of one
another and that they are connected only by the u-values that transfer domain knowledge between them. To
see why Min-Max LRTA* can do the same thing between search tasks, assume that a series of search tasks
in the same domain with the same set of goal states is given. If the initial u-values of Min-Max LRTA* are
admissible for the first search task, then they are also admissible after Min-Max LRTA* has solved the task
and are state-wise at least as informed as initially (Theorem 2). Thus, they are also admissible for the second
search task and Min-Max LRTA* can continue to use the same u-values across search tasks. The start states
of the search tasks can differ since the admissibility of the u-values does not depend on the start states. This
way, Min-Max LRTA* can transfer acquired domain knowledge from one search task to the next, thereby
making its u-values better informed. The resulting improvement in performance is often nonmonotonic,

2.3. Min-Max LRTA* 29

since more informed u-values do not necessarily improve the performance of Min-Max LRTA* immediately
(Section 2.3.3.5). The following theorems formalize this knowledge transfer:

Theorem 7 Min-Max LRTA* with initially admissible u-values reaches a goal state in safely explorable
domains after at most � � � � �����	�
� � action executions (regardless of the behavior of nature) if its u-values do not
change during the search.

Proof:

�
���

1 ��� ��� 1
� � �

� ��� � �
 �
���

1 ��� ��� 1
� � �

���
1 ��� � � since the u-values do not change

Theorem 1
 �
���

1 ��� ��� 1
� �

min
� � � ��� � � ��� 1 � max����� ��
 � � min
 / �
������$��
 � � �#� � ��� 1 ��� �	���

	 �
���

1 ��� ��� 1
� � 1

�
max����� ��
 � � min
 / ��
�� ���$��
 � � �#� � ��� 1 ��� � �

	 �
���

1 ��� ��� 1 � � 1
� �

���
1 ��� ��� 1 �

1
�

Thus, the difference in u-values between the next state and the current state is at least one. Since the u-values
of all goal states are zero and the u-value of the start state is at least � � � � ��� �	� � � , by induction Min-Max LRTA*
needs at most � � � � �����	�
� � action executions to reach a goal state.

Theorem 7 can be used to derive the followingconvergence result for Min-Max LRTA* in the mistake-bounded
error model. The mistake-bounded error model is one way of analyzing learning methods by bounding the
number of mistakes (for example, wrong predictions) that they make:

Theorem 8 Assume thatMin-Max LRTA* maintainsu-values across a series of search tasks in the same safely
explorable domain with the same set of goal states. Then, the number of search tasks for which Min-Max
LRTA* with initially admissible u-values reaches a goal state after more than � � � � ��� �	� � � action executions is
bounded from above by a constant that depends only on the domain and goal states.

Proof: The u-values are always admissible during all search tasks. If Min-Max LRTA* reaches a goal state
after more than � � � � �����	�
� � action executions, then at least one u-value has changed (Theorem 7). This can
happen only a finite number of times since the u-values are monotonically nonincreasing and bounded from
below by the negative minimax goal distances.

In this context, it counts as one mistake when Min-Max LRTA* reaches a goal state after more than � � � � � ���	�
� �
action executions. According to Theorem 8, the u-values converge after a bounded number of mistakes.
Determining the number of mistakes is not important in the following. The u-values do not necessarily
converge after a bounded number of search tasks, even if Min-Max LRTA* does not change its behavior, that
is, always selects its local search spaces in the same way and always breaks ties among equally good actions
in the same way. In particular, it is not true that, when the u-values have not changed during one search task,
they cannot change during any future search task. This is so because the behavior of Min-Max LRTA* is not
determined exclusively by the u-values: Min-Max LRTA* does not perform a complete minimax search but
partially relies on observing the actual successor states of action executions, and nature can prevent Min-Max
LRTA* from experiencing some of the action outcomes (for example, the worst-case action outcomes) for an
arbitrarily long time or choose not to let Min-Max LRTA* experience them at all. However, whenever nature
lets Min-Max LRTA* experience a novel action outcome, Min-Max LRTA* learns from that, which allows
it to bound the number of mistakes it makes. For the same reason, the action sequence after convergence
depends on the behavior of nature. However, it is guaranteed that the action sequence has � � � � �����	�
� � or fewer

30 Chapter 2. Acting with Agent-Centered Search

goal

Goal PosesPossible Start Poses (Start Belief)
actual start pose

Figure 2.19: Goal-Directed Navigation Task

actions, that is, it is either worst-case optimal or better than worst-case optimal. This is so because nature
might not be as malicious as a minimax search assumes.

To summarize, Min-Max LRTA* finds suboptimal plans. During the search it gains experience with the search
task. It uses this experience subsequently to find better plans for similar planning tasks, that is, planning tasks
that can differ in their start states. Thus, Min-Max LRTA* improves its behavior over time. This has two
advantages: First, Min-Max LRTA* amortizes learning over several search episodes. This allows it to find
suboptimal plans fast. Second, since Min-Max LRTA* partially relies on observing the actual successor states
of action executions it does not plan for all possible successor states and thus can still have computational
advantages even over several search episodes compared to a complete minimax search if nature is not as
malicious as a minimax search assumes and some successor states do not occur in practice. This also means
that Min-Max LRTA* might be able to solve search tasks in domains that are not safely explorable, although
this is not guaranteed.

2.3.4 Summary of Results on Min-Max LRTA*

Min-Max LRTA* extends LRTA* to nondeterministic domains by interleaving minimax searches with plan
executions. Its complexity is finite in domains that are safely explorable, that is, if the minimax goal distance
of every state is finite. Min-Max LRTA* has three features: It allows for fine-grained control over how much
planning to do between plan executions, uses heuristic knowledge (in the form of admissible initial u-values)
to guide planning, and improves its performance over time as it solves similar planning tasks. Since Min-Max
LRTA* partially relies on observing the actual successor states of action executions it does not plan for all
possible successor states and thus can still have computational advantages even over several search episodes
compared to a complete minimax search if nature is not as malicious as a minimax search assumes.

2.4 An Application: Robot-Navigation Tasks

In this section, we present a case study that illustrates the application of Min-Max LRTA* to nondeterministic
robot navigation domains. We study goal-directed navigation tasks in mazes [Genesereth and Nourbakhsh,
1993]. The robot knows the maze, but is uncertain about its start pose, where a pose is a location (square) and
orientation (north, east, south, west). We assume that there is no uncertainty in actuation and sensing.7 The
sensors on-board the robot tell it in every pose whether there are walls immediately adjacent to it in the four
directions relative to the orientation of the robot (front, left, behind, right). The robot’s actions are to move
forward one square (unless there is a wall directly in front of it), turn left ninety degrees, or turn right ninety
degrees. The task of the robot is to navigate to a given goal pose and stop. Since there can be many poses
that produce the same sensor reports as the goal poses, solving the goal-directed navigation task includes
localizing the robot sufficiently so that it knows that it is at a goal pose when it stops.

Goal-directed navigation tasks with initial pose uncertainty are good tasks for interleaving planning and plan
execution because interleaving planning and plan execution allows the robot to gather information early,

7Chapter 3 discusses planning methods for noisy actuators and sensors.

2.4. An Application: Robot-Navigation Tasks 31

goal goal

(c) Localization is not Always Necessary for Goal-Directed Navigation

goal

(a) Sometimes Localization is Necessary for Goal-Directed Navigation

(b) Goal-Directed Navigation and Localization can Lead to Different Results

goal

Figure 2.20: Goal-Directed Navigation and Localization

which reduces its pose uncertainty and thus the number of situations that its plans have to cover. This makes
subsequent planning more efficient. For example, assume that the robot has no knowledge of its start pose
for the goal-directed navigation task from Figure 2.19, but observes walls around it except in its front. This
results in the seven possible start poses shown in the figure. If the robot executes a forward action and then
observes walls in its front and to its left and openings on the other two sides, it can infer that it has solved the
goal-directed navigation task and does not need to plan any further. In particular, it does not need to decide
what it should have done had the observation been different.

We require that the mazes be strongly connected (every pose can be reached from every other pose) and not
completely symmetrical (localization is possible). This modest assumption makes all goal-directed navigation
tasks solvable, since the robot can always first localize itself and then move to a goal pose. It can indeed
be optimal for the robot to solve goal-directed navigation tasks this way. Figure 2.20(a) shows an example.
Since the observations at the goal pose do not uniquely identify the goal pose, it is best for the robot to first
localize itself by turning around and moving forward twice. At this point, the robot has localized itself and
can navigate to the goal pose. However, it is not always optimal for the robot to solve goal-directed navigation
tasks this way. Figure 2.20(b) shows an example. To solve the goal-directed navigation task, it is best for
the robot to turn left and move forward until it sees a corridor opening on one of its sides. At this point, the
robot has localized itself and can navigate to the goal pose. On the other hand, to solve the corresponding
localization task, it is best for the robot to move forward once. At this point, the robot has localized itself.
Finally, some goal-directed navigation tasks can be solved without localizing the robot at all. Figure 2.20(c)
shows an example. To solve the goal-directed navigation task, it is best for the robot to move forward twice.
At this point, the robot knows that it is in a goal pose but cannot be certain which of the two goal poses it is in.

2.4.1 Formalizing the Robot-Navigation Tasks

In this section, we formalize the goal-directed navigation tasks: � is the set of possible robot poses.
����� � is the

set of possible actions that the robot can execute in pose
� ��� : left, right, and possibly forward. ��� ��� ��� �	!#�

is the pose that results from the execution of action ! � ����� � in pose
� ��� . � ��� � is the observation that the

robot makes in pose
� ��� : whether or not there are walls immediately adjacent to it in the four directions

(front, left, behind, right).

The robot starts in pose
� �����	�
� ��� and then repeatedly makes an observation and executes an action until it

decides to stop. It knows the maze, but is uncertain about its start pose. It could be in any pose in � ��� �	� � �	� .
We require only that � ��� � � � ��� 1 � for all

� � � 1 ��� � ���	�
� , which automatically holds after the first observation,
and

� � ���	�
� ��� ��� �	� � , which automatically holds for � �����	�
� � . � ' � ����
�� ��� � � � ��� �����*� � � 3 . The robot has to
navigate to any pose in � �� �� � � �	� and stop.

When the robot is not certain about its pose, the best it can do is to maintain a belief about its current pose.
We assume that the robot cannot associate probabilities or other likelihood estimates with the poses. Then,

32 Chapter 2. Acting with Agent-Centered Search

all it can do is to maintain a set of possible poses (“beliefs”). We use the following notation: � is the set of
beliefs, � �����	�
� the start belief, and � � � � the set of goal beliefs.

�$� ��� is the set of actions that can be executed
when the belief is � . � � � �	!#� is the set of possible observations that can be made after the execution of action
! when the belief was � . ��� ��� � � �"! � � � is the successor belief that results if observation � is made after the
execution of action ! when the belief was � .

�
 ��� � ���	��

�
��� ���
 �
��� ���
�� � � �
 ��� � ���	� � � � �
� � � �
 � ��� �

for any
� � �

� � � ��� �
 ��� ��� ����� ��� ��� ����� � � ��
� ����� � � ����� ���
 � � ����� ��� ��� ��� � � ����� ��� ����� ��� ��� ���
��

All beliefs � that do not satisfy that � ��� � � � ��� 1 � for all
� � � 1 �!� could be removed from � because they

cannot be encountered. To understand the definition of
�$� ��� , notice that

����� � � ������1 � for all
� � � 1 �"� after

the preceding observation since the observation determines the actions that can be executed. To understand
the definition of � � � � , notice that the robot knows that it is in a goal pose if the belief is ��� � � � � . If the
belief contains more than one pose, however, the robot does not know which goal pose it is in. An example
was discussed in the context of Figure 2.20(c). If it is important that the robot knows which goal pose it is in,
we define � � � � � . �,' � �	� � � �
 ' � ' � 1 3 instead of � � � � � .#�,' � �	� � � � 3 .

The robot navigation domain is deterministic and small (pose space). However, the beliefs of the robot
depend on its observations, which the robot cannot predict with certainty since it is uncertain about its pose.
We therefore formulate a goal-directed navigation task as a search task in a domain whose states are the
beliefs of the robot (belief space). Beliefs are sets of poses. Thus, the number of beliefs is exponential in the
number of poses, and the belief space is not only nondeterministic but can also be large. It can be described
as follows:

� � � , � �����*� � � ����� �	� � , and � � � � � . The set of actions that can be executed in state � is��� ��� � ��� � � for � � � . The set of successor states that can result from the execution of action ! in state � is
������� � � �"!#� � . ����� � � � �	! � � ��' � � � � � �	! ��3 for � � � . The actual successor state that results from the execution
of action ! in state � is determined by the observation � made after the action execution. It is ����� � � � �	! � � � for
� � � .
The belief space satisfies our assumptions: It is safely explorable (since we assume that the robot can always
localize itself and then move to a goal pose) and every action execution necessarily results in a state change.
Traversing any path from the start state in the belief space to a goal state solves the corresponding goal-directed
navigation task. The path does not have to be optimal or repeatable. Assume, for example, that the robot has
successfully solved some goal-directed navigation task and now has to solve the same kind of goal-directed
navigation task in the same maze with the same start and goal beliefs. Even if the robot attempts to execute
the same plan again, it can make different observations since, unknown to the robot, its start pose might have
changed. This is possible since many start poses can be consistent with the same start belief. The change
can result in different beliefs during plan execution and thus different trajectories through the domain. Since
there was no reason to plan for the new beliefs, the previous plan might not cover them.

2.4.2 Features of Min-Max LRTA* for the Robot-Navigation Tasks

Earlier, we discussed the following features of Min-Max LRTA*: that it allows for fine-grained control over
how much planning to do between plan executions, that it uses heuristic knowledge to guide planning, and
that it improves its performance over time as it solves similar planning tasks. In this section, we discuss these
features in the context of the robot-navigation tasks.

2.4. An Application: Robot-Navigation Tasks 33

Fine-Grained Control: Min-Max LRTA* allows for fine-grained control over how much planning to do
between plan executions. We have argued earlier that look-aheads of one or two action executions can be
optimal for sufficiently fast moving agents, that is, agents that can execute plans with a similar speed as they
can generate them. Robots, however, cannot execute actions that fast and thus larger look-aheads can be
expected to outperform small look-aheads.

Heuristic Knowledge: Min-Max LRTA* uses heuristic knowledge (in the form of admissible initial u-values)
to guide planning. For goal-directed navigation tasks, one can use the goal-distance heuristic to initialize the
u-values, that is, � � ��� � 4 max �),� � � � . � 3 � . The calculation of � � � . � 3 � involves no pose uncertainty and
can be done efficiently without interleaving planning and plan execution, by using traditional search methods
in the pose space. This is possible because the pose space is deterministic and small. The u-values � � ��� are
admissible because the robot believes that it might start in pose

� � ���	�
� � one-of arg max�)�� � � � . � 3 � . If it
starts in this pose and knows that, it needs � � � . � � ���	� �#3 � � max�)�� � � � . � 3 � action executions in the worst
case to solve the goal-directed navigation task. If it starts in this pose but does not know that, it might need
more (but cannot need fewer) action executions in the worst case to solve the goal-directed navigation task,
because it might have to execute additional localization actions to overcome its pose uncertainty. Thus, the
u-values are admissible but often only partially informed.

Knowledge Transfer: Min-Max LRTA* improves the performance of the robot over time as it solves similar
planning tasks. In particular, it can transfer domain knowledge between goal-directed navigation tasks with
the same goal poses in the same maze. The actual start poses or the beliefs of the robot about its start
poses do not need to be identical. This way, the robot learns action sequences over time that are at least
worst-case optimal. Assume, for example, that the robot repeatedly solves the same goal-directed navigation
task with the same start pose but does not know that its start pose remains the same.8 Then, the behavior
of nature does not change over time since it is completely determined by the actual start pose of the robot,
that remains the same for all tasks. Thus, nature cannot exhibit the behavior described in Section 2.3.3.6 and
fool Min-Max LRTA* for an arbitrary long time. Assume further that the way how Min-Max LRTA* selects
its local search spaces does not change over time and that Line 5 in Figure 2.10 breaks ties systematically
according to a predetermined ordering on

�$� ��� for all states � . Then, when the u-values do not change during
one goal-directed navigation task, they cannot change during any future navigation task because the behavior
of Min-Max LRTA* is now determined completely by the u-values. Since the u-values are monotonically
nonincreasing and bounded from below, they and thus also the executed action sequence converge after a
bounded number of search tasks. From then on, the robot solves the goal-directed navigation task with at
most � � � � �����	�
� � action executions.

2.4.3 Extensions of Min-Max LRTA* for the Robot-Navigation Tasks

Min-Max LRTA* uses a minimax search in the local search spaces to update its u-values. For the robot-
navigation tasks, it is possible to combine this with updates over a greater distance, with only a small amount
of additional effort. For example, we know that � � � ��� � � � � 1 � for any two states �,�	� 1 � �

with � � � 1 (recall
that states are sets of poses). Thus, we can set � � ��� := min

� � � �����	� � � 1 �
� for selected states � �	� 1 � �
with

��� � 1 . If the u-values are admissible before the update, they remain admissible afterwards. The assignment
could be done immediately before the local search space is generated on Line 3 in Figure 2.10.

2.4.4 Related Search Methods

In this section, we describe various kinds of robot-navigation tasks and special-purpose methods for solving
them. We compare Min-Max LRTA* to these methods.

8If the robot knew that its start pose remains the same, it could use the decreased uncertainty about its pose after solving the
goal-directed navigation task to narrow down its start pose and improve its navigation performance this way.

34 Chapter 2. Acting with Agent-Centered Search

set of 6 poses
goal state
set of 6 poses
goal state
set of 2 poses
set of 6 poses
set of 6 poses
set of 5 poses
set of 6 poses
set of 6 poses
set of 6 poses

start
state

set of 7
poses

Figure 2.21: IG Method

1.
� �
�
 ��� ���

.

2. Update � ����� for all
��� � �
�

(Figure 2.11).

3.
� �

:=
�
.

4. � := one-of arg max
� / �*� ��
 / � min

 / / ��
���������
 / � � / � � ��� � � � .
5. If � � ����� �"� � � � � �
 1, then return.

6.
� �

:=
� � �

, where
� � � � � ����� ��� � � � � is unique.

7. If
� � � � �
�

, then go to 4.

8. If
� � � �

, then return.

9.
� �
�

:=
� �
�
�� � � � �

and go to 2.

Figure 2.22: Generating Local Search Spaces with Larger Look-Aheads

2.4.4.1 Goal-Directed Navigation: IG Method

So far, we have applied Min-Max LRTA* to goal-directed navigation tasks. The Information-Gain Method
(IG method) [Genesereth and Nourbakhsh, 1993] is an earlier method that demonstrated the advantage of
interleaving of planning and plan execution for goal-directed navigation tasks.9 It uses breadth-first search (to
be precise: iterative deepening) on an and-or graph around the current state in conjunction with pruning rules
to find subplans that achieve a gain in information, in the following sense: after the execution of a subplan,
the robot has either solved the goal-directed navigation task or at least reduced the number of poses the robot
can be in (Figure 2.21). This way, the IG method guarantees progress towards the goal.

There are similarities between the IG method and Min-Max LRTA*: Both methods combine real-time
search with minimax search. In fact, Min-Max LRTA* can exhibit a similar behavior as the IG method:
zero-initialized Min-Max LRTA* that generates the local search spaces with the method in Figure 2.22 also
performs a breadth-first search around the current state until it finds a subplan whose execution results in
a gain in information. The method does this by starting with the minimal local search space, that contains
only the current state. It performs a minimax search in the local search space and then simulates the action
executions of Min-Max LRTA* starting from the current state. If the simulated action executions reach a goal
state or lead to a gain in information, then the method returns. However, if the simulated action executions
leave the local search space, the method halts the simulation, adds the state outside of the local search space
to the local search space, and repeats the procedure. Notice that, when the method returns, it has already
updated the values of all states of the local search space. Thus, Min-Max LRTA* does not need to update the
values of these states again and can skip the value-update step. Its action-selection step and the simulation
have to break ties identically. Then, Min-Max LRTA* with Line 8 in Figure 2.10 executes actions until it
either reaches a goal state or gains information.

There are also differences between the IG method and Min-Max LRTA*: The IG method does not need
to maintain information between plan executions, whereas Min-Max LRTA* has to maintain information in

9Genesereth and Nourbakhsh [Genesereth and Nourbakhsh,1993] refer to the IG method as the Delayed Planning Architecture (DPA)
with the viable plan heuristic. They also state some improvements on the variant of the IG method discussed here, that do not change its
character.

2.4. An Application: Robot-Navigation Tasks 35

goal

actual start pose

Figure 2.23: Another Goal-Directed Navigation Task

the form of u-values. To save memory, Min-Max LRTA* can generate the initial u-values on demand and
never store u-values that are identical to their initial values. However, even then its memory requirements are
bounded only by the number of states, but Section 2.4.5 shows that they are small in practice.

The goal-directed robot-navigation tasks can be solved with the IG method. Different from the IG method,
Min-Max LRTA* is a general-purpose planning method in nondeterministic domains that allows for fine-
grained control over how much planning to do between plan executions (including small look-aheads that do
not guarantee a gain in information – the decrease of the potential (�*),+
�	� � � � � � ��� (Page 22) can be interpreted
as a virtual gain in information), uses heuristic knowledge to guide planning, and improves its performance
over time as it solves similar planning tasks. Being able to improve the performance of the robot over time
is a particularly important advantage of Min-Max LRTA* because no method that interleaves planning and
plan execution can guarantee an optimal behavior on the first run even if, like Min-Max LRTA*, it uses
heuristic knowledge to guide planning. For instance, consider the goal-directed navigation task in Figure 2.23
and assume that Min-Max LRTA* generates the local search spaces with the method in Figure 2.22. Then,
both the IG method and zero-initialized Min-Max LRTA* move forward, because this is the fastest way to
eliminate a possible pose, that is, to gain information. Even Min-Max LRTA* with the goal-distance heuristic
moves forward, since it follows the gradient of the u-values. However, moving forward is suboptimal. It is
best for the robot to first localize itself by turning around and moving to a corridor end. If the goal-directed
navigation task is repeated a sufficient number of times with the same start pose, Min-Max LRTA* eventually
learns this behavior.

2.4.4.2 Localization: Homing Sequences

Min-Max LRTA* can also be applied to localization tasks in mazes. These tasks are identical to the
goal-directed navigation tasks studied earlier except that the robot has to achieve only certainty about its
pose. Min-Max LRTA* can be applied to these tasks unchanged if the definition of is changed to
 � � � � � � .#�,' � � �
 ' �,' � 1 3 . For the localization tasks, it is difficult to obtain better informed initial
u-values than those provided by the zero heuristic (zero-initialized u-values).

Localization tasks are related to finding homing sequences or adaptive homing sequences for deterministic
finite state automata whose states are colored. A homing sequence is a sequential plan (action sequence) with
the property that the observations made during its execution uniquely determine the resulting state [Kohavi,
1978]. An adaptive homing sequence is a conditional plan with the same property [Schapire, 1992]. For
every reduced deterministic finite state automaton, there exists a homing sequence that contains at most� & 4 1 � 2 actions. (A reduced finite state automaton is one where, for every pair of different states, there
exists some action sequence that distinguished them.) Finding a shortest homing sequence is NP-complete
but a suboptimal homing sequence of at most

� & 4 1 � 2 actions can be found in polynomial time [Schapire,
1992]. Thus, finding homing sequences is an example of tasks for which optimal planning is intractable but
suboptimal planning is tractable and determines plans of good quality. In this case, suboptimal planning can
reduce the sum of planning and plan-execution time for one-shot planning tasks because the computational
savings of finding suboptimal plans can outweigh the overhead of executing them for sufficiently fast moving
agents.

Robot-localization tasks can be solved with homing sequences since the pose space is deterministic and thus
can be modeled as a deterministic finite state automaton. More generally, homing sequences can be used for

36 Chapter 2. Acting with Agent-Centered Search

hunterprey

1 2 3 4 5 6

Corresponding Non-Deterministic Single-Agent Domain

state = (hunter, prey) action of hunter successor states

(done) = goal state — —

(3,1) = start state move to 2 (2,6) or (done)

move to 4 (4,2) or (4,6)

(2,6) move to 1 (1,5)

move to 3 (3,5)

(4,2) move to 3 (3,1) or (done)

move to 5 (5,1) or (5,3)

(4,6) move to 3 (3,5)

move to 5 (done)

...

Moving Target Search Task

Figure 2.24: Simple Moving-Target Search Task

planning in deterministic domains that appear to be nondeterministic due to state uncertainty. Different from
homing sequences, Min-Max LRTA* is a general-purpose planning method in nondeterministic domains that
reduces the amount of planning done for irrelevant (unencountered) situations. It allows for fine-grained
control over how much planning to do between plan executions, uses heuristic knowledge to guide planning,
and improves its performance over time as it solves similar planning tasks.

2.4.4.3 Moving-Target Search: MTS Method

Min-Max LRTA* can also be applied to moving-target search, the task being for a hunter to catch an
independently moving prey. We discuss the variant of moving-target search where both agents move on a
known directed graph. The hunter moves first, then they alternate moves to adjacent vertices. Both agents
can always sense the current vertex of themselves and the other agent, but the hunter does not know in
advance where the prey moves. The hunter catches the prey if both agents occupy the same vertex. In our
framework, the agent is the hunter. It is straightforward to map the (two-agent) moving-target search task to a
(single-agent) search task against nature in a nondeterministic domain (Figure 2.24). The hunter can catch the
prey for sure if the minimax goal distance of the start state in the nondeterministic domain is finite. Min-Max
LRTA* can be used in the nondeterministic domain to determine a behavior for the hunter that catches the
prey if the nondeterministic domain is safely explorable.

This application of Min-Max LRTA* is interesting since it makes different assumptions than other LRTA*-
type real-time search methods that have been used for moving-target search. Min-Max LRTA* can solve
moving-target search tasks that these search methods cannot solve. In particular, the Moving-Target Search
method (MTS) [Ishida and Korf, 1991] is another LRTA*-type real-time search method that applies to moving-
target search, but utilizes LRTA* for the hunter in a different way. It learns the following behavior for the
hunter: always move to an adjacent vertex that is on a shortest path to the current vertex of the prey. Ishida
and Korf [Ishida and Korf, 1991] prove that the hunter eventually catches the prey on a strongly connected
graph if it is faster moving than the prey. Notice the difference between the two methods: Obviously, one has
to make some assumptions to ensure that the prey cannot force the hunter into a cycle in which the hunter
cannot decrease its distance to the prey. Min-Max LRTA* assumes that the nondeterministic domain is safely
explorable, which means that a skillful hunter is able to corner the prey. MTS, on the other hand, does not
restrict the topology of the graph, but has to assume that the hunter has a speed advantage over the prey.
Consider, for example, the graph from Figure 2.24 (notice that one of its edges is directed) and assume that
both agents are equally fast moving. Fully informed MTS always follows the prey at the same distance if the
prey runs around in an anti-clockwise cycle. Min-Max LRTA*, however, eventually goes left until the prey
takes the one-way street and later goes right until the prey is caught, no matter how the prey behaves.

2.4. An Application: Robot-Navigation Tasks 37

G

actual start pose

goal location
(four poses)

Figure 2.25: Sample Maze

after ����� measuring ����� using ����� Min-Max LRTA* with look-ahead one
goal-directed navigation localization
goal-distance heuristic zero heuristic

the first run plan execution time (performance) action executions 113.32 13.33
planning time state expansions 113.32 13.33
memory usage u-values remembered 31.88 13.32

convergence plan execution time (performance) action executions 49.15 8.82
planning time state expansions 49.15 8.82
memory usage u-values remembered 446.13 1,782.26

number of runs until convergence 16.49 102.90

after ����� measuring ����� using ����� Min-Max LRTA* with larger look-ahead
(using the method in Figure 2.22)

goal-directed navigation localization
goal-distance heuristic zero heuristic

the first run plan execution time (performance) action executions 50.48 12.24
planning time state expansions 73.46 26.62
memory usage u-values remembered 30.28 26.62

convergence plan execution time (performance) action executions 49.13 8.81
planning time state expansions 49.13 8.81
memory usage u-values remembered 85.80 506.63

number of runs until convergence 3.14 21.55

Figure 2.26: Experimental Results

2.4.5 Experiments with a Simulator

Nourbakhsh [Nourbakhsh, 1996] has already shown that performing a complete minimax search to solve the
goal-directed navigation tasks optimally can be infeasible. In this section, we take this result for granted and
show that Min-Max LRTA* solves the goal-directed navigation tasks fast, converges quickly, and requires
only a small amount of memory. We do this experimentally since the actual performance of Min-Max LRTA*
can be better than the upper complexity bound of Theorem 4 suggests (Section 2.3.3.5).

We use a simulation of the robot navigation domain whose interface matches the interface of an actual robot
that operates in mazes [Nourbakhsh and Genesereth, 1997]. Thus, Min-Max LRTA* could be run on that
robot. We apply Min-Max LRTA* to goal-directed navigation and localization tasks with two different
look-aheads each, namely look-ahead one and the larger look-ahead from Figure 2.22. As test domains, we
use 500 randomly generated square mazes. The same 500 mazes are used for all experiments. All mazes
have size 49 � 49 and the same obstacle density, the same start pose of the robot, and – for goal-directed
navigation tasks – the same goal location (which includes all four poses). Figure 2.25 shows an example.
The number of states of the belief space is exponential in the number of poses (although many of them are
not relevant for the tasks), and there are more than 6,500 poses. In the example, the robot initially senses
openings in all four directions. More than 1100 poses are consistent with this observation. Min-Max LRTA*

38 Chapter 2. Acting with Agent-Centered Search

is provided with no additional knowledge of the start pose and runs repeatedly on the same task with the same
start pose until its behavior converges. Figure 2.26 shows that Min-Max LRTA* indeed produces good plans
in large domains quickly, while using only a small amount of memory. Since the performance of Min-Max
LRTA* after convergence is no worse than the minimax goal distance of the start state, we know that its initial
performance is at most 231, 151, 103, and 139 percent (respectively) of the optimal worst-case performance.
Min-Max LRTA* also converges quickly. For goal-directed navigation tasks, for example, Min-Max LRTA*
with look-ahead one converges in less than 20 runs and has doubled its performance. This demonstrates that
this aspect of Min-Max LRTA* is important if the heuristic values do not guide planning sufficiently well.

2.5 LRTA*-Type Real-Time Search Methods and Domain Properties

So far, we have introduced Min-Max LRTA* and applied it to goal-directed navigation tasks. This extended the
application domains of LRTA*-type real-time search methods. Although people have studied which factors
influence the performance of traditional search methods, currently not much is known about the performance
of LRTA*-type real-time search methods. Thus, it is not only important to extend their application domains,
but also to provide some of the foundations for understanding their performance. This includes how domain
properties, heuristic knowledge of the domains, and the amount of look-ahead influence the performance of
LRTA*-type real-time search methods. We have already studied some of these properties in the context of
Min-Max LRTA*.

Ideally, however, we would like to make statements about how these properties affect LRTA*-type real-time
search methods as a group. Given the current state of the art, this goal is ambitious. This thesis therefore
provides only a first step in this direction. We study, both formally and experimentally, two domain properties
and their effect on the performance of selected LRTA*-type real-time search methods. To simplify our task
even further, we study the effect of these domain properties in isolation from the other properties: we study
uninformed LRTA*-type real-time search methods with minimal look-ahead, that is, a look-ahead that is even
smaller than that of Min-Max LRTA* with look-ahead one (we explain this in the next section). Thus, there
is no difference in the kind and amount of domain knowledge that the LRTA*-type real-time search methods
have available and how they utilize it. Consequently, the studied LRTA*-type real-time search methods are
similar, which makes it easier to make statements that hold for all of them. Our assumptions are satisfied by
several LRTA*-type real-time search methods that have successfully been used in the literature, including Edge
Counting, variants of Min-Max LRTA*, BETA, and variants of reinforcement-learning methods (including
Q-Learning). We discuss these methods in detail in the following sections. Since some of them operate only
in deterministic domains, we restrict our analysis to deterministic domains.

In the following, we first discuss the skeleton that all of the studied LRTA*-type real-time search methods
fit, then we discuss the LRTA*-type real-time search methods that we study and analyze their performance.
Finally, we discuss the two domain properties. These domain properties are whether domains are Eulerian
(a superset of undirected domains) and whether the product of their number of actions and the maximal goal
distance is small compared to that of other domains with the same number of states. For example, sliding-tile
puzzles have both of these properties. We show that these properties simplify the search tasks for the LRTA*-
type real-time search methods studied. These results can help to distinguish easy LRTA*-type real-time
search tasks from hard ones, which can help experimental researchers to decide when to use LRTA*-type
real-time search methods. In subsequent sections, we apply our insights to choosing test-beds for LRTA*-type
real-time search methods and representations of reinforcement-learning tasks that allow them to be solved
quickly by reinforcement-learning methods. Some of our results have also been used to study extensions
of reinforcement-learning methods. For example, they are used by Lin [Lin, 1993] to study “Hierarchical
Q-Learning,” that he applied to learning robot control.

2.5.1 Skeleton of LRTA*-Type Real-Time Search Methods

2.5. LRTA*-Type Real-Time Search Methods and Domain Properties 39

Initially, ��������� � � 0 and �
��� � � � � 0 for all

�8� �
and � �	� �"�#�

.
1.

�
:=

��
�������
.

2. If
���	�

, then stop successfully.

3. Choose an action � from
� �"�#�

possibly using �
���
��� � and �
��� � � � � for � � �� �����

.

4. Update �
������� � and �
��� � � � possibly using ��������� � , �

�"��� � � , and �
��� ����� ��� � � �$� � � � for � � �	� �"� ����� �"��� � �� .

5. Execute action � , that is, change the current state to
� ����� ��� � � � .

6.
�

:= the current state.

7. Go to 2.

Figure 2.27: Skeleton of the Studied LRTA*-Type Real-Time Search Methods

All of the LRTA*-type real-time search methods that we study fit the skeleton from Figure 2.27. They can
be characterized as uninformed revolving LRTA*-type real-time search methods with minimal look-ahead
and greedy action selection that solve suboptimal one-shot planning tasks in deterministic domains. They
are uninformed, because they do not have any initial domain knowledge. They are revolving, because they
repeat the same planning procedure after every action execution. They have minimal look-ahead (Figure 2.4),
because they use only their memory and the information local to the current state to determine which action to
execute. For example, different from LRTA*, all LRTA*-type real-time search methods that fit our skeleton
do not even project one action execution ahead. Thus, their look-ahead is truly minimal, even smaller than
that of LRTA* with look-ahead one. This means that they do not need to learn an action model of the domain,
which makes them applicable to situations that LRTA* and other LRTA*-type real-time search methods with
larger than minimal look-aheads cannot handle, including situations where the action model is not known in
advance and thus the successor state of an action cannot be predicted before the action has been executed at
least once.

The LRTA*-type real-time search methods that fit our skeleton associate a small amount of information with
the actions that allows them to remember where they have already searched. In particular, they associate
a q-value �

� �,�	!#� with each action ! � �$� ��� that can be executed in state � � �
. The term “q-values”

[Watkins, 1989] is commonly used in reinforcement learning (Section 2.5.6) for values that are associated
with actions. An additional value is maintained across action executions in the variable � � � ����� . Many of
the studied LRTA*-type real-time search methods are memoryless [Koenig, 1992], meaning that they do not
use the variable � � � ����� . The q-values and the memory are updated as the search progresses and used to
determine which actions to execute. Their semantics depend on the specific LRTA*-type real-time search
method used, but all values are zero-initialized, reflecting that the LRTA*-type real-time search methods are
initially uninformed.

The LRTA*-type real-time search methods that fit our skeleton consist of a termination-checking step (Line 2),
an action-selection step (Line 3), a value-update step (Line 4), and an action-execution step (Line 5). Their
action-selection and value-update steps can differ. They first check whether they have already reached a
goal state and thus can terminate successfully (Line 2). If not, they decide which action ! to execute in the
current state � (Line 3). For this decision, they can consult the value stored in their memory and the q-values
associated with the actions in the current state. Then, they update the q-value of the selected action and their
memory, possibly also using the q-values associated with the actions in their new state (Line 4). Finally, they
execute the selected action (Line 5), update the current state (Line 6), and iterate the procedure (Line 7).

2.5.2 Example LRTA*-Type Real-Time Search Methods and Their Complexity

In this section, we discuss some LRTA*-type real-time search methods that fit our skeleton and analyze their
complexity. In later sections, we discuss additionalLRTA*-type real-time search methods that fit our skeleton.
We use three kinds of domains in the complexity analysis: reset state spaces, quick-sand state spaces, and
“complex state spaces.” These domains have in common that one has to choose the correct action & 4 2 times
in a row to reach the goal state. If one executes an action that is not on the optimal path to the goal state, one

40 Chapter 2. Acting with Agent-Centered Search

...

start state goal state

s1 s2 s3 s4 sna1a1 a1

a2

a2

a2

Figure 2.28: Reset State Space

...

start state goal state

s1 s2 s3 s4 sn
......

Figure 2.29: Quicksand State Space

...

start state goal state

s1 s2 s3 s4 sn

Figure 2.30: “Complex State Space”

ends up further away from the goal state.

A reset state space is shown in Figure 2.28. This is a domain in which all states (but the start state) have
an action that leads back to the start state. We say that the action “resets” the LRTA*-type real-time search
methods to the start state. A quicksand state space is shown in Figure 2.29. This is a domain in which all
states (but the boundary states) have two actions that move the agent one action execution away from the
goal state (“a bit into the quicksand”) but only one action that moves it one action execution towards the goal
state (“a bit out of the quicksand”). Quicksand state spaces differ from reset state spaces in the effort that is
needed to recover from mistakes: all actions in quicksand state spaces have local effects only (it is possible to
recover with only one action execution), whereas reset actions in reset state spaces do not have local effects.
A “complex state space” is shown in Figure 2.30. This is a domain in which all states (but the start state) have
several actions that lead back towards the start state. This includes actions that reset LRTA*-type real-time
search methods to the start state and actions that move them only one action execution away from the goal
state.

We first study the complexity of LRTA*-type real-time search methods that fit our skeleton over all domains.
Let

-
be a measure for the task size. We are interested in two such measures: the product of the number

of actions and the maximal goal distance (
- � ���) and the number of states (

- � &). When studying the
complexity of LRTA*-type real-time search methods over all domains, one can freely choose the domain that
maximizes the number of action executions for a given LRTA*-type real-time search method from all domains
with the same

-
. Later, we restrict the possible choices and study the complexity of LRTA*-type real-time

search methods over a subset of all domains. In this case, one can choose the domain that maximizes the
number of action executions only from all domains with the same

-
that are contained in the subset. We are

interested in the complexity of both efficient and inefficient LRTA*-type real-time search methods.

To be able to express the complexity of LRTA*-type real-time search methods in terms of & only, we often
make the assumption that the domains are reasonable. Reasonable domains are safely explorable domains
with � � & 2 (or, more generally, domains whose number of actions does not grow faster than the number of
states squared). This assumption allows us to compare different LRTA*-type real-time search methods on the
same scale. For example, different LRTA*-type real-time search methods have different upper complexity
bounds, including

� � � � , � � & � � , and
� � � � � . Since � � & 4 1 and � � & 2 for reasonable domains, we

can derive upper complexity bounds from them that depend on & only, namely,
� � & 2 � , � � & 2 � , and

� � & 3 � ,

2.5. LRTA*-Type Real-Time Search Methods and Domain Properties 41

respectively. This allows us to compare the bounds better. It is reasonable to assume that domains are
reasonable (which explains their name). For example, consider deterministic domains with no duplicate
actions. In these domains, the execution of any two actions in the same state results in different successor
states, which implies � � & 2. This includes reset state spaces and “complex state spaces.” It also includes
sliding-tile puzzles and grid-worlds. Even quicksand state spaces, that have duplicate actions, satisfy � � & 2.

2.5.2.1 Inefficient LRTA*-Type Real-Time Search Methods

In this section, we study the complexity of inefficient LRTA*-type real-time search methods that fit our
skeleton. Notice that “the worst LRTA*-type real-time search method” does not exist, since one can construct
LRTA*-type real-time search methods that perform arbitrarily badly, even if they fit our skeleton. They
could, for example, deliberately avoid a goal state for an arbitrarily long time and only then move to a goal
state. This problem should be addressed by performing a complexity analysis over a suitably defined class of
“reasonable” LRTA*-type real-time search methods. In this section, however, we are content with studying
examples of inefficient “reasonable” LRTA*-type real-time search methods.

Particularly bad LRTA*-type real-time search methods are ones that do not remember where they have already
searched. Random walks are examples of such search methods. Strictly speaking, they are only real-time
search methods but not LRTA*-type real-time search methods according to our classification in Figure 2.4.
For convenience, we refer to them in the following as LRTA*-type real-time search methods because their
deterministic counterpart, Edge Counting, is an LRTA*-type real-time search method. We illustrate that both
random walks and Edge Counting are intractable (that is, not of polynomial complexity in the number of
states) in reset state spaces, quicksand state spaces, and “complex state spaces.”

Random Walks: Random walks always choose randomly from the actions available in the current state.

Random Walks (see Figure 2.27)
action-selection step (Line 3)

�
:= pick an action from

� ��� �
with uniform probability

value-update step (Line 4) (empty)

Random walks have look-ahead zero. They are memoryless LRTA*-type real-time search methods that do
not store any information at all, and thus cannot remember where they have already searched unsuccessfully.
As a consequence, the number of action executions that they need to reach a goal state can exceed any given
bound with positive probability, implying an infinite complexity. However, the probability that they reach the
goal state within a given number of action executions as the bound approaches infinity approaches one over
all safely explorable domains. Furthermore, the average number of action executions that random walks need
to reach a goal state is finite over all safely explorable domains, although it can be exponential in the number
of states.

Remember that we consider only domains with a finite number of states in this thesis. As an aside, notice
that the probability that random walks reach the goal state in infinite one- or two-dimensional (but not higher-
dimensional) grid-worldswithin a given number of action executions approaches one as the bound approaches
infinity [Feller, 1966]; none of the other zero-initialized LRTA*-type real-time search methods studied in this
chapter can guarantee this.

Theorem 9 Random walks have infinite complexity. Their average-case performance is finite over all safely
explorable, deterministic domains, but is at least exponential in & (even over all reasonable domains).

Proof: It is easy to see that random walks have infinite complexity (just consider a domain with a cycle).

It is also easy see that random walks have finite average-case performance over all safely explorable domains:
For every state � of the domain, consider a shortest path from it to a goal state. Let �#� � be the length
of this path measured in action executions and

� � � 0 the probability that it is traversed by a random walk

42 Chapter 2. Acting with Agent-Centered Search

that starts in � . Then, an upper bound on the average-case performance of random walks in this domain is
max �*),+	� � � min �*),+ � � � no matter what the start state is.

More generally, the average-case performance of random walks for a safely explorable domain can be
calculated as follows. For every state � , one introduces a variable

- � that represents the average number of
action executions that random walks need to reach a goal state from state � . These values can be calculated
by solving the following set of linear equations:

�

 �� � 0 if
� � �

1 � 1� � ��� ��� ����*� ��
�� �
������$��
�� �#� otherwise for all
� � � �

To solve these equations in closed form one usually uses generating functions. Feller [Feller, 1966], for
example, gives a mathematical derivation and Whitehead [Whitehead, 1992] discusses an application in the
context of reinforcement learning.

(Lower Bound) Reset state spaces (Figure 2.28) are examples of reasonable domains for which the number
of action executions that random walks need on average to reach a goal state is at least exponential in & . We
solve the following set of linear equations:

�
1

1 � � 2

�

1 � 0

�
5 � 1 � 0

�
5 �

� 1 for all

� � �
2
�
3
� ��� � � � �

1

�

0

They can be solved for
- � � ����� � as follows (without generating functions):

�
 � ����� �
 �
1

1 � � 2

1 � 1 � 0

�
5 � 1 � 0

�
5 � 3

1 � �
1 � 0

�
5
� � 0

�
5 � 1

�
1 � 0

�
5
� � 0

�
52 �

4

1 � �

1 � 0
�
5 � 0

�
52
� � 0

�
5 � 1

�
1 � 0

�
5 � 0

�
52
� � 0

�
53 �

5
 ��� �

1 �

��

3�
 �

0

0
�
5
 � 0

�
5 � 1

��
3�

 �
0

0
�
5
 � 0

�
5

��

2 �
 for all
� � �

2
�
3
� ��� � � �

 ��� �

1 � �

3�
 �

0

0
�
5
 � 0

�
5 � 1

 �
3�

 �
0

0
�
5
 � 0

�
5
 �

2 �

1 � 1
�

0
�
5
 �

2

1
�

0
�
5

� 0
�
5 � 1

1
�

0
�
5
 �

2

1
�

0
�
5

� 0
�
5
 �

2 � 0

3 � 2

 �
2 �

2

Thus, random walks execute on average
- � � ����� � � 3 � 2 � � 2 4 2 actions before they reach the goal state (for

& 2).

Quicksand state spaces (Figure 2.29) are another kind of reasonable domain for which the number of action
executions that random walks need on average to reach a goal state is at least exponential in & . They bias

2.5. LRTA*-Type Real-Time Search Methods and Domain Properties 43

random walks to move away from the goal state: In every state (but the boundary states) random walks move
away from the goal state with probability 2 � 3 and towards the goal state with only probability 1 � 3. We
proceed as we did for reset state spaces and have to solve the following set of linear equations:

�
1

1 � � 2

�

1 � 2 � 3 �
�� 1 � 1 � 3 �

� 1 for all

� � �
2
�
3
� ����� � � �

1

�

0

The result is that random walks execute on average
- � � ����� � � 2 � 	 1 4 3 & 4 1 actions before they reach the

goal state (for & 1).

Finally, “complex state spaces” (Figure 2.30) are a third kind of reasonable domain for which the number of
action executions that random walks need on average to reach a goal state is at least exponential in & . In fact,
random walks execute more than

� &'4 1 � ! actions on average before they reach the goal state (for & 2).

Edge Counting: We derive a memoryless LRTA*-type real-time search method that shares many properties
with random walks, but has finite complexity – basically, by “removing the randomness” from random walks.
The q-values approximate the negative number of times the actions have been executed.

Edge Counting (see Figure 2.27)
action-selection step (Line 3)

�
:= one-of arg max

� / �*� ��
���� ������� � �
value-update step (Line 4)

� ������� �
:=

�
1 � � ������� �

Random walks execute all actions in a state equally often in the long run. The action-selection step of Edge
Counting always chooses the action for execution that has been executed the fewest number of times. This
achieves the same result as random walks, but in a deterministic way. One particular tie-breaking rule, for
example, is to execute all actions in turn. Shannon used this method as early as in the late 1940’s to implement
an exploration behavior for an electronic mouse that searched a maze [Sutherland, 1969]. To the best of our
knowledge, however, its relationship to random walks has never been pointed out nor has its complexity been
studied. The number of action executions that Edge Counting needs to reach a goal state is bounded from
above in safely explorable domains, implying a finite complexity, but the complexity is at least exponential
in the number of states.

Theorem 10 The complexity of Edge Counting is finite over all safely explorable, deterministic domains, but
is at least exponential in & (even over all reasonable domains).

Proof: The argument that Edge Counting reaches a goal state eventually in safely explorable domains is by
contradiction. If Edge Counting did not reach a goal state eventually, then there must be some cycle. Since
the domain is safely explorable, there must be some way out of the cycle. We show that Edge Counting
eventually executes an action that takes it out of the cycle, which is a contradiction: If Edge Counting did not
reach a goal state eventually, it would execute actions forever. In this case, there is a time

�
from which on

Edge Counting only executes those actions that it executes infinitely often. Eventually, the q-values of these
actions drop below any given bound, since – every time an action is executed – its q-value is decremented by
one. In particular, they drop below the q-value of an action that Edge Counting considers infinitely often for
execution, but never executes after time

�
. Such an action exists, since in safely explorable domains one can

reach a goal state from every state. Then, however, Edge Counting is forced to execute this action after time�
, which is a contradiction.

(Lower Bound) Reset state spaces (Figure 2.28) are examples of reasonable domains for which the number
of action executions that Edge Counting needs in the worst case to reach a goal state is at least exponential
in & . In particular, Edge Counting traverses the state sequence that is printed by f(n) if ties are broken in
favor of successor states with smaller indices.

44 Chapter 2. Acting with Agent-Centered Search

proc f(i) =
if i = 2 then

print 1
else

f(i-1)
f(i-1)

print i

In this case, Edge Counting executes 3 � 2 � � 2 4 2 actions before it reaches the goal state (for & 2). For
example, for & � 5, it traverses the state sequence � 1 , � 2, � 1, � 2, � 3, � 1, � 2, � 1, � 2, � 3, � 4, � 1, � 2, � 1, � 2, � 3, � 1,
� 2, � 1, � 2, � 3 , � 4, and � 5.

Quicksand state spaces (Figure 2.29) are another kind of reasonable domain for which the number of action
executions that Edge Counting needs in the worst case to reach a goal state is at least exponential in & . In
particular, Edge Counting traverses the state sequence that is printed by the following program in pseudo code
if ties are broken in favor of successor states with smaller indices:

print 1
print 2
for i := 3 to n

print i-2
f(i-1)
print i-2
f(i-1)
print i

where

proc f(i) =
if i = 2 then

print 2
else

print i-2
f(i-1)
print i-2
f(i-1)
print i

In this case, Edge Counting executes 2 � 	 1 4 3 & 4 1 actions before it reaches the goal state (for & 1). For
example, for & � 5, it traverses the state sequence � 1 , � 2, � 1, � 2, � 1, � 2, � 3, � 2, � 1, � 2, � 1, � 2, � 3, � 2, � 1, � 2, � 1,
� 2, � 3 , � 4, � 3, � 2, � 1, � 2, � 1, � 2, � 3, � 2, � 1, � 2, � 1, � 2, � 3, � 4, � 3, � 2, � 1, � 2, � 1 , � 2, � 3, � 2, � 1, � 2, � 1, � 2, � 3, � 4,
and � 5.

Finally, “complex state spaces” (Figure 2.30) are a third kind of reasonable domain for which the number of
action executions that Edge Counting needs in the worst case to reach a goal state is at least exponential in
& . In fact, Edge Counting executes more than

� & 4 1 � ! actions in the worst case before it reaches the goal
state if ties are broken in favor of successor states with smaller indices (for & 2). For example, for & � 5,
it traverses the state sequence � 1, � 2, � 1 , � 2, � 3, � 1, � 2, � 1, � 2, � 3, � 2, � 1, � 2, � 3, � 4, � 1, � 2, � 1, � 2, � 3, � 1, � 2, � 1,
� 2, � 3, � 2, � 1, � 2, � 3, � 4, � 2, � 1, � 2, � 3, � 1, � 2, � 1, � 2, � 3 , � 2, � 1, � 2, � 3, � 4, � 3, � 1 , � 2, � 1, � 2, � 3, � 2, � 1, � 2, � 3, � 4,
and � 5.

To summarize, the number of action executions that Edge Counting needs in the worst case to reach a goal
state is at least exponential in the number of states for reset state spaces (Figure 2.28), quicksand state spaces
(Figure 2.29), and “complex state spaces” (Figure 2.30). Similarly, the number of action executions that
random walks need on average to reach a goal state is at least exponential in the number of states for these
domains. Still, we expect some improvement in experimental average-case performance when switching
from random walks to Edge Counting, since Edge Counting remembers something about where it has already
searched. It is possible, however, that the improvement is just a constant factor. Sections 2.5.3.4 and 2.5.3.5
contain experimental results that show that, indeed, the advantage of Edge Counting over random walks can
be small.

2.5. LRTA*-Type Real-Time Search Methods and Domain Properties 45

Initially, the q-values �
��� � � � are approximations of

%
1
%���� �"� ����� �"��� � �!� for all

� � ��� �
and � � � �����

and zero for
� � �

and� �	� �����
. At every point in time, � ������� max

� �*� ��
�� � ��� � � � for all
� � �

.

1.
�

:=
��
�������

.

2. If
���	�

, then stop successfully.

3. � := one-of arg max
� / �*� ��
�� � ��� � � � � .

4. �
��� � � � := min

�
�
��� � � ���#% 1 &'� �"� ����� �"��� � �!�� .

5. Execute action � , that is, change the current state to
� ����� ��� � � � .

6.
�

:= the current state.

7. Go to 2.

Figure 2.31: Min-LRTA*

2.5.2.2 Efficient LRTA*-Type Real-Time Search Methods: Min-LRTA*

No LRTA*-type real-time search method that fits our skeleton can distinguish between actions in nongoal
states before it has executed them it least once because all q-values are identical initially. This implies the
following lower bound on their complexity:

Theorem 11 The complexity of every LRTA*-type real-time search method that fits our skeleton is at least� � � � � action executions over all deterministic domains. Furthermore, its complexity is at least
� � & 3 � action

executions over all reasonable, deterministic domains.

Proof: (Lower Bound) “Complex state spaces” (Figure 2.30) are examples of reasonable domains for which
the number of action executions that every LRTA*-type real-time search method that fits our skeleton needs
in the worst case to reach a goal state is at least

� � � � � or, alternatively,
� � & 3 � . It has to execute each of the� � & 2 � actions in nongoal states that lead away from the goal state at least once in the worst case. In each of

these cases, it has to execute
� � & � actions on average to recover from the action, for a total of

� � & 3 � actions.
In particular, it can traverse either the state sequence that is printed by the following program in pseudo code
or a super sequence thereof if ties are broken in favor of successor states with smaller indices:

for i := 1 to n-1
print i
for j := 1 to i-1

for k := j to i
print k

print n

In this case, it executes at least & 3 � 6 4 & � 6 actions before it reaches the goal state (for & 1). For example,
for & � 5, it traverses the state sequence � 1, � 2, � 1, � 2, � 3, � 1, � 2, � 3, � 2, � 3, � 4, � 1, � 2 , � 3, � 4, � 2, � 3, � 4, � 3, � 4,
and � 5. Notice that � � & 2 � 2 5 & � 2 4 1 (for & 1) and � � & 4 1 (for & 1) for the domain in Figure 2.30.
Thus, the complexity is both at least

� � � � � and
� � & 3 � action executions.

Thus, every LRTA*-type real-time search method that fits our skeleton has a complexity of at least
� � ��� �

action executions or, over all reasonable domains,
� � & 3 � action executions. There are indeed LRTA*-type

real-time search methods that fit our skeleton and have at most this complexity. An example is Min-LRTA*,
a variant of Min-Max LRTA* that is related to Q-Learning (Section 2.5.6). In the following, we first discuss
Min-LRTA* in general. Later, we study zero-initialized Min-LRTA*, that fits our skeleton.

Min-LRTA*: LRTA* with minimal look-ahead (Min-LRTA*) [Koenig and Simmons, 1996a] is a memoryless
LRTA*-type real-time search method with minimal look-ahead (Figure 2.31). Its q-values approximate, for
nongoal states, the negative value of the sum of one and the goal distance of the successor states of the actions.
The action-selection step always greedily chooses the action with the maximal q-value in the current state.

Min-LRTA* is similar to Min-Max LRTA* with look-ahead one, and thus also to LRTA* with look-ahead one
since we restrict our analysis to deterministic domains and both methods behave identically in deterministic

46 Chapter 2. Acting with Agent-Centered Search

Look-Ahead One

-9

-7
-3

-5

-4

-6 -10

-8-4

q(s,a)u(s)
LRTA* with look-ahead one Min-LRTA*

Minimal Look-Ahead

Figure 2.32: Difference between Min-Max LRTA* and Min-LRTA* in Deterministic Domains

domains. The only difference between Min-Max LRTA* with look-ahead one and Min-LRTA* is the following
(Figure 2.32): Min-Max LRTA* associates u-values with states and looks at the u-values of the successor
states of the current state to choose which action to execute. This is a look-ahead of one action execution.
Min-LRTA*, on the other hand, associates q-values with actions and looks only at the q-values of the actions
of the current state to choose which action to execute. This look-ahead is larger than zero, but smaller than
one since Min-Max LRTA* does not even project one action execution ahead. The q-value of an action,
however, only changes when the action is executed and can therefore be outdated: The q-value is a “local
copy” of the u-value of the successor state since the q-value �

� � �	! � is set to 4 1 5 � � ����� � � � �"!#�
� when action
! is executed in state � , assuming that �

� �,�	!#�" 4 1 5 � � ��� ��� � � �	! �
� . However, the u-value of the successor
state can change later if actions are executed in it. When Min-Max LRTA* has to decide which action to
execute in state � it uses the new u-value of the successor state to evaluate action ! . Min-LRTA*, on the
other hand, uses the q-value of action ! , that does not yet reflect the new u-value of the successor state. We
therefore expect the performance of Min-LRTA* to be worse than that of Min-Max LRTA*.

In the following, we show how to transfer the complexity results about Min-Max LRTA* with look-ahead one
to Min-LRTA*. Assume that Min-LRTA* operates in a domain with states

�
, start state � � ���	�
� , goal states ,

actions
��� ��� for � � �

, transition function ��� ��� , and initial q-values �
� �,�	!#� for ��� �

and ! � ��� ��� . We refer
to this domain in the following as the original domain. We transform the domain so that Min-Max LRTA*
with look-ahead one in the transformed domain and Min-LRTA* in the original domain behave identically.
The transformed domain is larger than the original domain. Thus, we do not contradict our earlier statement
that, in the same domain, we expect the performance of Min-LRTA* to be worse than that of Min-Max
LRTA*.

The transformation is the following:

�
:=

� �
�� � � � � � ��� � � ��� ��
�
��� ���
:=

�
 � ��� � � � � where
�

one-of arg max
� / ������
 � ��� � � � � ���
������� ��� � ��

:=
� �
�� � � � � � ��� � � ��� ��

� � � �
:=

� ��� � ��� ����� � ��� for all
�
 �
�� � � �� ����� � ��� � � :=

�
������$��
�� �#��� �
for all

�
 �
�� � � �
and

� � � � � �
,

where the ��� � � are new states. Basically, the actions of the originaldomain become the states of the transformed
domain. The possible successor states of such an action state � � � � are the action states that correspond to
the actions that can be executed immediately after the execution of action ! in state � . Figure 2.33 shows an
example. Notice that every action execution in a nongoal state of the transformed domain necessarily results
in a state change if this is true for the original domain. Theorem 12 shows that the maximal goal distance
� of the transformed domain is at most one larger than the maximal goal distance � of the original domain.
Thus, if the original domain is safely explorable (� �), the transformed domain is safely explorable as
well. Theorems 12 and 13 together show that the maximal goal distance � of the transformed domain equals

2.5. LRTA*-Type Real-Time Search Methods and Domain Properties 47

start state

goal state

start state

goal state

Original Domain

Transformed Domain

s1 s2 s3

s4 s5

a3

a1 a2

a4 a5

a8

a6 a7

s2,a4 s3,a5

s2,a2s1,a1

s5,a8

s4,a7s2,a3s4,a6

Figure 2.33: Domain and its Transformation

either the maximal goal distance � of the original domain or � 5 1. Figures 2.34 and 2.35 show that indeed
both � � � and � � � 5 1 are possible.

Theorem 12 Consider any domain and its transformation. Then, � � � 5 1, where � is the maximal goal
distance of the original domain and � is the maximal goal distance of its transformation.

Proof: The theorem holds for � � � . Now assume that � � . We show that � � � ��� � � ��� � � � ��� ��� � �,�	!#� �*5 1
for all ����� �$� �

. This trivially holds for � ��� �$� . Consider an arbitrary � � � �$� ��$ and a shortest path in
the original domain from ��� ��� � � �	! � to a closest goal state � 1 � . Its length is � � � ��� ��� � �,�	!#� � � . Now
consider the corresponding path in the transformed domain from � ��� � to goal state � � / � � / � , where ! 1 � ��� � 1 �
is arbitrary. Its length is � � � ��� ��� � �,�	!#� �85 1, which is at least � � � � � � � � . Then, � � max � ��� �) + � � � � � � � � �
max � ��� �) + : � � � ��� ��� � � �	! �
� 5 1 ; � max �*)�+ � � � ��� 5 1 � � 5 1.

Theorem 13 Consider any domain and its transformation. Then, � � � , where � is the maximal goal distance
of the original domain and � is the maximal goal distance of its transformation.

Proof: We show that � � � ��� � � � � � � � � � for all ��� � � � �
. Consider an arbitrary � ��� �%� �

and a shortest path in
the transformed domain from � � � � to a closest goal state � � / � � / � . Its length is � � � � � � � � � � . Now consider
the corresponding path in the original domain from � to goal state � 1 � . Its length is also � � � � � � � � , which
is at least � � � ��� . Then, � � max �),+ � � � ��� � max �*),+�� ��)*687 ��9 � � � ��� � max � ��� �) + � � � � ��� � � � � , because we
assume throughout this chapter that

��� ������ � for all � � �
.

Theorem 14 shows that Min-Max LRTA* with look-ahead one in the transformed domain and Min-LRTA*
in the original domain behave identically if initially � � � � � � � � �

� �,�	!#� for all ��� �
and !$� ��� ��� and ties are

broken identically (provided that, as we assume throughout this chapter, every action execution in a nongoal
state necessarily results in a state change). For all times

� � 0 � 1 � 2 � � � � (until termination), the states of
Min-Max LRTA* correspond to the actions chosen by Min-LRTA* and the u-values of Min-Max LRTA*

48 Chapter 2. Acting with Agent-Centered Search

Transformed Domain

Original Domain

...

start state goal state

...

start state goal state

s1 s2 s3 sn

s1,a1

a1 a2 a3

an

s2,a2 s3,a3 sn,an

Figure 2.34: Domain with � � & 4 1 and its Transformation with � � �

Transformed Domain

Original Domain

...

start state goal state

...

start state goal state

s1 s2 s3 sn

a1 a3 a4

an+1

s1,a1 s2,a3 s3,a4 sn,an+1

a2

s2,a2

Figure 2.35: Domain with � � & 4 1 and its Transformation with � � � 5 1

equal the q-values of Min-LRTA*. The time superscript
�

refers to the values of the variables immediately
before the

� � 5 1 � st value-update steps of Min-Max LRTA* (Line 4 in Figure 2.9) and Min-LRTA* (Line 4 in
Figure 2.31).

Theorem 14 For all times
� � 0 � 1 � 2 � � � � (until termination), � � � � � � � � � and � � � ����� � � � � � � � �"!#� for all

� � �
and ! � �$� ��� provided that � 0 � ��� � � � � � 0 � �,�	!#� for all � � �

and ! � �$� ��� and ties are broken
identically.

Proof by induction: The theorem holds for
� � 0. Now assume it also holds at time

�
. First, we prove that

! � � ! �
	 1 if ties are broken identically.

� �

one-of arg max� � � �
 � � �

� � � ����� � � � � � ���

one-of arg max� � � ��
 � � � � � � �
� � � ����� ���
 � � � � ��� ���

one-of arg max� � � ��
 � � � � � � �
� ���
���������
 � � � � ��� � �

one-of arg max� �*� ��
���������
 � � � � ��� � � ��� ����� ��� � ��� � � ��� �

one-of arg max� �*� ��
 ��� 1

� � � ��� ��� 1 ��� �

one-of arg max� �*� ��
 ��� 1

� � ��� 1 ��� ��� 1 ��� � (2.2)
 � ��� 1
�

The transformation to Line 2.2 is valid since �
� � � �	! � � is the only q-value of Min-LRTA* that changes

between time
�

and
� 5 1. Since all actions result in state changes, it holds that � � �� � �
	 1 and therefore

� � � � �
	 1 �	! � � � �
	 1 � � � 	 1 �"!#� for all ! � �$� � �
	 1 � .
Next, we prove that � �
	 1 � � � � � � � 	 1 � � � �	! � � . It holds that

2.5. LRTA*-Type Real-Time Search Methods and Domain Properties 49

�
� � � � ��� � � � � � � ���
 �

� � � ����� ���
 � � � � ��� ��� 1
���
 �

� ���
���������
 � � � � ��� � � � 1

�
 � � ��� ����� ��� � ��� � � � � ��� 1
�
 � � ��� ��� 1 ��� ��� 1

�
 � � � 1 ��� ��� 1 ��� ��� 1
�

(2.3)

max���*� ��
 � � 1

� � ��� 1 ��� ��� 1 ��� �
 �
���

1 ��� ��� 1
�
 �

� ��� ��� 1 � (2.4)
 �
� ��� ����� ��� � � � � ����� (2.5)

The transformations to Lines 2.3 and 2.4 are valid since all actions result in state changes and therefore
� � � � �
	 1 �	! � 	 1 � � � � 	 1 � � � 	 1 �	! �
	 1 � and � �
	 1 � � �
	 1 � � � � � � �
	 1 � . It also holds that

�
� � � � �
 �

� ���
 � � � � �
 � � ��� � ��� � ���
(2.6)

Consequently,

�
���

1 � � � �

min

� � � � � � � ��� 1 � �
� � � ����� � � � � � � �����

min
� � � ��� � ��� � � ���

1 � �
� ��� � ��� ��� � ��� � �����
 � ��� 1 ��� � � � � ���

The only u-value of Min-Max LRTA* that changes between time
�

and
� 5 1 is � � � � � and the only q-value of

Min-LRTA* that changes between time
�

and
� 5 1 is �

� � � �"! � � . Since � �
	 1 � � � � � � �
	 1 � � � �"! � � , it holds that
� �
	 1 � � ��� � � � � � 	 1 � �,�	!#� for all ��� �

and ! � �$� ��� .
Finally, we prove that � �
	 1 � � � ��� 1 � � � � 1 .

� � � 1

 � ����� � � � � � � ��
 � ����� ���
 � � � � � � ��� 1

�
 �
�� ���$��
 � � � � ��� � ��� 1

 �
 ��� 1
� � ��� 1

�

Thus, both Min-LRTA* and Min-Max LRTA* need the same number of action executions to reach a goal
state since � � � � � � � � � � if and only if � � � . This can be used to transfer the complexity results about
Min-Max LRTA* with look-ahead one to Min-LRTA*. For example, the complexity of Min-Max LRTA*
with initially admissible u-values is at most

� � & � � action executions in the transformed domain (Theorem 4).
Since & equals � and � equals either � or � 5 1,

� � & � � equals
� � ��� � . Thus, the complexity of Min-LRTA*

is at most
� � � � � action executions in the original domain.

We study zero-initialized Min-LRTA* in the following because it fits our skeleton. The value-update step
of zero-initialized Min-LRTA* can be simplified. To understand why, consider Min-Max LRTA* with look-
ahead one in the transformed domain. Its initial u-values are zero and thus consistent. The followingargument
shows that the value-update step of Min-LRTA* can be simplified whenever the corresponding u-values of
Min-Max LRTA* are consistent: Consistent u-values of Min-Max LRTA* remain consistent according to

50 Chapter 2. Acting with Agent-Centered Search

Theorem 2. Consequently, � � � � � � 4 1 5 max ��)*687 � � 9 � � � ��� ��� � � � �"!#� � � 4 1 5 � � � ��� ��� � � � � ! � � � , since
! � � one-of arg max �)�687 � � 9 � �
	 1 � ������� � � � �	! �
� � one-of arg max ��)*687 � � 9 � � � ��� ��� � � � �	!#� � . Then,

�
1 � �

� ��� ����� ��� � ��� � ��� Formula 2.5
 �
1 � �

� � � ����� � � � � � � ���
� �

� � � � �
Formula 2.6
 � � ��� � ��� � ���

Consequently, the value-update step of Min-LRTA* can be simplified to �
� �,�	!#� := 4 1 5 � � ��� ��� � � �	! �
� . We

refer to this value-update step as the simplified value-update step of Min-LRTA*. The following table presents
the action-selection and simplified value-update steps of Min-LRTA*. Its q-values approximate, for nongoal
states, the negative value of the sum of one and the goal distance of the successor states of the actions.

Min-LRTA* (see Figure 2.27)
action-selection step (Line 3)

�
:= one-of arg max

� / �*� ��
���� ������� � �
value-update step (Line 4)

� ����� � �
:=

�
1 � � ��� ����� ����� � ����
 �

1 � max
� / ��� ��
���������
�� �#��� � ��� ����� ������� � ��� � �

Theorem 15 follows from the above analysis of Min-LRTA*:

Theorem 15 Zero-initialized Min-LRTA* has a tight complexity of
� � ��� � action executions over all deter-

ministic domains. Furthermore, it has a tight complexity of
� � & 3 � action executions over all reasonable,

deterministic domains.

Proof: (Upper Bound) The complexity of Min-LRTA* is at most
� � ��� � action executions, as argued above.

Since � � & 2 and � � & 4 1 for reasonable domains, it follows that its complexity is at most
� � & 3 � action

executions over all reasonable domains.

(Lower Bound) According to Theorem 11, the complexity of every LRTA*-type real-time search method that
fits our skeleton is at least

� � � � � action executions or, over all reasonable domains,
� � & 3 � action executions.

This includes zero-initialized Min-LRTA*.

Thus, Min-LRTA* has a tight complexity of
� � ��� � action executions or, over all reasonable domains,

� � & 3 �
action executions. Notice that � can grow faster than & . In reasonable domains, for example, � can grow
as fast as & 2. Thus, as expected, the complexity of Min-LRTA*, namely,

� � � � � , is, in general, worse than
the complexity of Min-Max LRTA* with look-ahead one, namely,

� � & � � . However, we have shown that
no LRTA*-type real-time search method that fits our skeleton can have a smaller big-O complexity than
Min-Max LRTA*. There exist variants of Min-LRTA* whose performance dominates the performance of
Min-LRTA* [Koenig and Simmons, 1993b] but they also have a tight complexity of

� � ��� � action executions
or, over reasonable domains,

� � & 3 � action executions.

2.5.3 Undirected Domains and Other Eulerian Domains

In this section, we study the complexity of LRTA*-type real-time search methods that fit our skeleton over all
undirected domains and over all Eulerian domains. This is an interesting domain property because it affects
the performance of LRTA*-type real-time search methods, but not the performance of traditional search
methods. We first explain what Eulerian domains and undirected domains are, and then why every undirected
domain is Eulerian but not every Eulerian domain is undirected.

A Eulerian tour (or, synonymously, Eulerian walk) on a graph is a path with the following property as defined
by the Swiss mathematician Leonhard Euler when he considered whether the seven Königsberg bridges could

2.5. LRTA*-Type Real-Time Search Methods and Domain Properties 51

all domains

Eulerian domains

undirected domains

sliding-tile puzzles
grid-worlds

racetrack domains

quicksand state spaces
reset state spaces

robot navigation domains
(without pose uncertainty)

“complex state spaces”

Figure 2.36: Subsets of Domains (including Example Domains)

possible successor state

state of the robot

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

Figure 2.37: Actions in the Racetrack Domain

state of the robot

possible successor state

Figure 2.38: Actions in the Grid-World

be traversed without recrossing any of them [Newman, 1953]: its start vertex equals its end vertex and it
contains all of the edges of the graph exactly once [Chartrand and Lesniak, 1986]. A Eulerian graph is a
graph that contains a Eulerian tour. This implies for undirected graphs that the degree of every vertex is even.
It implies for directed graphs that the in-degree of every vertex equals its out-degree. Since deterministic
domains are directed graphs, a Eulerian domain is a deterministic domain where there are as many actions
that leave a state as there are actions that enter it.

Definition 3 A domain is Eulerian if and only if it is deterministic and ' �$� ����' � ' . � � 1 �	! 1 ��' � 1 � �
 ! 1 ���� � 1 �
 ��� ��� � � 1 �"! 1 � � � 3 ' for all ��� �
.

Undirected domains do not correspond to undirected graphs but rather to bi-directed graphs, that is, directed
graphs that can be obtained from undirected graphs by replacing every undirected edge with a pair of directed
edges, one for each direction. This explains why all undirected domains are directed Eulerian graphs and
thus Eulerian domains. Many search domains from artificial intelligence are undirected and thus Eulerian
(Figure 2.36). Examples include sliding-tile puzzles and grid-worlds.

There also exist domains that are Eulerian, but not undirected. Examples are racetrack domains [Gardner,
1973]. They correspond to grid-worlds, but a state of the domain is not only characterized by the (x,y)
coordinates of the square that the agent currently occupies. Instead, it is described by two pairs of integers:
the square that the agent occupies, and its speed in both the x and y direction. Actions correspond to adjusting
both the x and y speed components by -1, 0, or 1. Given an action (speed change), the successor state is
determined by computing the new speed components (one can impose a limit that the absolute speeds are not

52 Chapter 2. Acting with Agent-Centered Search

allowed to exceed) and then determining the new location of the agent by adding each speed component to its
corresponding locationcomponent. The new location of the agent has to be on the grid and cannot be contained
in an obstacle. An example is shown in Figure 2.37. In this example, the current (x,y) location of the agent
is

�
0 � 0 � and its speed is

�
3 � 2 � . The agent now adjusts the speed to one of

�
2 � 1 � , � 2 � 2 � , � 2 � 3 � , � 3 � 1 � , � 3 � 2 � ,�

3 � 3 � , � 4 � 1 � , � 4 � 2 � , or
�
4 � 3 � . If it chooses speed

�
2 � 1 � , then its successor location is

�
0 � 0 � 5 �

2 � 1 � � �
2 � 1 �

and its successor speed is
�
2 � 1 � . This action is permissible because the successor location is indeed on the

grid and not contained in an obstacle. Racetrack domains are robot navigation domains that are more realistic
than grid-worlds (Figure 2.38). For instance, they model acceleration and take into account that the turn
radius of the robot gets larger at higher speeds. Racetrack domains are Eulerian except around obstacles
or at boundaries. In particular, obstacle-free racetrack domains on a torus are Eulerian, but not undirected.
Racetrack domains have been used as test-beds for LRTA*-type real-time search methods in [Barto et al.,
1995]. Another example is our robot navigation domain (Section 2.4) without pose uncertainty. Again, it is
Eulerian except around obstacles or at boundaries. In particular, an obstacle-free robot navigation domain
without pose uncertainty on a torus is Eulerian, but not undirected.

We study Min-LRTA* again and compare its complexity to the complexities of both the most efficient and
less efficient LRTA*-type real-time search methods that fit our skeleton. As examples of less efficient
LRTA*-type real-time search methods we use again random walks and Edge Counting. The complexity
of LRTA*-type real-time search methods over a subset of all domains can potentially be smaller than their
complexity over all domains. This is the case if the subset contains only domains on which the LRTA*-type
real-time search methods perform well. Thus, Eulerian domains could be easier to search than domains in
general, and undirected domains could be even easier to search. In the following, we show that Eulerian
domains are indeed easier to search with the studied LRTA*-type real-time search methods than domains in
general. In fact, even LRTA*-type real-time search methods that are intractable in general can be tractable in
undirected domains and other Eulerian domains. Undirected domains do not simplify the search any further.
This explains why we regard “being undirected” and “being Eulerian” as one property and not two different
properties.

2.5.3.1 Inefficient LRTA*-Type Real-Time Search Methods

First, we study again the LRTA*-type real-time search methods that can be inefficient, namely, random walks
and Edge Counting.

Random Walks: The complexity of random walks remains infinite over all undirected domains and over all
Eulerian domains, but their average-case performance decreases over all reasonable, undirected domains and
over all reasonable, Eulerian domains, from being at least exponential in & to being a small polynomial in & .

Theorem 16 Random walks have infinite complexity over all undirected domains and over all Eulerian
domains. Their average performance is tight at

� � � � � action executions over these domains. Furthermore, it
is tight at

� � & 3 � action executions over all reasonable, undirected domains and over all reasonable, Eulerian
domains.

Proof: It is easy to see that random walks have infinite complexity over all undirected domains and over all
Eulerian domains (just consider an undirected domain with a cycle).

(Upper Bound) It is known that � is an upper bound on the number of action executions that random walks
need on average to reach a specified successor state of the current state in Eulerian domains [Aleliunas et al.,
1979]. We give a complete proof of this fact in [Koenig and Simmons, 1992]. Now consider a shortest path
from the start state to a closest goal state. Since its length is at most � ,

� � ��� � is an upper bound on the number
of action executions that random walks need on average to reach a goal state in Eulerian domains. Since
� � & 2 and � � & 4 1 for reasonable domains, the average-case performance of random walks is at most� � & 3 � action executions over all reasonable, Eulerian domains and thus also over all reasonable, undirected
domains.

2.5. LRTA*-Type Real-Time Search Methods and Domain Properties 53

start state goal state

s1
n 1+

2

n 3+

2
sn

...

...

...

this part of the domain is completely connected

Figure 2.39: Undirected Domain

(Lower Bound) Figure 2.39 [Motwani and Raghavan, 1995] shows an example of a reasonable, undirected
(and thus Eulerian) domain for which the number of action executions that random walks need on average to
reach a goal state is at least

� � � � � or, alternatively,
� � & 3 � . As in the proof of Theorem 9, we can solve a set

of linear equations to calculate the average performance of random walks in this domain. The result is that
random walks execute

- � � ����� � � & 3 � 8 5 & 2 � 8 4 5 & � 8 5 3 � 8 actions on average before they reach the goal
state (for odd & 1). Notice that � � & 2 � 4 5 & 4 5 � 4 (for odd & 1) and � � & � 2 5 1 � 2 (for odd & 3)
for the domain in Figure 2.39. Thus, the complexity is both at least

� � ��� � and
� � & 3 � action executions.

Edge Counting: The average-case performance of random walks decreases over all reasonable, undirected
domains and over all reasonable, Eulerian domains. The complexity of Edge Counting decreases as well,
from being at least exponential in & to being a small polynomial in & .

Theorem 17 Edge Counting has a tight complexity of
� � � � � action executions over all undirected domains

and over all Eulerian domains. Furthermore, it has a tight complexity of
� � & 3 � action executions over all

reasonable, undirected domains and over all reasonable, Eulerian domains.

Proof: (Upper Bound) The complexity of Edge Counting is at most � � � � � � ��� �	� � � 4 � � � � � ���	� � � 2 action
executions over all safely explorable, Eulerian domains (Theorem 30 in Appendix 6.1). Thus, its complexity
is at most

� � � � � action executions over all Eulerian domains and thus also over all undirected domains. Since
� � & 2 and � � & 4 1 for reasonable domains, its complexity is at most

� � & 3 � action executions over all
reasonable, Eulerian domains and thus also over all reasonable, undirected domains.

(Lower Bound) Figure 2.39 shows an example of a reasonable, undirected (and thus Eulerian) domain for
which the number of action executions that Edge Counting needs in the worst case to reach a goal state is at
least

� � & 3 � . In particular, it traverses the state sequence that is printed by the following program in pseudo
code if ties are broken in favor of successor states with smaller indices:

print (n+1)/2
for i := (n+3)/2 to n

for j := i-2 downto (n+1)/2
print j

for j := 1 to (n-1)/2
for k := j+1 to (n+1)/2

print j
print k

for j := (n+3)/2 to i
print j

In this case, Edge Counting executes � � � � � � �����*� � � 4 � � � � �����	�
� � 2 � & 3 � 8 5 & 2 � 8 4 5 � 8 � & 5 3 � 8 actions
before it reaches the goal state (for odd & 1). For example, for & � 5, it traverses the state sequence � 3, � 1,
� 2, � 1, � 3, � 2, � 3, � 4, � 3, � 1, � 2, � 1, � 3, � 2, � 3, � 4, and � 5. Notice that � � & 2 � 4 5 & 4 5 � 4 (for odd & 1) and
� � & � 2 5 1 � 2 (for odd & 3) for the domain from Figure 2.39. Thus, the complexity is both at least

� � ��� �
and

� � & 3 � action executions.

54 Chapter 2. Acting with Agent-Centered Search

2.5.3.2 Efficient LRTA*-Type Real-Time Search Methods: The BETA Method

We showed that, in general, the complexity of every LRTA*-type real-time search method that fits our skeleton
is at least cubic in the number of states over all reasonable domains. In Eulerian domains, there exist LRTA*-
type real-time search methods that fit our skeleton and can do better than that. One example is the Building a
Eulerian Tour Algorithm (BETA). BETA works only for Eulerian domains. Its exact origin is unclear. Deng
and Papadimitriou [Deng and Papadimitriou, 1990] and Korach et al. [Korach et al., 1990] stated it explicitly
as a search method, but it has been used much earlier as part of proofs about properties of Eulerian graphs
[Hierholzer, 1873].

To describe BETA, we need the following definition: We say that BETA is stuck when all edges leaving the
current state have already been traversed at least once. Then, BETA can be described recursively as follows:
BETA takes untraversed edges whenever possible. If it is stuck, it retraces the closed walk of previously
untraversed edges that it has just completed and applies itself recursively from each state visited. Thus, BETA
is similar to depth-first search, with the following difference: Since chronological backtracking is not always
possible in directed graphs, BETA repeats its first edge traversals when it is stuck instead of backtracking its
latest edge traversals.

BETA fits our skeleton, as we show in the following. Its q-values �
� � �	! � are triples of integers. (Such a

triple is then encoded as one integer, which we don’t show here.) The first component, the cycle number,
has index one and corresponds to the level of recursion of BETA. The second component has index two and
counts the number of times action ! has already been executed in state � , and the third component remembers
when action ! was executed first in state � (using a counter that is incremented after every action execution).
The variable � � � ����� is also a triple: its first two components remember the first two components of the
previously executed action and its third component is the counter. All q-values are initialized with

�
0 � 0 � 0 �

instead of 0.

BETA (see Figure 2.27)
action-selection step (Line 3)

�
:= one-of arg min

� / � � � ����� � � � � 3 �
where

�

arg max

� / ��� � ������� � � � 1� and�

arg min

� / ��� ��
�� � ������� � � � 2 �
value-update step (Line 4) if q(s,a)[2] = 0 then

q(s,a)[3] := memory[3]+1
if memory[2] = 1 then

q(s,a)[1] := memory[1]
else

q(s,a)[1] := memory[1]+1
q(s,a)[2] := q(s,a)[2] + 1
memory[1] := q(s,a)[1]
memory[2] := q(s,a)[2]
memory[3] := memory[3] + 1

The action-selection step always chooses an action that has never been executed before. If no such action
exists in the current state, it considers all actions that have been executed exactly once (such an action always
exists) and chooses the action that belongs to the latest level of recursion. If there is more than one such action,
ties are broken in favor of the action whose first execution preceded the executions of the other actions. When
an action is executed for the first time, the value-update step remembers when it was executed and decides
which cycle number it should get. If the action executed previously was executed for the first time too, then
the new action inherits the cycle number of the previously executed action, otherwise a new level of recursion
starts and the cycle number of the new action is one larger than the cycle number of the previously executed
action. The value-update step also increments the number of times the current action has been executed.
Finally, the value-update step remembers the first two components of the current action (so that it has them
available after the action has been executed) and increments the counter.

2.5. LRTA*-Type Real-Time Search Methods and Domain Properties 55

start state

goal state

k rays

s0

s1 sw+1 s2w+1 s(k-1)w+1

s2 sw+2 s2w+2 s(k-1)w+2

s2wsw s3w skw

skw+1 skw+2 skw+3 skw+k...

...

...

...

......

w
+

1
st

at
es

 o
n

ea
ch

 r
ay

s3 sw+3 s2w+3 s(k-1)w+3...

Figure 2.40: Undirected Star

BETA always reaches a goal state with a finite number of action executions in safely explorable, Eulerian
domains and, moreover, executes every action at most twice [Deng and Papadimitriou, 1990]. Furthermore,
the complexity of BETA is asymptotically tight at 2 � action executions [Deng and Papadimitriou, 1990].
The complexity of BETA over a subset of domains can potentially be smaller than its complexity over all
domains. However, its complexity remains asymptotically tight at 2 � action executions over all reasonable,
undirected domains and over all reasonable, Eulerian domains [Koenig and Smirnov, 1996]. Figure 2.40 gives
an example of a reasonable, undirected (and thus Eulerian) domain [Baeza-Yates et al., 1993] for which the
number of action executions that BETA needs in the worst case to reach a goal state is asymptotically 2 � . In
particular, BETA can traverse the state sequence that is printed by the following program in pseudo code if it
visits the states for the first time in the order � 0, � 1, � 2, � � � , ��� � 	�� :

print 0
for i := 0 to k-1

for j := w*i+1 to w*(i+1)
print j

for j := w*(i+1)-1 downto w*i+1
print j

print 0
for i := 0 to k-2

for j := w*i+1 to w*(i+1)
print j

print w*k+1+i
print w*(i+1)
print w*k+1+i
for j := w*(i+1) downto w*i+1
print j

print 0
for i := w*(k-1)+1 to w*k

print i
print w*k+k

When BETA reaches the goal state, one action has not been executed, � 5 1 actions have been executed once,
and 2

�
�05 2

� 4�� 4 2 actions have been executed twice (for
� 1 and � 1). Thus, in this case, BETA

executes 4
�
� 5 4

� 4�� 4 4 actions before it reaches the goal state. Thus, there are 4
�
� 5 4

� 4�� 4 4
action executions and 2

�
�05 2

�
actions, and the ratio of the two quantities approaches two for large

� � � .
Consequently, the complexity of BETA is asymptotically tight at 2 � action executions. For example, for

56 Chapter 2. Acting with Agent-Centered Search

before

after

goal state

the undirected edge that is about to be traversed

Figure 2.41: Domain Change

� � 3 and � � 1, it traverses the state sequence � 0, � 1, � 0, � 2, � 0, � 3 , � 0, � 1, � 4, � 1, � 0, � 2, � 5, � 2, � 0, � 3, and
� 6. Notice that BETA can be made more efficient. A variant of BETA could, for example, visit the states for
the first time in the same order as BETA but always take a shortest path of already traversed edges to the next
unvisited state. The performance of this variant of BETA dominates the performance of BETA. However,
the example in Figure 2.40 shows that the complexity of this optimization of BETA is also asymptotically
tight at 2 � action executions (even over all reasonable, undirected domains and over all reasonable, Eulerian
domains).

Theorem 18 The complexity of every LRTA*-type real-time search method that fits our skeleton is at least� � � � action executions over all safely explorable, undirected domains and over all safely explorable, Eulerian
domains, and BETA has a tight complexity of

� � � � action executions over these domains. Furthermore, the
complexity of every LRTA*-type real-time search method that fits our skeleton is at least

� � & 2 � action
executions over all reasonable, undirected domains and over all reasonable, Eulerian domains, and BETA
has a tight complexity of

� � & 2 � action executions over these domains.

Proof: (Upper Bound) BETA executes every action at most twice before it reaches the goal state in safely
explorable, Eulerian domains [Deng and Papadimitriou, 1990]. Thus, its complexity is at most

� � � � action
executions over all safely explorable, undirected domains and over all safely explorable, Eulerian domains.
Since � � & 2 for reasonable domains, its complexity is at most

� � & 2 � action executions over all reasonable,
undirected domains and over all reasonable, Eulerian domains.

(Lower Bound) For BETA and every other LRTA*-type real-time search method that fits our skeleton, we
construct a reasonable (and thus safely explorable), undirected (and thus Eulerian) domain with

� � & 2 � actions,
almost half of which the LRTA*-type real-time search method has to traverse at least once in the worst case
before it reaches a goal state: Consider the domain from Figure 2.39 or any other reasonable, undirected
domain with

� � & 2 � actions. Pick an arbitrary start state, but assume for now that it does not have a goal state.
Run the LRTA*-type real-time search method and count how often it traverses each undirected edge (that is,
sum up the edge traversals in both directions). Stop the LRTA*-type real-time search method immediately
before it has traversed each undirected edge at least once. Replace this undirected edge with two undirected
edges that are connected with an intermediate state and make the intermediate state the only goal state
(Figure 2.41). Then, the next action execution results in a goal state and the LRTA*-type real-time search
method executes at least � � 2 4 1 actions before it reaches the goal state (for even � 4). Thus, the complexity
is both at least

� � � � and
� � & 2 � , since � � � � & 2 � according to our assumptions.

2.5.3.3 Min-LRTA*

The complexity of zero-initialized Min-LRTA* does not decrease over all undirected domains or over all
Eulerian domains. It remains a small polynomial in & .

Theorem 19 Zero-initialized Min-LRTA* has a tight complexity of
� � ��� � action executions over all undi-

rected domains and over all Eulerian domains. Furthermore, it has a tight complexity of
� � & 3 � action

executions over all reasonable, undirected domains and over all reasonable, Eulerian domains.

2.5. LRTA*-Type Real-Time Search Methods and Domain Properties 57

Proof: (Upper Bound) The complexity of zero-initialized Min-LRTA* is at most
� � � � � action executions or,

in reasonable domains,
� � & 3 � action executions (Theorem 15).

(Lower Bound) Figure 2.39 shows an example of a reasonable, undirected (and thus Eulerian) domain for
which the number of action executions that Min-LRTA* needs in the worst case to reach a goal state is at least� � � � � or, alternatively,

� � & 3 � . In particular, it traverses the state sequence that is printed by the following
program in pseudo code:

for i := n-1 downto (3n+1)/4
print (n+1)/2
for j := 1 to (n-1)/2

for k := j+1 to (n+1)/2
print j
print k

for j := (n+3)/2 to i-1
print j

for j := i downto (n+3)/2
print j

print (n+1)/2
for j := 1 to (n-1)/2

for k := j+1 to (n+1)/2
print j
print k

for j := (n+3)/2 to n
print j

In this case, Min-LRTA* executes & 3 � 16 5 3 & 2 � 8 4 3 & � 16 4 1 � 4 actions before it reaches the goal state (for
& 1 with & mod 4 � 1). For example, for & � 5, it traverses the state sequence � 3, � 1 , � 2, � 1, � 3, � 2, � 3, � 4,
� 3, � 1, � 2, � 1, � 3, � 2, � 3, � 4, and � 5. Notice that � � & 2 � 4 5 & 4 5 � 4 (for odd & 1) and � � & � 2 5 1 � 2
(for odd & 3) for the domain in Figure 2.39. Thus, the complexity is both at least

� � ��� � and
� � & 3 � action

executions.

2.5.3.4 Experimental Average-Case Results

So far, we have been concerned only with the complexity of LRTA*-type real-time search methods that fit our
skeleton. However, their experimental average-case performance is equally important for practical purposes.
In this section, we present a simple case study that shows that their experimental average-case performance
is similar to their complexities.

We study the following zero-initialized LRTA*-type real-time search methods that fit our skeleton: Edge
Counting, Min-LRTA*, random walks, and BETA. We study these four LRTA*-type real-time search methods
in the two blocks-world domains in Figures 2.42 (Domain 1) and 2.43 (Domain 2) [Koenig and Simmons,
1996a]. Domain 1 is a Eulerian domain, and Domain 2 is a non-Eulerian domain that is a variant of reset
state spaces. Otherwise both domains are very similar. In both cases, there are

-
indistinguishable blocks,

all of which are initially on the table. The task is to stack all of them on top of one another on a platform
(Figure 2.44). Domain 1 has four operators: “pick-up block from table,” “put block on stack,” “pick-up block
from stack,” and “put block on table.” A “pick-up block from table” is always followed by a “put block on
stack,” and a block picked up from the stack is always subsequently placed on the table. Domain 1 is similar
to traditional blocks-world domains, that are undirected, except that traditional blocks-world domains usually
merge a pair of “pick-up” and “put-down” operators into one atomic “move” operator. Domain 2 has the
same two pick-up operators and the same “put block on stack” operator, but the “put block on table” operator
(which always follows a “pick-up block from stack” operator) knocks down the whole stack onto the table.
Both domains are reasonable and very similar: both have 3

- 5 1 states, 4
-

actions, and maximal goal distance
2
- 5 1 (for

- 1). Furthermore, corresponding states have the same small number of actions available,
either one or two.

Figures 2.45 and 2.46 show how many actions the LRTA*-type real-time search methods execute in these

58 Chapter 2. Acting with Agent-Centered Search

start state
stack size = 0 stack size = 1 stack size = 2 stack size = x

goal state

...

Figure 2.42: Domain 1

start state
stack size = 0 stack size = 1 stack size = 2 stack size = x

goal state

...

Figure 2.43: Domain 2

Start Configuration Goal Configuration
(assuming four blocks) (assuming four blocks)

Figure 2.44: Simple Blocks-World Task

domains. Both figures are scaled in the same proportion. Their horizontal axes show the number of blocks
-

and their vertical axes the number of action executions needed to reach the goal state, averaged over 5,000 runs
with randomly broken ties. The number of actions that random walks execute was calculated analytically. For
example, it follows from the proof of Theorem 9 that random walks execute on average 3 � 2 (4 4 actions in
Domain 2 before they reach the goal state (for

- 1). The legend of the figures always lists the graphs from
top (in this case, maximal number of action executions) to bottom to make it easier to identify the graphs.

The experiments show that every studied LRTA*-type real-time search method does better in Domain 1 than in
Domain 2. Random walks perform worst in both domains. This is to be expected since they do not remember
any information. However, Edge Counting performs almost as poorly as random walks in Domain 2, and both
search methods quickly become intractable. With 50 blocks, for example, random walks need 3 � 250 4 4
action executions (that is, about 3 � 4 � 1015 action executions) on average to reach the goal state and perform
about 500 billion times worse than Min-LRTA*, which needs only 6838.3 action executions on average. On
the other hand, all search methods do quite well in Domain 1. Even the ones that perform poorly in Domain 2
perform almost as well as Min-LRTA*, the LRTA*-type real-time search method that performs well in both

2.5. LRTA*-Type Real-Time Search Methods and Domain Properties 59

initially, all blocks are on the table

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 5 10 15 20 25 30 35 40 45 50

ac
tio

n
ex

ec
ut

io
ns

number of blocks

random walk
edge counting

min-LRTA*
BETA

Figure 2.45: Experimental Average-Case Performance in Domain 1

initially, all blocks are on the table

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 5 10 15 20 25 30 35 40 45 50

ac
tio

n
ex

ec
ut

io
ns

number of blocks

random walk
edge counting

min-LRTA*

Figure 2.46: Experimental Average-Case Performance in Domain 2

start state

...

goal state

s1 s2 s3 sn-3 sn-2 sn-1 sn

Figure 2.47: One-Dimensional Grid-World (2)

domains. With 50 blocks, for example, Min-LRTA* performs 2.2 times worse than BETA (which needs 292.0
action executions on average), Edge Countingperforms 8.7 times worse, and even random walks perform only
17.1 times worse. Thus, the interval spanned by the experimental average-case performance of the studied
LRTA*-type real-time search methods is much smaller in Domain 1, a Eulerian domain, than in Domain 2, a
non-Eulerian domain that is a variant of reset state spaces. All studied LRTA*-type real-time search methods
are tractable in Domain 1 but some of them are intractable in Domain 2. This is similar to the theoretical
complexity results.

2.5.3.5 Interpretation of the Results

We have studied selected LRTA*-type real-time search methods that fit our skeleton. In particular, we studied
uninformed LRTA*-type real-time search methods with minimal look-ahead that solve one-shot planning
tasks. We did this because these LRTA*-type real-time search methods make similar assumptions. The
drawback is that one cannot compare LRTA*-type real-time search methods with each other solely on the

60 Chapter 2. Acting with Agent-Centered Search

basis of the complexity results since some LRTA*-type real-time search methods are better than others in using
heuristic knowledge to guide planning, allowing for larger look-aheads, and improving their performance over
time as they solve similar planning tasks. Min-LRTA*, for example, has all three features, but other LRTA*-
type real-time search methods are often as efficient as Min-LRTA* given our assumptions. For instance, we
have already seen that Min-LRTA* and Edge Counting have the same tight complexity over all undirected
domains and over all Eulerian domains, and that Min-LRTA* had only a moderate advantage in experimental
average-case performance over Edge Counting in Domain 1, a Eulerian domain.

One can also construct domains in which Edge Counting performs better than Min-LRTA*. An example is
given in Figure 2.47. (Another example is the domain in Figure 2.39 with start state &'4 2.) Min-LRTA* can
traverse the state sequence that is printed by the following program in pseudo code if ties are broken in favor
of successor states with smaller indices except for the first action execution in which the tie is broken in the
opposite way:

print n-2
for i := n-1 downto 1

print i
for i := n-2 downto 2

for j := 2 to i
print j

for j := i-1 downto 1
print j

for i := 2 to n
print i

In this case, Min-LRTA* executes & 2 4 3 & 5 4 actions before it reaches the goal state (for & 3). For example,
for & � 5, it traverses the state sequence � 3, � 4, � 3, � 2, � 1, � 2, � 3, � 2, � 1, � 2, � 1, � 2, � 3, � 4, and � 5. On the other
hand, we have shown that Edge Counting is guaranteed to need at most � � � � � �,�����	�
�"� 4 � � � �������	�
� � 2 � 4 & 4 8
action executions to reach a goal state (for & 3). (This bound turns out to be tight for this particular domain
if ties are broken in favor of successor states with smaller indices.) For example, for & � 5, it traverses
the state sequence � 3, � 2, � 1, � 2, � 3, � 4, � 3, � 2, � 1, � 2, � 3, � 4, and � 5. Since & 2 4 3 & 5 4 � 4 & 4 8 for
& � 4, the complexity of Edge Counting for this particular search task is guaranteed to be smaller than that
of Min-LRTA* for & 5. Experiments show that a similar relationship holds on average.

The same effect can also be obtained in the two blocks-world domains in Figures 2.42 (Domain 1) and 2.43
(Domain 2). If we change the start state in both domains so that all but four blocks are already stacked initially,
then both domains become easier to search. However, Figure 2.49 shows that the performance relationships
of the LRTA*-type real-time search methods studied in Section 2.5.3.4 remain similar in Domain 2 (With
50 blocks, for example, Min-LRTA* now needs 6414.1 action executions on average to reach the goal state
compared to 6838.3 action executions before.) Figure 2.48, on the other hand, shows that the performance
relationships in Domain 1 change. (Figures 2.48 and 2.49 are scaled differently than Figures 2.45 and 2.46.)
With 50 blocks, for example, Min-LRTA* now performs 1.3 times worse than BETA (that needs 182.3 action
executions on average) and random walks perform 4.2 times worse, but Edge Counting performs 3.8 times
better than BETA.

2.5.3.6 Summary of Results on Undirected Domains and Other Eulerian Domains

Our study was a first step in the direction of understanding how domain properties influence the performance
of LRTA*-type real-time search methods. In this section, we studied only one particular domain property,
namely, undirected domains and other Eulerian domains, and considered their effect only on the performance
of selected LRTA*-type real-time search methods, but not on a whole class of LRTA*-type real-time search
methods. In the next section, we study a second domain property.

We compared Min-LRTA* to both efficient LRTA*-type real-time search methods, such as BETA, and –
equally importantly – to LRTA*-type real-time search methods that can be inefficient, such as Edge Counting.
The complexity results illustrate that one can learn not only from comparing search methods to the best known

2.5. LRTA*-Type Real-Time Search Methods and Domain Properties 61

initially, all but four blocks are already stacked

0

1000

2000

3000

4000

5000

0 5 10 15 20 25 30 35 40 45 50

ac
tio

n
ex

ec
ut

io
ns

number of blocks

random walk
min-LRTA*

BETA
edge counting

Figure 2.48: Experimental Average-Case Performance in Domain 1

initially, all but four blocks are already stacked

0

1000

2000

3000

4000

5000

0 5 10 15 20 25 30 35 40 45 50

ac
tio

n
ex

ec
ut

io
ns

number of blocks

random walk
edge counting

min-LRTA*

Figure 2.49: Experimental Average-Case Performance in Domain 2

ones, as is usually done, but also from comparing them to inefficient ones.

We illustrated, both theoretically and experimentally, that the performance of the studied LRTA*-type real-
time search methods can differ significantly over all reasonable domains and over all reasonable, Eulerian
domains: some non-Eulerian domains are hard to search for the studied LRTA*-type real-time search methods.
LRTA*-type real-time search methods differ in this respect from traditional search methods. We derived the
following complexity results about reasonable domains. Over all reasonable domains, no LRTA*-type real-
time search method can beat the complexity of Min-LRTA*, which is a small polynomial in & . In contrast, the
complexity of Edge Counting, the deterministic LRTA*-type real-time search method that we derived from
random walks, is at least exponential in & . The picture changes over all reasonable, Eulerian domains. The
complexity of Edge Counting decreases to a small polynomial in the number of states and equals now the
complexity of Min-LRTA*, which remains unchanged. In addition, BETA (a dedicated LRTA*-type real-time
search method for Eulerian domains) has a smaller complexity. This illustrates that LRTA*-type real-time
search methods that make use of special domain properties can have a smaller complexity than Min-LRTA*.
All complexities remain the same over all reasonable, undirected domains, a subset of reasonable, Eulerian
domains.

To summarize, while Min-LRTA* does rather well over all reasonable domains when being compared to the
other studied LRTA*-type real-time search methods, its advantage decreases over all reasonable, undirected
domains and over all reasonable, Eulerian domains, over which the complexities of the studied LRTA*-type

62 Chapter 2. Acting with Agent-Centered Search

Over All Reasonable Domains

Min-LRTA*

Edge Counting

O(n2)

O(n3)

difference in complexity
of the studied LRTA*-type
real-time search methods

over all reasonable domains

difference in complexity
of the studied LRTA*-type
real-time search methods

over all reasonable, Eulerian
domains and over all

at least exponential in n

Min-LRTA* and
Edge Counting

BETA

Over All Reasonable, Eulerian Domains
Over All Reasonable, Undirected Domains

co
m

pl
ex

ity
 in

cr
ea

se
s

no smaller
complexity

possible

no smaller
complexity

possible

reasonable, undirected domains

Figure 2.50: Complexities in Undirected Domains and other Eulerian Domains

real-time search methods span a much smaller interval than over all reasonable domains (Figure 2.50). In
particular, the complexities of all studied LRTA*-type real-time search methods are small polynomials in the
number of states over all reasonable, undirected domains and over all reasonable, Eulerian domains. This
includes the complexities of LRTA*-type real-time search methods that can be intractable in general. Thus,
undirected domains and other Eulerian domains are easier to search with the studied LRTA*-type real-time
search methods than some non-Eulerian domains such as, for example, reset state spaces, quicksand state
spaces, and “complex state spaces.” Consequently, Min-LRTA* (an LRTA*-type real-time search method
that is always efficient) and Edge Counting (an LRTA*-type real-time search method that can be intractable)
have a small complexity on both sliding-tile puzzles and grid-worlds, but reset state spaces, quicksand state
spaces, and “complex state spaces” are able to differentiate between them.

2.5.3.7 Extensions: Larger Look-Aheads

Although we have limited our study to LRTA*-type real-time search methods with minimal look-ahead, we
would like to point out briefly how some of the complexity results transfer to LRTA*-type real-time search
methods with larger look-aheads. Researchers have proposed various strategies that improve the performance
of LRTA*-type real-time search methods, such as strategies for generating larger local search spaces or
the combination of LRTA*-type real-time search methods and other search mechanisms. Examples include
[Shekhar and Dutta, 1989, Sutton, 1990, Hamidzadeh and Shekhar, 1991, Hamidzadeh, 1992, Ishida, 1992,
Shekhar and Hamidzadeh, 1992, Hamidzadeh and Shekhar, 1993, Ishida, 1995, Knight, 1993, Moore and
Atkeson, 1993, Shakhar and Hamidzadeh, 1993, Dearden and Boutilier, 1994, Pemberton and Korf, 1994,
Matsubara and Ishida, 1994, Ishida and Shimbo, 1996]. Methods that determine how much to plan between
plan executions have been described in [Boddy and Dean, 1989, Russell and Wefald, 1991, Zilberstein, 1993,
Goodwin, 1994]. In the following, we discuss both Node Counting, a variant of Edge Counting with larger
look-ahead, and LRTA* with look-ahead one, the inspiration for Min-LRTA*.

Node Counting is a memoryless LRTA*-type real-time search method that differs from Edge Counting in
that it looks at the successor states of the current state when choosing actions. The q-values approximate the
negative number of times the actions have been executed.

Node Counting (see Figure 2.27)
action-selection step (Line 3)

�
:= one-of arg max

� / �*� ��
�� (� / / �*� ��
������$��
�� � / ��� � ��� ����� ������� � � � � � � �
value-update step (Line 4)

� ������� �
:=

�
1 � � ������� �

2.5. LRTA*-Type Real-Time Search Methods and Domain Properties 63

The action-selection step always executes the action that leads to the successor state that has been visited the
fewest number of times. In an actual implementation, one would maintain only one u-value � � ��� for each
state � with � � ��� � (��)*687 ��9 � � �,�	!#� . In this case, initially, � � ��� � 0 for all � � �

. The u-values approximate
the negative number of times the states have been visited. Since the initial u-values are consistent, we can use
the simplified value-update step.

Node Counting (see Figure 2.27)
action-selection step (Line 3)

�
:= one-of arg max

� / ������
�� � ��� ����� ������� � ���
value-update step (Line 4) � ��� � :=

�
1 � � ��� �

We compare Node Counting to LRTA* with look-ahead one (Figure 2.6). LRTA* is similar to Node Counting
in that it is a memoryless LRTA*-type real-time search method that looks at the successor states of the current
state when choosing actions. It has the same action-selection step as Node Counting but a slightly different
value-update step: it uses the u-value of the successor state instead of the u-value of the current state in the
value-update step. Initially, � � ��� � 0 for all � � �

. The u-values approximate the negative goal-distances of
the states.

LRTA* with Look-ahead One (see Figure 2.27)
action-selection step (Line 3)

�
:= one-of arg max

� / ��� ��
�� � ��� ����� ������� � ���
value-update step (Line 4) � ��� � :=

�
1 � � ��� ����� ������� ���

We have shown in Section 2.3.3.3 that zero-initialized LRTA* with look-ahead one has a tight complexity
of
� � & � � action executions, and that it has a tight complexity of

� � & 2 � action executions over all safely
explorable domains (Theorem 5). Figure 2.14 shows that it also has a tight complexity of

� � & � � action
executions over all undirected domains and over all Eulerian domains, and that it has a tight complexity
of
� � & 2 � action executions over all safely explorable, undirected domains and over all safely explorable,

Eulerian domains.

The experimental average-case performance of zero-initialized Node Counting and LRTA* with look-ahead
one are comparable in many traditional search domains from artificial intelligence. For example, variants of
Node Counting have been used independently in [Pirzadeh and Snyder, 1990] and [Thrun, 1992b] to explore
unknown grid-worlds (either on their own or to accelerate reinforcement-learning methods), in both cases with
great success. Two of our experiments confirm these results. In both experiments, the performance difference
between Node Counting and LRTA* with look-ahead one is statistically insignificant for any reasonable level
of significance (for both sign tests and t tests).

Sliding-Tile Puzzles: We compare zero-initialized Node Counting and LRTA* with look-ahead one on the
eight puzzle with the American goal state (Figure 2.7). We count the number of action executions until the
LRTA*-type real-time search methods reach the goal state, averaged over 25,000 runs with randomly broken
ties. The same 25,000 randomly chosen start states are used in both cases. Node Counting needs, on average,
85,579 action executions to reach the goal state, compared to 85,746 action executions needed by LRTA*.
Out of the 25,000 runs, Node Counting outperforms LRTA* 12,512 times and is beaten 12,488 times.

Grid-Worlds: We perform the same experiment on an obstacle-free square grid-world of size 50 � 50 whose
start and goal states are in opposite corners. Node Counting needs, on average, 2,874 action executions to
reach the goal state, compared to 2,830 action executions needed by LRTA*. Out of the 25,000 runs, Node
Counting outperforms LRTA* 12,345 times, is beaten 12,621 times, and ties 34 times.

According to a recent, still unpublished result by Szymanski, the complexity of Node Counting is at least
exponential in & even over all reasonable, undirected domains [Szymanski, private communication]. This
is interesting because it implies that there must be some other (yet-to-be-discovered) property of sliding-tile
puzzles or grid-worlds that makes them easy to solve with node counting. For our purposes, it is sufficient
to show that the complexity of Node Counting is exponential in & for some reasonable domains (we do not
show this for undirected domains): Consider any Domain X and a Domain Y that is derived from Domain

64 Chapter 2. Acting with Agent-Centered Search

...

start state goal state

...

start state goal state

Domain X = Reset State Space

Domain Y = Domain 2

Figure 2.51: Domain with Intermediate States

X by replacing each of its directed edges with two directed edges that are connected with an intermediate
state. An example is shown in Figure 2.51. Then, Node Counting in Domain Y, Edge Counting in Domain
Y, and Edge Counting in Domain X behave identically (if ties are broken identically). This means that Node
Counting in Domain Y and Edge Counting in Domain Y execute the same number of actions, which is twice
the number of actions that Edge Counting executes in Domain X (since they have to execute two actions for
every action that Edge Counting executes in Domain X). As examples, consider the blocks-world domains
in Figures 2.42 (Domain 1) and 2.43 (Domain 2). Domain 1 is derived from a one-dimensional grid-world
(Figure 2.15), and thus the experimental average-case performance of Node Counting and Edge Counting (as
shown in Figure 2.45) are identical in Domain 1. Similarly, Figure 2.51 shows that Domain 2 is derived from
a reset state space (Figure 2.28), and thus the experimental average-case performance of Node Counting and
Edge Counting (as shown in Figure 2.46) are identical in Domain 2, and so are their complexities. Thus,
Domain 2 is an example of a domain for which the number of action executions that Node Counting needs
in the worst case to reach a goal state is at least exponential in & if ties are broken in favor of actions that
lead “upward:” The appearance of the intermediate “pick-up” operators makes it so that a look-ahead of one
is insufficient to avoid reset actions. Variants of quicksand state spaces and “complex state spaces” with this
property can be constructed in the same way. This shows that the complexity of Node Counting is at least
exponential in & (even over all reasonable domains).

To summarize, LRTA* with look-ahead one (an LRTA*-type real-time search method that is always efficient)
and Node Counting (an LRTA*-type real-time search method that can be intractable) have almost the same
experimental average-case performance on both sliding-tile puzzles and grid-worlds, but variants of reset
state spaces, quicksand state spaces, and “complex state spaces” are able to differentiate between them.
Similar reset state spaces, quicksand state spaces, and “complex state spaces” can also be constructed for
LRTA*-type real-time search methods with even larger look-aheads. This is similar to the complexity results
about LRTA*-type real-time search methods with minimal look-ahead.

2.5.4 Domains with a Small Value of �
�

So far, we were concerned with only one domain property, namely, undirected domains and other Eulerian
domains. The complexity results, however, also uncovered another domain property that is relevant to the
performance of LRTA*-type real-time search methods. In particular, the expressions ��� and & � showed up
repeatedly in the complexity results. In this section, we show experimental results that indicate that both � �

and & � capture the performance of several LRTA*-type real-time search methods well in several domains:

2.5. LRTA*-Type Real-Time Search Methods and Domain Properties 65

The performance of the studied LRTA*-type real-time search methods can be predicted by measuring their
performance in domains of the same topology but smaller values of ��� and & � .

The measures of task size ��� and & � were introduced in [Koenig and Simmons, 1992] and [Koenig and
Simmons, 1993a] and, if scaled with & 2, later called “oblongness” in [Smirnov, 1997]. The complexity results
that involve them are the following:

� Zero-initialized Min-Max LRTA* with look-ahead one and zero-initialized LRTA* with look-ahead
one have a tight complexity of

� � & � � action executions over all deterministic domains (Theorem 5).

� Zero-initialized Min-LRTA* has a tight complexity of
� � ��� � action executions over all deterministic

domains (Theorem 15), and no search method that fits our skeleton can do better in the worst case
(Theorem 11).

� Random walks have a tight average-case performance of
� � ��� � action executions over all undirected

domains and over all Eulerian domains (Theorem 16). Zero-initialized Edge Counting has a tight
complexity of

� � � � � action executions over these domains (Theorem 17).

Similar complexity results also hold for other LRTA*-type real-time search methods: An example is the
LRTA*-type real-time search method called “Vertex Ant Walk, ” whose complexity is tight at

� � & � � ac-
tion executions over deterministic domains [Wagner et al., 1997]. Another example is zero-initialized
Bi-Directional Q-Learning (“Version 2”) [Koenig and Simmons, 1992], that is a variant of Min-LRTA* that
finds optimal plans from every state. It terminates and does not require that the agent be reset to the start
state when it reaches a goal state. Its complexity is tight at

� � ��� 1 � over deterministic domains, where � 1 is
the maximal distance between any two states in the domain (its diameter) and � 1 � � for the following test
domains. Thus, Bi-Directional Q-Learning demonstrates that finding optimal plans with Min-LRTA* is not
necessarily more complex than only reaching a goal state [Koenig and Simmons, 1992].

This suggests using ��� and & � as measures of task size. Many of the above complexities are also tight at� � & 3 � or
� � & 2 � action executions, respectively, over all reasonable domains. Thus, we could use & 3 and & 2

as measures of task size as well. We do not do that because � � and & � often grow more slowly than & 3 and
& 2, respectively. This is the case for the following two reasons:

The number of actions � often grows more slowly than & 2, the square of the number of states. In fact, it often
grows only linearly in & because often the number of actions that can be executed in every state is bounded
from above by a (usually small) constant. For example, at most four actions can be executed in every state of
both sliding-tile puzzles and grid-worlds.

The maximal goal distance � often grows more slowly than & 4 1, one less than the number of states. For
example, we have already discussed that the maximal goal distance of the eight puzzle is only 30 for the
American goal state and 31 for the European goal state, but the eight puzzle has 181,440 states. Similarly, an
obstacle-free square grid-world of size

-
�

-
has & � - 2 states and maximal goal distance � � 2

- 4 2. Thus,
� � 2 � & 4 2.

In the following, we investigate the measures of task size experimentally. Both � � and & � lead to identical
results in many domains since � is often linear in & , as argued above. This holds for all of the domains tested.
We therefore investigate only � � . We study the following zero-initialized LRTA*-type real-time search
methods: Bi-Directional Q-Learning, Edge Counting, LRTA* with look-ahead one, Min-LRTA*, and random
walks. We study these five LRTA*-type real-time search methods in reset state spaces with & � 2 � 3 � � � � � 50
states (Figure 2.28), one-dimensional grid-worlds with & � 2 � 3 � � � �
� 50 states whose start and goal states are
at opposite ends (Figure 2.15), and obstacle-free square grid-worlds with & � 4 � 9 � � � � 196 states whose start
and goal states are in opposite corners (Figure 2.38).

Figures 2.52, 2.53, and 2.54 show how many actions the LRTA*-type real-time search methods execute in
these domains. Since we know that the performance of random walks and Edge Counting can be exponential
in the number of states in non-Eulerian domains, we do not show the performance graphs for these two

66 Chapter 2. Acting with Agent-Centered Search

0

500

1000

1500

2000

2500

3000

3500

0 500 1000 1500 2000 2500 3000 3500 4000 4500

ac
tio

n
ex

ec
ut

io
ns

ed

bi-directional q-learning
min-LRTA*

LRTA*

Figure 2.52: Experimental Average-Case Performance in Reset State Spaces

0

500

1000

1500

2000

2500

3000

3500

0 500 1000 1500 2000 2500 3000 3500 4000 4500

ac
tio

n
ex

ec
ut

io
ns

ed

bi-directional q-learning
random walk

edge counting
min-LRTA*

LRTA*

Figure 2.53: Experimental Average-Case Performance in One-Dimensional Grid-Worlds

0

2000

4000

6000

8000

10000

12000

0 2000 4000 6000 8000 10000 12000 14000 16000

ac
tio

n
ex

ec
ut

io
ns

ed

bi-directional q-learning
random walk

edge counting
min-LRTA*

LRTA*

Figure 2.54: Experimental Average-Case Performance in Square Grid-Worlds

2.5. LRTA*-Type Real-Time Search Methods and Domain Properties 67

LRTA*-type real-time search methods in the reset state space. All figures are scaled in the same proportion.
Their horizontal axes show the measure of task size � � and their vertical axes the number of action executions
needed to complete the tasks, averaged over 5,000 runs with randomly broken ties. The number of actions
that random walks execute in one-dimensional grid-worlds was calculated analytically as the behavior of
symmetrical one-dimensional random walks with one reflecting and one absorbing barrier [Feller, 1966].

Notice that many of the graphs appear to be almost linear, especially in large domains. This is not a trivial
property. For example, Figure 2.45 shows that the experimental average-case performance of LRTA*-type
real-time search methods is often not linear in & (the figure uses the number of blocks, but the number of
states is one larger than three times the number of blocks). This makes ��� a better measure of task size for
LRTA*-type real-time search methods than & , but the measure is not perfect: First, the slopes of the graphs
are not the same for a given LRTA*-type real-time search method across domains. We already observed this
when Min-LRTA* outperformed Edge Counting in Figure 2.45 and Edge Countingoutperformed Min-LRTA*
in Figure 2.48. Second, some of the graphs are sub-linear. Consider, for example, LRTA*. It needs exactly
&'4 1 action executions to reach the goal state in reset state spaces and one-dimensional grid-worlds. In both
domains, � � & 4 1 and � � 2 &'4 2. Thus, the number of action executions is � � � � � 2, which is sub-linear
in � � . Despite these two problems, the performance of the studied LRTA*-type real-time search methods can
be predicted reasonably well in the studied domains by measuring their performance in smaller domains of
the same topology. Future work will gather more experience with this measure of task size in more complex
domains and with additional LRTA*-type real-time search methods (including those with larger look-aheads).

2.5.5 Selection of Test-Beds for LRTA*-Type Real-Time Search Methods

We have studied how domain properties influence the performance of LRTA*-type real-time search methods.
The complexity results can help to distinguish easy LRTA*-type real-time search tasks from hard ones, which
can help experimental researchers to decide when to use LRTA*-type real-time search methods. We showed,
for instance, that sliding-tile puzzles and grid-worlds are well suited for LRTA*-type real-time search, for
two reasons: First, they are undirected. Second, the product of their number of actions and their maximal
goal distance is small because both factors are small (relative to the number of states). In the following,
we show another application of the complexity results: the selection of test-beds for LRTA*-type real-time
search methods.

Often, engineers have to choose methods that solve their problems but they do not have the time to implement
(or analyze) all of the candidate methods. Instead, they rely on results reported in the literature, such as
results that show how well a method operates in various test-beds (prototypical test domains). The engineers
then interpret these results in the context of their problem. It is therefore important that the performance of
LRTA*-type real-time search methods in the test-beds be representative of their performance in the domains
of interest: test-beds should either directly reflect the domain properties of the domains of interest or, at
least, be representative of a wide range of domains. Complexity results that suggest which domain properties
make domains easy to search with LRTA*-type real-time search methods can help experimental researchers
to choose appropriate test-beds for experimenting with LRTA*-type real-time search methods, reporting their
results, and interpreting the results reported by others.

We distinguish discriminating and nondiscriminating test-beds. We consider a domain to be a nondiscrimi-
nating test-bed for LRTA*-type real-time search methods (Type 1) if no LRTA*-type real-time search method
has a significant performance advantage over other (reasonable) LRTA*-type real-time search methods, oth-
erwise the domain is a discriminating test-bed (Type 2). In Figure 2.55, for example, domains of Type 1a
are nondiscriminating test-beds, because they are hard to search with LRTA*-type real-time search methods:
even the most efficient LRTA*-type real-time search methods perform poorly in them. Likewise, domains of
Type 1b are nondiscriminating, because they are easy to search: even inefficient “reasonable” LRTA*-type
real-time search methods (Section 2.5.2.1) perform very well in them. Domains of Type 2, on the other hand,
are discriminating test-beds, because they are better able to discriminate between efficient and inefficient
LRTA*-type real-time search methods.

68 Chapter 2. Acting with Agent-Centered Search

good performancepoor performance

domains of Type 1a:
nondiscriminating test-beds

domains of Type 1b:
nondiscriminating test-beds

domains of Type 2:
discriminating test-beds

the performance of the bestthe performance of the worst “reasonable”
LRTA*-type real-time search method LRTA*-type real-time search method

performance of real-time search algorithms

Figure 2.55: Discriminating and Nondiscriminating Test-Beds (1)

quicksand state spaces
reset state spaces

nondiscriminating test-beds

discriminating test-beds

poor performance good performance

all domains

Eulerian domains

undirected domains

EASY

EASY
but not easier than other

Eulerian domains

“complex state spaces”

Figure 2.56: Discriminating and Nondiscriminating Test-Beds (2)

Comparing LRTA*-type real-time search methods using test-beds of Type 1 is fine as long as the test-beds
are representative of the domains that are currently of interest to engineers. However, there is a problem with
reportingperformance results of LRTA*-type real-time search methods only for test-beds of Type 1. Some day,
an engineer might become interested in domains with properties that have not been anticipated. Consequently,
no performance results have been reported for this domain or similar domains, and the engineer is likely going
to use the published performance results for other domains to decide which LRTA*-type real-time search
method to use.

Which LRTA*-type real-time search method to use is not crucial if the domains of the engineer are of Type 1.
Assume, however, that the domains are of Type 2 but the engineer has only experimental evaluations of
LRTA*-type real-time search methods in domains of Type 1 available. In this case, the reported results appear
to suggest that all LRTA*-type real-time search methods perform equally well and that it does not matter
much which of them is used to solve the task. In reality, however, there is a huge difference in performance
among the LRTA*-type real-time search methods in the domains of interest and the engineer should carefully
decide which one to use. Consequently, when choosing appropriate LRTA*-type real-time search methods,
one can easily be misled if one has available only evaluations of LRTA*-type real-time search methods in
domains of Type 1. One might even choose an LRTA*-type real-time search method that is intractable in the
domains of Type 2.

We identified domain properties that make domains easy to search with LRTA*-type real-time search methods.
For example, the complexity results showed that undirected domains and other Eulerian domains are easy
to search with a variety of LRTA*-type real-time search methods, even those LRTA*-type real-time search
methods that can be intractable in general. Consequently, undirected and other Eulerian domains are of
Type 1b and are not ideal test-beds for comparing LRTA*-type real-time search methods across a wide range

2.5. LRTA*-Type Real-Time Search Methods and Domain Properties 69

of domains (Figure 2.56). This includes most traditional search domains from artificial intelligence, such as
sliding-tile puzzles and grid-worlds.

We therefore suggest reporting experimental results not only for undirected domains and other Eulerian
domains, but also for non-Eulerian domains. We identified three classes of non-Eulerian test-beds that are
of Type 2, namely, reset state spaces, quicksand state spaces, and “complex state spaces.” They are able to
separate some LRTA*-type real-time search methods with minimal look-ahead that can be intractable from
LRTA*-type real-time search methods with minimal look-ahead that are always tractable and, thus, do not
suffer as much from the problems of the traditional test-beds. Furthermore, minor variants of these domains
can also differentiate among LRTA*-type real-time search methods with larger look-aheads. Thus, variants
of these domains should be included in test suites that are used to evaluate LRTA*-type real-time search
methods. We currently do not know of any real-world domains that resemble reset state spaces, quicksand
state spaces, or “complex state spaces.” This, however, should not prevent one from including them in test
suites, since domains of future applications might resemble them. Furthermore, we do not expect any single
domain to be sufficient for comparing LRTA*-type real-time search methods. In quicksand state spaces, for
example, all actions have only local effects and some inefficient LRTA*-type real-time search methods might
be able to perform efficiently in them.

To summarize, the complexity results can help experimental researchers to choose appropriate test-beds for
experimenting with LRTA*-type real-time search methods, reporting their results, and interpreting the results
reported by others.

2.5.6 Selection of Representations for Reinforcement-Learning Methods

In this section, we study another application of the complexity results: the selection of representations for
reinforcement-learning tasks. Reinforcement learning [Barto et al., 1989, Kaelbling et al., 1986] is learning
from positive and negative rewards. In this section, we relate reinforcement learning to LRTA*-type real-time
search and use the complexity results to analyze the performance of reinforcement-learning methods for
various representations of reinforcement-learning tasks. We show that the choice of representation can have a
large impact on their performance and that reinforcement-learning tasks that were considered intractable can
be made tractable with only a simple change in their representation. Thus, the complexity results can help
experimental researchers to choose representations for reinforcement-learning methods that enable them to
solve reinforcement-learning tasks efficiently.

Reinforcement learning is often done in the context of completely observable Markov decision process models
(Section 3.2): An agent receives finite immediate reward �

� �,�	!#� when it executes action ! in state � . If the
agent receives immediate reward � � when it executes the

� � 5 1 � st action, then its total reward is (�� � 0 : � � � � ; ,
where � � �

0 � 1 ; is the discount factor. The discount factor specifies the relative value of an immediate
reward received after

�
action executions compared to the same reward received one action execution earlier.

If � � 1, the total reward is called undiscounted otherwise it is called discounted.

Reinforcement-learning methods express plans as mappings from states to actions (also known as “stationary,
deterministic policy,” short: policy). Although the notion“policy” originated in the field of stochastic dynamic
programming, similar schemes have been proposed in the context of artificial intelligence, including universal
plans [Schoppers, 1987]. Reinforcement-learning methods determine policies that maximize the (average)
total reward of the agent (no matter which state it starts in) provided that the agent always executes the action
that the policy assigns to its current state.

A goal-directed reinforcement-learning task can be stated as: the agent has to learn an optimal policy
(shortest path) for reaching a goal state in an unknown domain. Goal-directed reinforcement-learning tasks
have been studied in [Benson and Prieditis, 1992, Pemberton and Korf, 1992, Peng and Williams, 1992,
Moore and Atkeson, 1993, Barto et al., 1995], among others. One necessary step towards a solution of
goal-directed reinforcement-learning tasks is to locate a goal state. We therefore study the complexity of
reinforcement-learning methods until the agent reaches a goal state for the first time. If reinforcement-

70 Chapter 2. Acting with Agent-Centered Search

learning methods terminate when the agent reaches a goal state, then they solve the following goal-directed
exploration task: the agent has to reach a goal state in an unknown domain, but it does not need to learn
an optimal policy. Studying goal-directed exploration tasks provides insight into the corresponding goal-
directed reinforcement-learning tasks. Whitehead [Whitehead, 1991a], for example, proved that solving
goal-directed exploration tasks with reinforcement-learning methods can be intractable, which illustrates
that solving goal-directed reinforcement-learning tasks can be intractable as well. In particular, he showed
that the behavior of uninformed reinforcement-learning methods can degenerate to a random walk until
they reach a goal state for the first time, even in deterministic domains. In this case, the number of
action executions that they need on average to reach a goal state can be exponential in the number of
states. This complexity result seems to limit the usefulness of reinforcement-learning methods, but contrasts
sharply with experimental observations in [Kaelbling, 1990, Whitehead, 1991b, Peng and Williams, 1992,
Moore and Atkeson, 1993], that report good performance results.

These discrepancies motivate us to study how the performance of uninformed reinforcement-learning methods
for goal-directed exploration tasks in deterministic domains is affected by different representations of the tasks.
We do this in the context of Q-Learning [Watkins, 1989], probably the most popular reinforcement-learning
method. In nondeterministic domains, Q-Learning assumes that nature always chooses the successor states
with some time-invariant probability distribution that depends only on the current state and the executed
action. Thus, nature chooses successor states randomly according to given transition probabilities, and Q-
Learning attempts to maximize the average total reward. The transition probabilities do not need to be known.
Q-Learning learns them implicitly. We study an uninformed, memoryless, on-line variant of Q-Learning
[Whitehead, 1991a] with minimal look-ahead and a greedy action-selection step that always chooses the
action with the maximal q-value in the current state. We study this reinforcement-learning method because
it performs only a minimal amount of computation between action executions, choosing only which action
to execute next, and basing this decision only on information local to the current state. If this inefficient
reinforcement-learning method has a small complexity, then we can expect other reinforcement-learning
methods to have a small complexity as well.

Q-Learning (see Figure 2.27)
action-selection step (Line 3)

�
:= one-of arg max

� / �*� ��
���� ������� � �
value-update step (Line 4)

� ����� � �
:=

�
1

��� � � ������� � � � ����������� � ��� � ��� � ���
 �
1

��� � � ������� � � � ����������� � ��� max
� / ��� ��
 / � � ��� � ��� � ��� ,

where
� �

is the successor state that results from the execution of action
�

in state
�

For now, we leave the initial q-values unspecified. The value-update step uses a learning rate � � �
0 � 1 ;

that determines how much �
� � �"!#� changes with every update. In probabilistic domains, the learning rate

enables Q-Learning to average �
� � �"!#�85 � � � � 1 � for all successor states � 1 � ��� ��� � �,�	!#� . In order for the

q-values to converge to the desired values, the learning rate has to approach zero asymptotically, in a manner
described in [Watkins and Dayan, 1992]. Since we restrict the analysis of Q-Learning to deterministic
domains, averaging is not needed and consequently we set the learning rate to one throughout this section.
(We discuss nondeterministic domains briefly in Sections 2.5.6.4 and 2.5.6.5.)

The complexity results in [Whitehead, 1991a] apply to Q-Learning as well: Uninformed Q-Learning can
degenerate to a random walk until it reaches a goal state for the first time, even in deterministic domains. In
this case, the number of action executions that it needs on average to reach a goal state can be exponential
in the number of states. We, however, relate Q-Learning to Min-LRTA* and use the earlier complexity
results to derive representations of goal-directed exploration tasks for which the complexity of uninformed
Q-Learning in deterministic domains is polynomial. This can be achieved with only a simple change
in the reward structure (“penalizing the agent for action executions”) or the initialization of the q-values
(“initializing optimistically”). Consequently, Q-Learning can be tractable without any need for augmentation
of the method. These complexity results can help experimental researchers to choose representations for
reinforcement-learning methods that enable them to solve reinforcement-learning tasks efficiently. They also
provide the theoretical underpinnings for the experimental observations mentioned above that reported good
performance results for some representations of reinforcement-learning tasks.

2.5. LRTA*-Type Real-Time Search Methods and Domain Properties 71

Goal-Reward Representation

Action-Penalty Representation

0

0

0

0

0 0 11

0

0

0
0

0
0

0

0

start state

goal state

0

0

0

0

0

0

0

0

0

0

0

-1

-1

-1

-1

-1 -1 -1-1

-1

-1

-1
-1

-1
-1

-1

-1

start state

goal state

-1

-1

-1

-1

-1
-1

-1

-1

-1

-1

-1

Figure 2.57: Reward Structures

2.5.6.1 Representations for Reinforcement-Learning Methods

When modeling goal-directed exploration tasks, one has to decide on their representation, where the repre-
sentation determines both the immediate rewards that the reinforcement-learning method receives and the
initialization of its q-values. In this section, we introduce possible reward structures and initializations, and
discuss their properties. All of these representations have been used in the experimental reinforcement-
learning literature to represent goal-directed reinforcement-learning tasks, that is, for learning shortest paths
to a goal state. In later sections, we show that the choice of representation can have a large impact on the
performance of Q-Learning.

For the reward structure, we have to decide on the immediate rewards �
� � �	! � for � � � $ and !�� �$� ��� .

For the initial q-values, we have to decide on the q-values �
� � �"!#� for �%� ��$ and !�� ��� ��� . Notice that,

for goal-directed exploration tasks, the immediate rewards �
� �,�	!#� and the q-values �

� � �"!#� for � � and
! � �$� ��� do not matter, because execution terminates when the agent reaches a goal state. We leave the
immediate rewards �

� � �	! � for �$� and !�� �$� ��� unspecified. We use the q-values �
� �,�	!#� � 0 for �$�

and ! � ��� ��� . Then, � � ��� � 0 for �%� , which reflects that execution terminates when the agent reaches a
goal state and thus its total future reward is zero. In the following, we discuss possible reward structures and
initializations of the q-values.

Reward Structures: The complexity of Q-Learning depends on properties of the reward structure. The
reward structure should be suitable for goal-directed reinforcement-learning tasks, and thus it has to prefer
shorter paths to a goal state over longer paths. Since reinforcement-learning methods determine policies that
maximize the total reward of the agent, the reward structure must guarantee that states with smaller goal
distances lead to larger optimal total rewards when the agent starts in them. Two different reward structures
with this property have been used in the literature: the goal-reward representation and the action-penalty

72 Chapter 2. Acting with Agent-Centered Search

representation. We define these reward structures in the next paragraphs. Both reward structures assign
the same immediate reward to almost all of the actions. This immediate reward is zero for the goal-reward
representation and minus one for the action-penalty representation, see Figure 2.57. We use this figure later to
show how the two reward structures influence the behavior of Q-learning. (We discuss additional properties
of the two reward structures in Section 4.6.4.)

The goal-reward representation rewards the agent for stopping in a goal state, but does not reward or
penalize it for executing actions. This reward structure has been used in [Sutton, 1990, Whitehead, 1991a,
Peng and Williams, 1992, Thrun, 1992b, Lin, 1993], among others. Formally,

������� � �
 � 1 if
� ����� ������� � ���

0 otherwise
for

� � ��� �
and

� � � ��� ���

The optimal total undiscounted reward of every nongoal state � is one in safely explorable domains, and its
optimal total discounted reward is � ��� 7 �#9 � 1 � 1. Thus, discounting is necessary for learning shortest paths
with this reward structure. If no discounting were used, the agent would always receive a total reward of one
if it reaches a goal state and Q-Learning could not distinguish among paths of different lengths. If discounting
is used, then the goal reward gets discounted with every action execution, and the agent tries to reach a goal
state with as few action executions as possible to maximize the portion of the goal reward that it receives.

The action-penalty representation penalizes the agent for every action that it executes, but does not reward
or penalize it for stopping in a goal state. This reward structure is denser than the goal-reward representation
if goal states are relatively sparse (the agent receives nonzero immediate rewards more often). It has been
used in [Barto et al., 1989, Koenig, 1991, Barto et al., 1995] among others. Formally,

��������� �
 �
1 for

� ����� �
and

� � � ��� ���

The action-penalty representation can also be generalized to nonuniformimmediate rewards in case the actions
have different immediate costs (for example, different execution times).

The optimal total undiscounted reward of every nongoal state � is 4 � � � ��� � 4 1, and its optimal total
discounted reward is

�
� ��� 7 �#9 4 1 � � � 1 4 � � � 4 1. Thus, discounting can be used for learning shortest paths

with this reward structure, but is not necessary. In both cases, the agent tries to reach a goal state with as few
action executions as possible to minimize the amount of penalty that it receives. Therefore, the action-penalty
representation provides additional freedom for choosing the parameters of Q-Learning. The q- and u-values
are integers if no discounting is used, otherwise they are reals. Integers have the advantage over reals that
they need less memory space and can be stored without a loss in precision.

Initial Q-Values: The complexity of Q-Learning also depends on properties of the initial q-values. We study
uninformed Q-Learning. Thus, the q-values cannot convey any information about the domain beyond the
information that is already available to Q-Learning by other means. Uninformed Q-Learning is able to detect
whether the current state is a goal state. However, initially it is unable to distinguish among different nongoal
states or among different actions in the same state. Thus, all q-values of actions in nongoal states have to be
initialized identically for uninformed Q-Learning.

Definition 4 Q-values are uniformly initialized with
-

(or, synonymously,
-

-initialized), if and only if initially

� ������� ��
� 0 if
� � �

� otherwise
for all

� � �
and

� � � ��� ���

2.5. LRTA*-Type Real-Time Search Methods and Domain Properties 73

0

0 0 0

0

0
0

0

0

0

0 0 0

0

0
0

0

0

0

0 0 0

0

0
0

0

0

0

0 0 0

0

0
0

0

0

t = 0:

t = 1:

t = 2:

t = 3:

0 0
0

0

0

0

0

0

0
0

0

0

0

0
0

0

0

0
0

0

0

0

0

0

000

0
0

0

0

1

0

000

0
0

0

0 0 0

0

0
0

0

0

t = 4:

0
0

0
0

0

...

goal state

goal state

Figure 2.58: Discounted Zero-Initialized Q-Learning with the Goal-Reward Representation

Remember that we use the q-values �
� �,�	!#� � 0 for �%� and ! � �$� ��� , because then � � ��� � 0 for �$� ,

which reflects that execution terminates for goal-directed exploration tasks when the agent reaches a goal
state and thus its total future reward is zero.

Until now, we have assumed that all uninformed methods are zero-initialized. If Q-Learning is
-

-initialized
with

- �� 0, the q-values of actions in goal states and nongoal states are initialized differently. It is important
to understand that this particular initialization does not convey any information about the domain, since
Q-Learning is able to distinguish whether its current state is a goal state or not. Consequently, uniformly
initialized Q-Learning is uninformed.

2.5.6.2 An Intractable Representation

In this section, we study Q-Learning that operates on the goal-reward representation (which implies that
discounting has to be used) and is zero-initialized. We show that this representation makes the goal-directed
exploration tasks intractable.

Discounted zero-initialized Q-Learning with the goal-reward representation receives a nonzero immediate
reward only if an action execution results in a goal state. Figure 2.58 shows an example. The u-values
are shown in the states, and the q-values label the actions. Thus, during the search for a goal state, all
q-values remain zero. Q-Learning does not even remember which actions it has already executed, and the
action-selection step has no information on which to base its decision about which action to execute next.
If Q-Learning had a systematic bias for actions (for example, if it broke ties systematically according to a
predetermined ordering on

��� ��� for all states �) then it could cycle in the domain forever. We therefore
assume that it chooses randomly from the actions available in the current state, in which case it performs a
random walk. The average-case performance of random walks can be exponential in the number of states &
(Theorem 9). The following corollary follows:

Corollary 20 Discounted zero-initialized Q-Learning with the goal-reward representation has an average-
case performance for reaching a goal state that is at least exponential in & over all reasonable, deterministic

74 Chapter 2. Acting with Agent-Centered Search

0

-1 0 0

0

0
0

0

0

0

-1 0 -1

0

0
0

0

0

0

0 0 0

0

0
0

0

0

0

-1 0 -1

-1

0
0

0

0

t = 0:

t = 1:

t = 2:

t = 3:

0 0
0

0

0

0

0

0

0
0

0

0

0

0
0

0

0

0
0

0

0

0

-1

0

000

-1
0

0

-1 -1 -1

-1

0
0

0

0

t = 4:

0
0

0
0

0

-1

-1 -1 -1

0
0

0

0

t = 5:

-1 0
0

0

-1 0

0
0

0
0

goal state

...

Figure 2.59: Undiscounted Zero-Initialized Q-Learning with the Action-Penalty Representation

domains.

This observation was made by Whitehead [Whitehead, 1991a], who then explored cooperative reinforcement-
learning methods to decrease the complexity. Subsequently, Thrun [Thrun, 1992a] showed that even non-
cooperative reinforcement-learning methods can have polynomial complexity if they are extended with a
mechanism that he calls counterbased exploration. Counterbased Q-Learning maintains a second kind of
state-action values, called counters, in addition to the q-values. Thrun was able to specify action-selection and
value-update steps that use these counters and achieve polynomial complexity. There are other speed-up meth-
ods that can improve the performance of reinforcement-learning methods, such as the action-replay method
[Lin, 1992]. However, this method does not change the q-values before a goal state has been reached for
the first time when it is applied to discounted zero-initialized Q-Learning with the goal-reward representation
and, thus, cannot be used to reduce its complexity for the reinforcement-learning tasks studied here.

2.5.6.3 Tractable Representations

In the following, we show that one does not need to augment Q-Learning to reduce its complexity. Uninformed
Q-Learning is tractable if one uses either the action-penalty representation or nonzero initial q-values. The
intuitive explanation is that the q-values change immediately in both cases, starting with the first action
execution. This way, Q-Learning remembers something about the previous action executions. The complexity
results show formally by how much the complexity is reduced.

Zero-Initialized Q-Values with the Action-Penalty Representation: In the following, we study Q-Learning
that operates on the action-penalty representation and is zero-initialized. We first show that undiscounted
Q-Learning with this representation is tractable and then show how the analysis can be applied to discounted
Q-Learning. In both cases, the q-values change immediately since Q-Learning receives a nonzero immediate
reward after every action execution. Figure 2.59 shows an example. The u-values are shown in the states,
and the q-values label the actions. Notice that, different from Figure 2.58, the q-values now prevent the agent
from repeating a previous action execution at

� � 3.

2.5. LRTA*-Type Real-Time Search Methods and Domain Properties 75

Some reinforcement-learning methods and LRTA*-type real-time search methods have in common that they
are asynchronous incremental dynamic programming methods [Barto et al., 1989]. In fact, in deterministic
domains, undiscounted zero-initialized Q-Learning with the action-penalty representation and learning rate
one is identical to zero-initialized Min-LRTA* with the simplified value-update step. Thus, there is a strong
connection between reinforcement learning and LRTA*-type real-time search. We exploit this connection
to transfer the complexity results about LRTA*-type real-time search to reinforcement learning. Since the
complexity of zero-initialized Min-LRTA* is tight at

� � & 3 � action executions over all reasonable domains
(Theorem 15), the following corollary follows:

Corollary 21 Undiscounted zero-initialized Q-Learning with the action-penalty representation and learning
rate one has a tight complexity of

� � & 3 � action executions for reaching a goal state over all reasonable,
deterministic domains.

We can now reduce the complexity analysis of discounted zero-initialized Q-Learning with the action-penalty
representation to the one of undiscounted zero-initialized Q-Learning with the same reward structure. Consider
the following strictly monotonically increasing bijection from the q-values of discounted Q-Learning to the
q-values of undiscounted Q-Learning. In the following, the time superscript

�
refers to the values of the

variables immediately before the
� � 5 1 � st value-update step of Q-Learning (Line 4 in Figure 2.27). For

every � � �
and ! � �$� ��� , map the q-value � �1

� � �"!#� of discounted Q-Learning to the q-value � �2
� � �"!#� �

4 log� : 1 5 �
1 4 � ��� �1

� � �"!#�<; of undiscounted Q-Learning. This relationship continues to hold if it holds
for the initial q-values: Assume that the relationship holds at time

�
and both discounted and undiscounted

Q-Learning are in the same state. Since the mapping between q-values is strictly monotonically increasing,
and both discounted and undiscounted Q-Learning always execute the action with the maximal q-value in the
current state, they always choose the same action for execution and thus reach the same successor state (if
ties are broken identically). If they execute action ! � in state � � � � $, then � 1

� � � �"! � � and � 2
� � � �	! � � are the

only q-values that change between time
�

and
� 5 1, and

� � � 1
2

��� � ��� � �
 �
1 � �

�
2
��� ����� ��� � ��� � ���
 �

1 � max� / ��� ��
���������
 � � � � ��� � �2 ��� ����� ��� � � � � � ��� � �
 �
1 � max� / ��� ��
���������
 � � � � ��� � � log � � 1 � �

1
�
�
� � �

1
��� � ��� ��� � ��� � � ��� � ��� �

max� / ��� ��
���������
 � � � � ��� � � log � � � � 1 � �
1

�
�
� � �

1
��� ����� ��� � ��� � � ��� � ����� �

max� / ��� ��
���������
 � � � � ��� � � log � � 1 � �
1

�
�
� � �

1 ��� � �1 ��� ����� ��� � ��� � � � � � ����� �
 �
log � � 1 � �

1
�
�
� � �

1 � � max� / ������
�� ���$��
 � � � � ��� � �1 ��� ����� ��� � ��� � � ��� � �����
 �
log � � 1 � �

1
�
�
� � �

1 � � � �1 ��� ����� ��� � ��� � �������
 �
log � � 1 � �

1
�
�
� � ��� 1

1

��� � ��� � ��� �
Consequently, the relationship between the q-values continues to hold, and discounted and undiscounted
Q-Learning behave identically. Thus, the complexity analysis of undiscounted Q-Learning also applies to
discounted Q-Learning. If discounted Q-Learning is zero-initialized, then undiscounted Q-Learning is zero-
initialized as well, since � 0

2

� �,�	!#� � 4 log� : 1 5 �
1 4 � ��� 0

1

� � �"!#�<; � 4 log� : 1 5 �
1 4 � � � 0 ; � 0 for all

� � � $ and ! � ��� ��� . This implies that it has a tight complexity of
� � & 3 � action executions over all

reasonable, deterministic domains (Corollary 21). The following corollary follows:

Corollary 22 Discounted zero-initialized Q-Learning with the action-penalty representation and learning
rate one has a tight complexity of

� � & 3 � action executions for reaching a goal state over all reasonable,
deterministic domains.

76 Chapter 2. Acting with Agent-Centered Search

One-Initialized Q-Values with the Goal-Reward Representation: Zero-initialized Q-Learning with the
action-penalty representation is tractable because the q-values change immediately. Since the value-update
step of Q-Learning updates the q-values using both the immediate reward and the q-values of the successor
state, this suggests that one can achieve tractability not only by changing the immediate rewards, but also by
initializing the q-values differently. In the following, we show that, indeed, Q-Learning is also tractable if the
goal-reward representation is used (which implies that discounting has to be used as well) and the q-values
are 1 � � - or one-initialized. The latter initialization has the advantage that it does not depend on the discount
factor.

The complexity analysis of discounted one-initialized (or 1 � � -initialized) Q-Learning with the goal-reward
representation can be reduced to the one of undiscounted (minus one)-initialized (or zero-initialized) Q-
Learning with the action-penalty representation. We proceed as we proceeded for discounted zero-initialized
Q-Learning with the action-penalty representation. This time, we consider the following strictly monotonically
increasing bijection from the q-values of discounted Q-Learning with the goal-reward representation to the
q-values of undiscounted Q-Learning with the action-penalty representation. For every � � � $ and
! � �$� ��� , map the q-value � �1

� �,�	!#� of discounted Q-Learning with the goal-reward representation to the q-
value � �2

� �,�	!#� � 4 1 4 log� � �1
� � �"!#� of undiscounted Q-Learning with the action-penalty representation. This

relationshipcontinues to hold if it holds for the initialq-values: Assume that the relationshipholds at time
�

and
both discounted Q-Learning with the goal-reward representation and undiscounted Q-Learning with the action-
penalty representation are in the same state. Since the mapping between q-values is strictly monotonically
increasing and both discounted Q-Learning with the goal-reward representation and undiscounted Q-Learning
with the action-penalty representation always execute the action with the maximal q-value in the current state,
they always choose the same action for execution and thus reach the same successor state (if ties are broken
identically). If they execute action ! � in state � � � � $, then � 1

� � � �"! � � and � 2
� � � �"! � � are the only q-values

that change between time
�

and
� 5 1, and

� if ��� ��� � � � �"! � � � ��$:

� ��� 1
2

��� � � � � �
 �
1 � �

�
2
��� ����� ��� � ��� � ���
 �

1 � max� / �*� ��
���������
 � � � � ��� � �2 ��� � ��� ��� � ��� � � ��� � �
 �
1 � max� / �*� ��
���������
 � � � � ��� � � 1

�
log �

� �
1
��� ����� ��� � ��� � � ��� � ���
 �

1 � max� / �*� ��
���������
 � � � � ��� � � log � � � � �1 ��� ����� ��� � ��� � � ��� � ��� �
 �
1

�
log � � � max� / �*� ��
������$��
 � � � � ��� � �1 ��� ����� ��� � ��� � � � � � ��� �
 �

1
�

log � � � � �1 ��� ����� ��� � ��� � � ��� � ���
 �
1

�
log �

� ��� 1
1

��� � � �
� if ��� ��� � � � �"! � � � :

� ��� 1
2

��� � � � � �
 �
1 � �

�
2
��� � ��� ��� � ��� � ���
 �

1 � max� / ��� ��
������$��
 � � � � ��� � �2 ��� ����� ��� � ��� � � ��� � �
 �
1 � max� / ��� ��
������$��
 � � � � ��� 0
 �
1
 �
1

�
log � 1
 �

1
�

log � � 1 ��� max� / ��� ��
���������
 � � � � ��� 0
�

2.5. LRTA*-Type Real-Time Search Methods and Domain Properties 77

 �
1

�
log � � 1 ��� max� / ��� ��
���������
 � � � � ��� � �1 ��� ����� ��� � � � � � ��� � ���
 �

1
�

log � � 1 ��� � �1 ��� � ��� ��� � ��� � � ��� � ���
 �
1

�
log �

� ��� 1
1

��� � ���
Consequently, the relationship between the q-values continues to hold, and discounted Q-Learning with
the goal-reward representation and undiscounted Q-Learning with the action-penalty representation behave
identically. Thus, the complexity analysis of undiscounted Q-Learning with the action-penalty representation
also applies to discounted Q-Learning with the goal-reward representation. If discounted Q-Learning with
the goal-reward representation is 1 � � -initialized, then undiscounted Q-Learning with the action-penalty
representation is zero-initialized, since � 0

2
� �,�	!#� � 4 1 4 log � � 0

1
� � �"!#� � 4 1 4 log� : 1 � � ; � 0 for all ��� � $

and ! � ��� ��� . This implies that it has a tight complexity of
� � & 3 � action executions over all reasonable,

deterministic domains (Corollary 21).

Similarly, if discounted Q-Learning with the goal-reward representation is one-initialized, then undis-
counted Q-Learning with the action-penalty representation is (minus one)-initialized, since � 0

2
� �,�	!#� �

4 1 4 log� � 0
1

� � �	! � � 4 1 4 log� 1 � 4 1 for all � � � $ and ! � ��� ��� . It is easy to show that
undiscounted (minus one)-initialized Q-Learning with the action-penalty representation has a tight complex-
ity of

� � & 3 � action executions for reaching a goal state over all reasonable, deterministic domains, since it
and undiscounted zero-initialized Q-Learning with the action-penalty representation behave identically until
they reach a goal state (if ties are broken identically). The following corollary follows:

Corollary 23 Discounted one-initialized Q-Learning with the goal-reward representation and learning rate
one has a tight complexity of

� � & 3 � action executions for reaching a goal state over all reasonable, deter-
ministic domains.

2.5.6.4 Other Reinforcement-Learning Methods

We have related Q-Learning to Min-LRTA* and then used the complexity results about Min-LRTA* to analyze
the performance of Q-Learning. We would like to point out briefly (but not prove) that one can proceed in a
similar way for other on-line reinforcement-learning methods as well, such as Q̂-Learning and Value-Iteration.

Q̂-Learning: Q̂-Learning (“Q-hat-learning”) [Heger, 1996] is similar to Q-Learning. In nondeterministic
domains, Q-Learning assumes that nature always chooses the successor states with some time-invariant (but
unknown) probability distribution that depends only on the current state and the executed action. Thus, nature
chooses successor states randomly according to given transition probabilities, and Q-learning attempts to
maximize the average total reward. Q̂-Learning, on the other hand, assumes that nature always chooses the
worst successor state. Thus, nature is an opponent, and Q̂-Learning attempts to maximize the worst-case
total reward. Which reinforcement-learning method to use for learning an optimal policy depends on the
risk attitude of the agent (Chapter 4). Consider an uninformed, memoryless, on-line variant of Q̂-Learning
with minimal look-ahead and a greedy action-selection step that always chooses the action with the maximal
q-value in the current state.

Q̂-Learning (see Figure 2.27)
action-selection step (Line 3)

�
:= one-of arg max

� / ��� ��
���� ����� � � �
value-update step (Line 4)

� ������� �
:= min

� � ������� � � ��������� � � � � ��� � ����
 min
� � ����� � � � ��������� � � � max

� / �*� ��
�� � ��� � ��� � ��� ,
where

� �
is the successor state that results from the execution of action

�
in state

�
Q̂-Learning requires the q-values to be initialized optimistically. It needs less information about the domain
than Q-Learning (since it does not need to know how nature behaves) and converges faster. In particular,
it does not need to execute each action in a state often enough to get a representative distribution over the

78 Chapter 2. Acting with Agent-Centered Search

successor states and has no need for a learning rate, even in probabilistic domains [Heger, 1996]. Correctness
and convergence results for Q̂-Learning are given in [Heger, 1994].

In deterministic domains, undiscounted zero-initialized Q̂-Learning with the action-penalty representation
is identical to zero-initialized Min-LRTA* with the unsimplified value-update step. In nondeterministic
domains, undiscounted zero-initialized Q̂-Learning with the action-penalty representation is identical to
a combination of zero-initialized Min-Max LRTA* (minimax principle) and zero-initialized Min-LRTA*
(minimal look-ahead). This makes it possible to derive the following complexity result for Q̂-Learning
[Koenig and Simmons, 1995a, Koenig and Simmons, 1996b]:

Undiscounted or discounted zero-initialized Q̂-Learningwith the action-penalty representation and discounted
one-initialized Q̂-Learning with the goal-reward representation have a tight complexity of

� � & 3 � action
executions for reaching a goal state over all reasonable, nondeterministic domains and over all reasonable,
deterministic domains.

Value-Iteration: Value-Iteration [Bellman, 1957] is similar to LRTA*. It does not use the q-values, but
rather the u-values directly, and thus has a larger look-ahead than Q-Learning. In nondeterministic domains,
Value-Iteration assumes (like Q-Learning) that nature always chooses the successor states with some time-
invariant probability distribution that depends only on the current state and the executed action. Thus, nature
chooses successor states randomly according to given transition probabilities, and Value-Iteration attempts
to maximize the average total reward.

� � � 1 ' � �	! � denotes the transition probability that the system transitions
from state � to state � 1 when action ! is executed. If the transition probabilities are unknown, they have to be
learned explicitly. Consider an uninformed, memoryless, on-line variant of value-iteration with look-ahead
one and a greedy action-selection step that always chooses the action that maximizes the sum of the immediate
reward and the discounted average u-value of the successor state.

Value-Iteration (see Figure 2.27)
action-selection step (Line 3)

�
:= one-of arg max

� / ��� ��
�� � ��������� � � � (
 / �� � � ��� � � ����� � � ��� � ��� �
value-update step (Line 4) � ��� � :=

��������� � � � (
 / �� � � ��� � � ����� � � ��� � ���
Correctness and convergence results for value-iteration are given in [Barto et al., 1989].

In deterministic domains, undiscounted zero-initialized Value-Iteration with the action-penalty representation
is identical to zero-initialized LRTA* with the simplified value-update step. This makes it possible to derive
the following complexity result for Value-Iteration [Koenig and Simmons, 1995b]:

Undiscounted or discounted zero-initialized Value-Iteration with the action-penalty representation and dis-
counted one-initialized Value-Iteration with the goal-reward representation have a tight complexity of

� � & 2 �
action executions for reaching a goal state over all safely explorable, deterministic domains.

2.5.6.5 Reinforcement Learning in Probabilistic Domains

Reinforcement-learning methods cannot only be used in deterministic domains but also in nondeterministic
domains. We have mentioned complexity results about Q̂-Learning in nondeterministic domains, but have
not analyzed Q-Learning and Value-Iteration in such domains. Whereas Q̂-Learning attempts to maximize
the worst-case total reward, Q-learning and Value-Iteration attempt to maximize the average total reward –
this makes their analysis more difficult. Such an analysis would be interesting, however, since reinforcement-
learning methods are often applied to probabilistic domains. Although one can hope that the performance of
Q-Learning and Value-Iteration in deterministic domains is indicative of their performance in probabilistic
domains, extending our complexity results to probabilistic domains is future work. In the following, we
describe three problems that arise for Q-Learning and Value-Iteration in probabilistic domains that a formal
analysis needs to address:

First, in probabilistic domains, Q-Learning always has to learn the transition probabilities. It learns them
implicitly. Value-Iteration has to learn the transition probabilities if they are not given. It learns them

2.5. LRTA*-Type Real-Time Search Methods and Domain Properties 79

explicitly. For Q-Learning, the problem arises that the learning rate has to be smaller than one and each action
has to be executed a large number of times for its q-value to converge even if the u-values of all successor
states are already correct. Furthermore, the number of action executions required depends on the size of the
initial q-values. For Value-Iteration, the problem arises that each action has to be sampled a large number of
times to estimate the probabilities reliably.

Second, in probabilistic domains, admissible u-values do not necessarily remain admissible for Q-Learning.
Neither are they guaranteed to remain admissible for Value-Iteration if the transition probabilities have to be
learned. This is due to the fact that the transition probabilities are unknown and only (implicit or explicit)
estimates are available. Although the difference between a transition probability and its estimate approaches
zero with probability one as the sample size gets larger (provided that a reasonable estimation method is used),
it can be large initially. As a consequence, it can happen that the u-value of a state � drops below its negative
average goal distance � � � ��� even if the u-values of all of its successor states are admissible. As an example,
consider undiscounted zero-initialized Value-Iteration with the action-penalty representation and assume that
the transition frequencies are used to estimate the transition probabilities (maximum-likelihood estimation).
Assume further that there is a state � in which only one action ! can be executed. Executing this action results
in state � 1 with probability 0.5 and in state � 2 with the complementary probability, where � � � � 1 ��� � � � � 2 � .
If � � � 1 � � 4 � � � � 1 � , � � � 2 � � 4 � � � � 2 � , and executing action ! in state � has resulted & times in successor
state � 1 and never in successor state � 2, then � � ��� � 4 1 5 � � � 1 � � 4 1 4 � � � � 1 � 4 1 4 1 � 2 � � � � 1 � 4
1 � 2� � � � 2 � � 4 � � � ��� . Thus, � � ��� 4 � � � ��� , and state � looks worse than it actually is. A similar
problem occurs for Q-Learning, where the q-value �

� �,�	!#� approaches 4 1 4!� � � � 1 � and can get smaller than
4 1 4 1 � 2 � � � � 1 � 4 1 � 2� � � � 2 � . In this case, again, � � ��� � �

� �,�	!#� 4 1 4 1 � 2 � � � � 1 � 4 1 � 2 � � � � 2 � � 4 � � � ��� .
One consequence of this problem is that the action-selection step of most reinforcement-learning methods can
no longer be greedy in probabilistic domains. Greedy action selection for Q-Learning, for example, always
chooses the action with the maximal q-value in the current state. In deterministic domains, this behavior
always exploits but at the same time explores sufficiently often, where exploitation means to behave optimally
according to the current knowledge and exploration means to acquire new knowledge. In probabilistic
domains, however, greedy action selection might force Q-Learning to avoid executing actions whose q-values
make them look worse than they actually are. This prevents Q-Learning from updating (and thus correcting)
these q-values. Kaelbling [Kaelbling, 1990] calls this phenomenon “sticking.” Consequently, there is a
potential trade-off between exploitation and exploration in probabilistic domains. Exploration consumes
time, but ensures that all q-values get updated, which allows reinforcement-learning methods to find an
optimal policy and then solve the tasks faster. A traditional strategy, then, is to exploit most of the time
and to explore only from time to time. Thrun [Thrun, 1992b] summarizes methods for dealing with the
exploration-exploitation conflict in probabilistic domains.

Third, in probabilistic domains, optimal policies can have cycles (that is, the same state is visited more
than once with positive probability). This has two consequences if the optimal policy is cyclic, both for
Q-Learning and Value-Iteration, even if Value-Iteration knows the transition probabilities: First, the q-values
or u-values never converge completely. Second, the number of action executions that are needed on average
to reach a goal state can be exponential in & even for an agent that acts optimally [Thrun, 1992b]. In this
case, the average-case performance of any reinforcement-learning method is at least exponential in & and one
has to investigate ways to separate the inherent complexity of a given reinforcement-learning task from the
performance of individual reinforcement-learning methods.

2.5.6.6 Summary of Results on Reinforcement Learning

We studied the behavior of uninformed reinforcement-learning methods that solve goal-directed
reinforcement-learning tasks until they reach a goal state for the first time. When modeling goal-directed
reinforcement-learning tasks, one has to decide on an appropriate representation, which consists of both the
immediate rewards and the initial q-values. We showed that the choice of representation can have a large
impact on the performance of Q-Learning and related reinforcement-learning methods.

80 Chapter 2. Acting with Agent-Centered Search

We considered two reward structures that have been used in the experimental literature to learn shortest
paths to a goal state, the goal-reward representation and the action-penalty representation. The goal-reward
representation rewards an agent for stopping in a goal state, but does not reward or penalize it for executing
actions. The action-penalty representation, on the other hand, penalizes the agent for every action that it
executes, but does not reward or penalize it for stopping in a goal state. Zero-initialized Q-Learning with the
goal-reward representation provides only sparse rewards. Even in deterministic domains, it performs a random
walk at best. Although random walks always reach a goal state with probability one and finite average-case
performance over all reasonable domains, the number of action executions that they need on average to
reach a goal state can be exponential in the number of states. Furthermore, speed-up methods such as the
action-replay method do not improve the performance of Q-Learning in this case. This provides motivation
for making the reward structure dense. Since the value-update step of Q-Learning updates the q-values using
both the immediate rewards and the q-values of the successor states, this can be achieved by changing the
reward structure or initializing the q-values differently. We showed that both undiscounted and discounted
zero-initialized Q-Learning with the action-penalty representation and discounted one-initialized Q-Learning
with the goal-reward representation are tractable. For these representations, uninformed Q-Learning has a
tight complexity that is cubic in the number of states over all reasonable, deterministic domains. Different
from the intractable case, these two representations initialize the q-values optimistically, that is, the initial
q-value �

� � �"!#� of every nongoal state is at least as large as the total (discounted or undiscounted) reward that
Q-Learning achieves if it starts in state � , executes action ! , and then acts optimally.

To summarize, reinforcement-learning methods are tractable for suitable representations. The complexity
results can help experimental researchers to choose representations for reinforcement-learning methods that
enable them to solve reinforcement-learning tasks efficiently. Even for reinforcement-learning tasks that
cannot be reformulated as goal-directed reinforcement-learning tasks in deterministic domains, they suggest
that the performance can be improved by making the reward structure dense, for example by increasing the
initial q-values sufficiently. Some of our results have also been used to study extensions of reinforcement-
learning methods. For example, they are used by Lin [Lin, 1993] to study “Hierarchical Q-Learning,” that he
applied to learning robot control.

2.6 Extensions

Throughout this chapter, we measured distances and thus the performance of LRTA*-type real-time search
methods in action executions, which is reasonable if every action has the same immediate cost, for example,
can be executed in about the same amount of time. Sometimes, however, actions have different cost. We
presented complexity results for the special case where all of the immediate rewards are uniformly minus one,
but the LRTA*-type real-time search methods and their complexity results can be generalized to arbitrary
strictly negative reward structures, including those with nonuniform immediate rewards [Koenig and Simmons,
1992]. For example, the following table presents the action-selection and simplified value-update steps of
Min-LRTA* if the immediate rewards are nonuniform. Notice the similarity to the reinforcement-learning
methods in Section 2.5.6, which we stated already for nonuniform immediate rewards.

Min-LRTA* (see Figure 2.27)
action-selection step (Line 3)

�
:= one-of arg max

� / �*� ��
�� � ������� � �
value-update step (Line 4)

� ����� � �
:=

��������� � � � ��� � ��� ������� ���
 ��������� � � max
� / ��� ��
������$��
�� �#����� ��� ����� ����� � � ��� � �

Throughout this chapter, we also assumed that every action execution in a nongoal state necessarily results in
a state change. If we drop this assumption, then, different from Section 2.3.2, Min-Max LRTA* with arbitrary
look-ahead (Figure 2.10) and local search space

� �
� � . �*3 no longer behaves identically to Min-Max LRTA*
with look-ahead one (Figure 2.9). Furthermore, different from Section 2.5.2.2, Min-Max LRTA* with look-
ahead one in the transformed domain no longer behaves identically to Min-LRTA* in the original domain.

2.7. Future Work 81

This affects the complexity results about Min-Max LRTA* with look-ahead one and Min-LRTA*, but not the
big-O versions of their complexity results. For example, the complexity of zero-initialized Min-Max LRTA*
with look-ahead one doubles over all safely explorable domains if the requirement is dropped that every action
execution in a nongoal state necessarily results in a state change [Koenig and Simmons, 1995b]. Further
complexity results about Min-Max LRTA* with look-ahead one and Min-LRTA* without the assumption that
every action execution in a nongoal state necessarily results in a state change are presented in [Koenig and
Simmons, 1992] and [Koenig and Simmons, 1993a]. The complexity results about Min-Max LRTA* with
arbitrary look-ahead (including

� �
� � . �*3) remain unaffected because, different from Min-Max LRTA* with
look-ahead one, Min-Max LRTA* with arbitrary look-ahead and initially admissible u-values executes only
actions in safely explorable domains whose execution necessarily results in a state change.

2.7 Future Work

In this chapter, we provided first steps towards understanding why LRTA*-type real-time search methods
work, when they work, and how well they work. More work is required in this direction, especially since we
showed that LRTA*-type real-time search methods and traditional search methods differ in their properties.
Both more theoretical work and thorough experimental work are needed.

First, it is important to study the performance of LRTA*-type real-time search methods not only for traditional
search domains from artificial intelligence (such as sliding-tile puzzles and grid-worlds) but also for more
realistic applications. This avoids the problem that the domain properties of the test-beds might not be
representative of the domain properties of the domains of interest. We illustrated the performance of LRTA*-
type real-time search methods on robot-navigation tasks in mazes. Other interesting applications of LRTA*-
type real-time search methods include the exploration of unknown environments with robots [Koenig and
Smirnov, 1996], package routing in computer networks [Littman and Boyan, 1993], and on-line scheduling
[Pemberton, 1995], such as air traffic control and factory scheduling.

Second, it is important to study in more detail how the look-ahead, the heuristic knowledge of a domain, and
domain properties influence the performance of LRTA*-type real-time search methods.

Third, it is important to study the properties of other existing LRTA*-type real-time search methods, such
as RTA* [Korf, 1987], a variant of LRTA*, and eventually characterize the properties of whole classes of
LRTA*-type real-time search methods.

Fourth, it is important to develop new LRTA*-type real-time search methods, including LRTA*-type real-
time search methods that can guarantee that their memory requirements are smaller than the number of states
and LRTA*-type real-time search methods that are able to use their problem-solving experience to improve
their parameters. For example, while Min-Max LRTA* works with arbitrary look-aheads, it is important to
investigate how it can adapt its look-ahead dynamically to different domains so that it minimizes the sum of
planning and plan execution time.

Fifth, it is important to study how LRTA*-type real-time search methods relate to other search methods that
interleave planning and plan execution. This would allow the transfer of ideas and results across different
areas of artificial intelligence, robotics, and theoretical computer science. We investigated the relationship
of LRTA*-type real-time search methods and reinforcement-learning methods. Other methods that are
similar to LRTA*-type real-time search methods include assumptive planning [Stentz, 1995, Nourbakhsh,
1996], deliberation scheduling (including any-time methods [Boddy and Dean, 1989]), sensor-based planning
[Choset and Burdick, 1994], plan-envelope methods [Dean et al., 1995], and various robot exploration and
localization methods.

82 Chapter 2. Acting with Agent-Centered Search

2.8 Conclusions

This chapter studied LRTA*-type real-time search methods. These are search methods that interleave planning
and plan execution by searching forward from the current state of the agent and associate information with
the states. They had been used as an alternative to traditional search methods and shown to speed up problem
solving in deterministic domains. We illustrated that they can also be used to resolve uncertainty caused
by nondeterminism and speed up problem solving in nondeterministic domains. To this end, we developed
Min-Max LRTA*, an efficient LRTA*-type real-time search method for nondeterministic domains. Min-Max
LRTA* allows for fine-grained control over how much planning to do between plan executions, uses heuristic
knowledge to guide planning, and improves its performance over time as it solves similar planning tasks,
until its performance is at least worst-case optimal. Since Min-Max LRTA* partially relies on observing the
actual successor states of action executions, it does not plan for all possible successor states and thus can still
have computational advantages even over several search episodes compared to a complete minimax search if
nature is not as malicious as a minimax search assumes and some successor states do not occur in practice.

We also studied when Min-Max LRTA* and related real-time search methods work, why they work, and
how well they work. We derived an upper bound on the complexity of Min-Max LRTA* and showed that
it is tight for uninformed and fully informed Min-Max LRTA* with look-ahead one. We also showed that
the performance of Min-Max LRTA* can decline as Min-Max LRTA* becomes better informed, although
it improves eventually. We then studied uninformed LRTA*-type real-time search methods with minimal
look-ahead in deterministic domains. These LRTA*-type real-time search methods do not even project one
action execution ahead. We showed that Eulerian domains (a superset of undirected domains) are easy to
search with a variety of these LRTA*-type real-time search methods, even those that can be intractable, and
introduced reset state spaces, quicksand state spaces, and “complex state spaces” that are not as easy to
search. We also introduced the product of the number of actions (or states) and the maximal goal distance as
a good (but not perfect) measure of task size that determines how easy it is to search domains with a variety
of LRTA*-type real-time search methods. These results can help to distinguish easy LRTA*-type real-time
search tasks from hard ones, which can help experimental researchers to decide when to use LRTA*-type
real-time search methods. For example, sliding-tile puzzles are undirected (and thus Eulerian). They also
have a small number of actions and a small maximal goal distance (relative to the number of states). This
makes them easy to solve with a variety of LRTA*-type real-time search methods. The results can also be
used to choose test-beds for experimenting with LRTA*-type real-time search methods, reporting their results,
and interpreting the results reported by others, and to choose representations of reinforcement-learning tasks
that allow them to be solved quickly by reinforcement-learning methods.

Chapter 3

Acting with POMDPs

20cm

Office-delivery robots have to navigate reliably despite a substantial amount of uncertainty. In Chapter 2,
we studied goal-directed robot navigation in mazes. The robot had perfect actuators, perfect sensors, and
perfect knowledge of the maze, but was uncertain about its start pose. However, office environments are more
complex than mazes and thus office-delivery robots have to deal with more uncertainty, including uncertainty
in actuation, uncertainty in sensing and sensor data interpretation, uncertainty in the start pose of the robot, and
uncertainty about distances in the environment. A robot has to reach its destinations despite this uncertainty.
This problem could be solved by either adapting the environment to the robot or the robot to the environment.
Adapting the environment to the robot can, for example, be accomplished by placing beacons or bar codes
in the environment. Adapting the robot to the environment can be done by placing a large number of very
sophisticated sensors on-board the robot. Our goal is, however, to achieve reliable robot navigation in an
inexpensive way without changing the environment.

Our approach to this problem is to use probabilities to model the uncertainty explicitly. Thus, while the method
of Chapter 2 (Min-Max LRTA*) assumed that probabilities were not available, used sets of poses to maintain
a belief in the current robot pose, and attempted to minimize the worst-case plan-execution cost, the method
in this chapter assumes that probabilities are available (or can be learned), uses probability distributions over
poses to maintain a belief in the current robot pose, and attempts to minimize the average plan-execution cost.

We use partially observable Markov decision process models (POMDPs) from operations research. POMDPs
are finite state automata with transition and state uncertainty that can account for all of the navigation
uncertainty mentioned above. We show how to use them to build a whole architecture for robot navigation
that provides a uniform framework with an established theoretical foundation for pose estimation, path
planning (including planning when, where, and what to sense), control during navigation, and learning. In
addition, both the POMDP and the generated information (such as the pose information and the plans) can be
utilized by higher-level planning modules, such as task planners.

Our POMDP-based navigation architecture uses a compiler that automatically produces POMDPs from
topological maps (graphs of nodes and edges that specify landmarks, such as corridor junctions, and how
they connect), actuator and sensor models, and uncertain knowledge of the office environment. The resulting
POMDPs seamlessly integrate topological and distance information, and enable the robot to utilize as much,
or as little, distance information as is available. Pose estimation, that is, the process of determining the
position and orientation of the robot, can utilize all available sensor information, including landmarks sensed
and distance traveled, deals easily with sensor noise and distance uncertainty, and deteriorates gracefully with
the quality of the models. Finally, learning methods can be used to improve the models on-line, that is, while
the robot is carrying out its office-navigation tasks.

We use the POMDP-based navigation architecture on a daily basis on Xavier [Simmons et al., 1997]. Our
experiments show that the architecture leads to robust long-term autonomous navigation in office environments

83

84 Chapter 3. Acting with POMDPs

(with corridors, foyers, and rooms), significantly outperforming the landmark-based navigation technique that
was used previously [Simmons, 1994a].

To summarize, we study how to act robustly despite uncertainty. Our main contribution is the following:
We show how to model the problem as a POMDP from operations research. We develop a POMDP-based
navigation architecture that performs pose estimation,planning, acting, and learning. This includes developing
efficient methods for POMDP planning and learning that have small memory, running-time, and training-data
requirements. Our work does not only result in a new robot navigation architecture but also a novel application
area for POMDPs.

We proceed as follows: Section 3.1 contrasts our POMDP-based navigation architecture with more traditional
navigation approaches. Section 3.2 discusses POMDPs and methods for pose estimation, planning, and
learning in the abstract. We then apply and extend these models and methods in Section 3.3. In particu-
lar, Section 3.3.3 discusses planning and acting for the office-navigation task, and Section 3.3.4 discusses
learning the corridor lengths and fine-tuning the actuator and sensor models. These two sections also contain
experimental results. Finally, Section 3.4 lists related work, Section 3.5 describes possible extensions of the
POMDP-based navigation architecture, and Section 3.6 summarizes our conclusions.

3.1 Traditional Approaches

How to get a robot from its current pose to a given goal pose is a central problem in robotics that has, of
course, been studied before [Borenstein et al., 1996]. Two common approaches for solving this problem are
metric-based and landmark-based navigation.

Metric-based navigation relies on metric maps of the environment, resulting in navigation plans such as:
move forward ten meters, turn right ninety degrees, move forward another ten meters, and stop. Metric-based
navigation approaches take advantage of motion reports (information about the motion of the robot), such as
the translation and rotation derived from the odometer (wheel encoders). They are, however, vulnerable to
inaccuracies in both the map making (all distances have to be known precisely) and dead-reckoning abilities
of the robot. Such approaches are often used where the robot has good absolute pose estimates, such as for
outdoor robots using the Global Positioning System (GPS).

Landmark-based navigation, on the other hand, relies on topological maps whose nodes correspond to
landmarks (locally distinctive places), such as junctions between corridors, doorways, or foyers. Map edges
indicate how the landmarks connect and how the robot should navigate between them. A typical landmark-
based navigation plan might be to move forward to the second corridor on the right, turn into that corridor,
move to its end, and stop. Landmark-based approaches are attractive because they take advantage of sensor
reports (information about the sensed features of the environment), such as data from ultrasonic sensors that
indicate whether the robot is in a corridor junction. Thus, they do not depend on geometric accuracy. They
suffer, however, from problems of noisy sensors (sensors occasionally not detecting landmarks) as well as
problems of sensor aliasing (sensors not being able to distinguishbetween similar landmarks, such as different
doorways of the same size) [Kuipers and Byun, 1988, Kortenkamp and Weymouth, 1994].

To maximize reliability in office navigation, it makes sense to utilize all information that is available to the
robot (that is, both motion and sensor reports). While some landmark-based navigation methods use motion
reports, mostly to resolve topological ambiguities, and some metric-based navigation methods use sensor
reports to continuously realign the robot with the map [Kuipers and Byun, 1988, Mataric, 1990], the two
sources of information are treated differently. We want a method that seamlessly integrates both sources of
information, and is amenable to adding new sources of information such as apriori knowledge about which
doorways are likely to be open or closed. We also do not want to assume that the distances are known
precisely.

Another problem with both metric-based and landmark-based navigation approaches is that they typically
represent only a single pose that is believed to be the current pose of the robot. If this pose proves to
be incorrect, the robot is lost and has to re-localize itself, an expensive operation. This can be avoided

3.2. POMDPs 85

Figure 3.1: Position Estimation with Gaussians

by maintaining a set of possible poses (Section 2.4.1). While the robot rarely knows exactly where it is,
it always has some belief as to what its true pose is, and thus is never completely lost. If the robot can
associate probabilities with the poses and explicitly represent the various forms of uncertainty present in the
office-navigation task, then it can maintain a probability distribution over all possible poses that represents
the belief in its current pose, called the pose distribution. It can use Bayes rule to update this pose distribution
after each motion and sensor report.

There are two ways of representing the pose distribution. The robot can either discretize the pose distributions
or not. Discretizing them allows the robot to represent arbitrary pose distributions but incurs a discretization
error. Consequently, there is a tradeoff between the precision and expressiveness of the models. We contend
that, for office navigation, the added expressiveness of being able to model arbitrary pose distributions
outweighs the loss in precision from discretization, especially since a very fine-grained discretization can be
used. Even if the robot uses a coarse-grained discretization (as our robot does), it can use low-level control
routines to overcome the discretization problem. For example, our robot uses control routines to keep itself
centered in corridors and aligned along the main corridor axis. Similarly, our robot uses vision and a neural
network to align itself exactly with doorways when it has reached its destination.

Previously reported navigation methods that maintain pose distributions often use Kalman filters [Kalman,
1960], that model only restricted pose distributions in continuous pose space. Examples include [Smith and
Cheeseman, 1986, Smith et al., 1990, Kosaka and Kak, 1992, Leonard et al., 1992, Rencken, 1995]. In the
simplest case, the pose distributions are modeled with Gaussians. While Gaussians are efficient to encode
and update, they are not ideally suited for office navigation. In particular, due to sensor aliasing, the robot
often wants to encode the belief that it might be in one of a number of noncontiguous (but similar looking)
locations. Figure 3.1 illustrates this problem. A robot does not know where it is but sees a doorway to its left.
Thus, discounting sensor uncertainty, it has to be at either of the two doorways but does not know which one.
Figure 3.1 (left) shows the resulting position distribution. If the robot were forced to fit a single (unimodal)
Gaussian to this multi-modal probability distribution, however, the Gaussian would end up being between the
two doorways, due to symmetry, as depicted in Figure 3.1 (right). Thus, most of the probability mass would
be far removed from the doorways – precisely the wrong result. Although Kalman filters can be used to
represent more complex probability distributions than Gaussians (such as mixtures of Gaussians, at the cost
of having to estimate the number of Gaussians and increasing the complexity), they cannot be used to model
arbitrary probability distributions [Cox, 1994]. This problem diminishes their utility for office navigation.

Like Kalman filters, partially observable Markov decision process models (POMDPs) utilize motion and
sensor reports to update the pose distribution and seamlessly integrate topological information and uncertain
distance information. Different from Kalman filters, however, POMDPs discretize the possible poses, and
thus allow the robot to represent arbitrary pose distributions. POMDPs are similar to temporal Bayesian
networks [Dean et al., 1990] but do not suffer from the problem that the size of the models grows linearly with
the amount of the temporal look-ahead. Thus, their use for planning is not limited to rather small look-aheads.

3.2 POMDPs

This section provides a general, high-level overview of partially observable Markov decision process models
(POMDPs) and common methods that operate on them. These models and methods form the basis of our
POMDP-based navigation architecture, which is described in Section 3.3.

86 Chapter 3. Acting with POMDPs

POMDPs consist of a finite set of states
�

, a finite set of observations
�

, and an initial state distribution �

(a probability distribution over
�

), where �
� ��� denotes the probability that the initial state of the POMDP

process is � . Each state � � �
has a finite set of actions

��� ��� that can be executed in � . The POMDP
further consists of a transition function

�
(a function from

�
�
�

to probability distributions over
�

), where� � � 1 ' � �"!#� denotes the transition probability that the system transitions from state � to state � 1 when action !
is executed, an observation function � (a function from

�
to probability distributions over

�
), where �

� � ' ���
denotes the observation probability of making observation � in state � , and an immediate reward function � (a
function from

�
�
�

to the real numbers), where �
� � �	! � denotes the finite immediate reward resulting from

the execution of action ! in state � . The immediate rewards accumulate over time. Notice that the transition
probabilities depend only on the current state and the executed action but not, for example, on how the current
state was reached. Similarly, the observation probabilities depend only on the current state.

A POMDP process is a stream of state, observation, action, immediate reward � quadruples: The POMDP
process is always in exactly one state and makes state transitions at discrete time steps. The initial state of the
POMDP process is drawn according to the probabilities �

� ��� . Thus,
� � � 1

� ��� � �
� ��� for

� � 1. Assume
that at time

�
, the POMDP process is in state ��� � �

. Then, an observation � � � � is generated according to
the probabilities

� � � � � � � � �
� � ' ��� � . Next, a decision maker chooses an action !#� from

��� � � � for execution.
This results in an immediate reward ��� � �

� �����	! � � and the POMDP process changing state. The successor
state � �
	 1 � �

is selected according to the probabilities
� � � �
	 1

� ��� � � � �#' �����	! � � . This process repeats
forever.

An observer of the POMDP process is someone who knows the specification of the POMDP (as stated above)
and observes the actions ! 1 � � ��!�� � 1 (short: ! 1 � � � � � 1) and observations � 1 � � � ��� (short: � 1 � � � �), but not the
current states � 1 � � ����� (short: � 1 � � � �) or immediate rewards � 1 � � � ��� � 1 (short: � 1 � � � � � 1). A decision maker
is an observer who also determines which actions to execute. Consequently, observers and decision makers
usually cannot be sure exactly which state the POMDP process is in. This is the main difference between
a POMDP and an MDP (completely observable Markov decision process model). Observers and decision
makers of MDPs always know exactly which state the Markov process is in. They are still not able to predict
the states that result from action executions, since actions can have nondeterministic effects.

Notice that the immediate rewards accumulate over time but cannot be observed by the observers and decision
makers. Thus, the observers and decision makers cannot deduce any information from the rewards about
which state the POMDP process is in. This is to cleanly distinguish between observations and rewards.
Observations provide information about the current state of the POMDP process, whereas rewards are used to
evaluate the behavior of decision makers. Despite this fact, we say that the immediate rewards are “received”
by the decision makers.

Properties of POMDPs have been studied extensively in operations research [Monahan, 1982, Lovejoy, 1991,
White, 1991]. In artificial intelligence and robotics, POMDPs have been applied to speech recognition
[Huang et al., 1990], handwriting recognition [Bunke et al., 1995], and the interpretation of tele-operation
commands [Hannaford and Lee, 1991, Yang et al., 1994]. POMDPs have also gained popularity in the
artificial intelligence community as a formal model for planning under uncertainty [Koenig, 1991, Cassandra
et al., 1994]. Consequently, standard methods are available to solve tasks that are typically encountered by
observers and decision makers. In the following, we describe some of these methods.

3.2.1 State Estimation: Determining the Current State

Assume that an observer wants to determine the current state of a POMDP process. This corresponds to
estimating where the robot currently is. Observers do not have access to this information, but can maintain
a belief in the form of a state distribution (a probability distribution � over

�
). We write �

� ��� to denote the
probability that the current state is � . These values can be computed incrementally with Bayes rule, using the
knowledge about which actions have been executed and which observations resulted. To begin, the probability
of the initial state of the POMDP process is �

� ��� � �
� ��� . Subsequently, if the current state distribution is

3.2. POMDPs 87

� � � � � � , the state distribution after the execution of action ! is � � � � � :

� � �
� ��� ��
 1� � ����� �
 / ���� ��������
 / � �
� ��� � � � ��� � � � � � � ��� � ��� � (3.1)

where ����!�� � is a normalization constant that ensures that (�*),+ � � � ��� � ��� � 1. This normalization is necessary
only if action ! is not defined in every state because only then (�*),+ (� /),+ � ��)*687 � / 9 : � � � ' � 1 �	!#� � � � � � � � � 1 �<; �� 1.

Updating the state distribution after an observation is even simpler. If the current state distribution is � � � � � � ,
then the state distribution after making observation � is � � � � � :

� � �
� ��� ��
 1� � ����� � � � � � � � � � � � ��� � � (3.2)

where ��� !�� � , again, is a normalization constant that ensures that (�*),+ � � � ��� � ��� � 1. This normalization is
always necessary.

3.2.2 POMDP Planning: Determining which Actions to Execute

Assume that a decision maker wants to select actions so as to maximize the average total reward over an infinite
planning horizon, which is � � (�� � 1 : � ��� 1 � � ;�� , where � � �

0 � 1; is the discount factor. This corresponds to
navigating the robot to its destination in ways that minimize its average travel time. The discount factor
specifies the relative value of an immediate reward received after

�
action executions compared to the same

reward received one action execution earlier. If � � 1, the total reward is called undiscounted otherwise it is
called discounted. To simplify mathematics, we assume here that � 1, because this ensures that the average
total reward is finite, no matter which actions are chosen (see also Section 4.6.4).

Consider an MDP (completely observable Markov decision process model). A fundamental result of op-
erations research is that, in this case, there always exists a mapping from states to actions (also known as
“stationary, deterministic policy,” short: policy) so that the decision maker maximizes the average total reward
by always executing the action that the policy assigns to the current state of the Markov process, independent
of the start state of the Markov process. Such an optimal policy can be determined by solving the following
system of ' � ' equations for the variables � � ��� , that is known as Bellman’s Equation [Bellman, 1957]. Its
solution is finite and unique if � 1:

	 ��� �
 max��������
�� � ������� � � � � �
 / �� � � ���
� � ����� � 	 ��� � ��� � for all

� � � �
(3.3)

� � ��� is the average total reward if the Markov process starts in state � and the decision maker acts optimally.
The optimal action to execute in state � is ! � ��� � one-of arg max ��)*687 �#9 : � � � �"!#� 5 � (� /)�+ � � � 1 ' � �"!#�
� � � 1 �!; .
The system of equations can be solved in polynomial time using dynamic programming methods [Littman et
al., 1995b] such as linear programming. Other popular dynamic programming techniques are value-iteration
[Bellman, 1957], policy-iteration [Howard, 1964], and Q-learning (Section 2.5.6). As an example, we describe
value-iteration:

1. Set 	 1
��� �

:= 0 for all
� � �

. Set
�

:= 1.

2. Set 	 ��� 1
��� �

:= max
����� ��
�� � ��������� � � � (
 / �� � � ��� � � ����� � 	 � ��� � ��� � for all

� � �
. Set

�
:=

� � 1.

3. Go to 2.

88 Chapter 3. Acting with POMDPs

action a
imm. reward 0

action a
imm. reward 0

probability 1.0

action a
imm. reward 0
probability 1.0

action b
imm. reward 0
probability 1.0

action b
imm. reward 0
probability 1.0

action b
imm. reward 1
probability 1.0

probability 0.5

probability 0.5

initial
probability

0.5

initial
probability

0.5

initial
probability

0.0

observation o
probability 1.0

observation o
probability 1.0

observation o
probability 1.0

Figure 3.2: A POMDP Planning Problem

Here we leave the termination criterion unspecified. Then, for all � � �
, � � ��� � lim ��� � � � � ��� . See

[Bertsekas, 1987] for a good review of MDPs.

The POMDP planning problem can be transformed into a planning problem for an MDP. First, since the
decision maker can never be sure which state the POMDP process is in, the set of executable actions

�
must

be the same for every state � , that is,
��� ��� � �

for all � � �
. The corresponding MDP can then be constructed

as follows: Its states are the state distributions � (belief states), with the initial state being � � with probability
(�),+ : � � � ' ��� � � ���<; for all �%� � , where � � � ��� � �

� � ' ��� � � ��� � (�),+ : � � � ' ��� � � ���!; for all ��� �
. Its actions are

the same as the actions of the POMDP. The execution of action ! in state � results in an immediate reward of
(�),+ � � ����� � �,�	!#� and the Markov process changing state. There are at most ' � ' possible successor states,
one for each ��� � . The successor state �

1
� is characterized by:

� �� ��� �
 � � � � � � (
 / �� � � ��� � � � ��� � � ��� � ���
(
��� � � � � � � � (
 / �� � � ��� � � � ��� � � ��� � ��� � for all

� � � �

The transition probabilities are:

� � � �� � � ��� �
 �
��� � � � � � � � �
 / �� � � ���
� � � ��� � � ��� � ��� � �

Any policy that is optimal for this MDP is also optimal for the POMDP. This means that for POMDPs, there
always exists a mapping from state distributions to actions (also known as stationary, deterministic POMDP
policy, short: POMDP policy) that maximizes the average total reward (under reasonable assumptions)
[Sondik, 1978].1 The state distribution summarizes everything known about the current state – it is a
sufficient statistic for the decision maker. In other words, future decisions cannot be improved by knowing
how the current state distribution was reached or how much reward has already been received. This is called
the Markov property.

The POMDP policy can be precomputed. During action selection, the decision maker only needs to calculate
the current state distribution � (as shown in Section 3.2.1) and can then look up which action to execute.
Unfortunately, the number of belief states � is infinite (even uncountable). This has two consequences. First,

1In general, this is not true even if the total reward is guaranteed to be finite. Consider, for example, the POMDP shown in Figure
3.2. The total reward of any POMDP process never exceeds one for this POMDP. However, the average total undiscounted reward of
any action sequence can be increased by preceding its execution with the execution of either action � or

�
. Thus, there does not exist an

optimal POMDP policy although it is possible to get arbitrarily close to the maximal total reward.

3.2. POMDPs 89

determine a
mapping from state distributions to actions

state distribution calculation (or table look-up)

(close to) optimal action

Optimal POMDP Planning

(POMDP policy)

determine a
mapping from states to actions

state distribution calculation

suboptimal action

off-line: a lot faster

on-line: a bit slower

interface off-line/on-line: less memory intensive

Greedy POMDP Planning

(policy)

Figure 3.3: POMDP Planning and Acting: Comparing Optimal and Greedy Methods

the optimal policy cannot be stored in a table. In fact, most likely it is not possible to have an efficient on-line
implementation of an optimal policy, even if an arbitrary amount of precomputation is allowed [Papadimitriou
and Tsitsiklis, 1987]. Second, the MDP is infinite, and an optimal policy cannot be found efficiently for the
MDP. In fact, the POMDP planning problem is PSPACE-complete in general [Papadimitriou and Tsitsiklis,
1987]. However, there are POMDP planning methods that trade off solution quality for speed although they
usually do not provide quality guarantees [Littman et al., 1995a, Boutilier and Poole, 1996, Wiering and
Schmidhuber, 1996, Cassandra, 1997, Hauskrecht, 1997]. The SPOVA-RL method [Parr and Russell, 1995],
for example, can determine approximate policies for POMDPs with about a hundred states in a reasonable
amount of time by approximating the values � � � � with a simple function + � � � . We anticipate further
performance improvements since POMDP planning methods are the object of current research [Littman,
1996] and researchers are starting to investigate, for example, how to exploit the restricted structure of some
POMDPs [Boutilier et al., 1995a].

We describe here three greedy POMDP planning methods that can find policies for large POMDPs fast, but
still yield reasonable office-navigation behavior. These three methods share the property that they pretend that
the POMDP is completely observable and, under this assumption, use Formula (3.3) to determine an optimal
policy. Then, they transform this policy into a POMDP policy (Figure 3.3). We call this transformation
completing the policy because the mapping ! from states to actions is completed to a mapping from state
distributions to actions. Given the current state distribution � , the methods greedily (that is, without search)
complete the policy as follows:

� The “Most Likely State” Strategy [Nourbakhsh et al., 1995] executes the action that is assigned to
the most likely state, that is, the action ! � one-of arg max �),+ � � ��� � .

� The “Voting” Strategy [Simmons and Koenig, 1995] executes the action that accumulates the highest
probability mass if each state votes for its action with a strength that corresponds to its probability, that
is, the action one-of arg max ��)*6 (�*)�+ � � 7 ��9�� � � � ��� .

� The “Completely Observable after the First Step” Strategy [Chrisman, 1992, Tenenberg et al., 1992]
executes the action that would be optimal if the POMDP became completely observable after the action
execution, that is, the action one-of arg max ��)*6 (�),+ : � � ��� � � � � �"!#� 5 � (� /)�+ : � � � 1 ' �,�	!#� � � � 1 �<;��!; . This
method allows one, for example, to choose the second best action if all states disagree on the best action
but agree on the second best action.

How well each of these greedy POMDP planning methods performs depends on properties of the POMDP.
Therefore, given an application, they should all be tried to see which one performs best.

3.2.3 POMDP Learning: Determining the POMDP from Observations

Assume that an observer wants to determine the POMDP that maximizes the probability of generating the
observations made for a given sequence of actions, that is,

� � � 1 � � � � ' ! 1 � � � � � 1 � . This POMDP is the one that

90 Chapter 3. Acting with POMDPs

best fits the data. In our application, this corresponds to fine-tuning the navigation model from experience,
including the actuator, sensor, and distance models. While there is no known technique for efficiently finding
a POMDP that best fits the data, there exist efficient methods that approximate the optimal POMDP. The
Baum-Welch method [Rabiner, 1986] is one such method. This iterative EM (expectation-maximization)
method for learning POMDPs from observations does not require control of the POMDP process, and thus
can be used by an observer to learn the POMDP. It overcomes the problem that observers can never be sure
about the current state of the POMDP process, because they cannot observe the current state directly and
are not allowed to execute actions to reduce their uncertainty. Given an initial POMDP and an execution
trace (a sequence of actions and observations), the Baum-Welch method constructs a POMDP that better fits
the trace, in the sense that the generated POMDP has a larger probability

� � � 1 � � � � ' ! 1 � � � � � 1 � of generating
(or, synonymously, explaining) the observations for the given sequence of actions. This probability is also
called the fit. By repeating this procedure with the same execution trace and the improved POMDP, we get
a hill-climbing method that eventually converges to a POMDP which locally, but not necessarily globally,
best fits the execution trace. The Baum-Welch method could be terminated when the probabilities of the
POMDP have almost converged, for example, when the sum of the changes of all transition and observation
probabilities or the largest change of any probability (the span semi-norm) drops below a given threshold.
This termination criterion, however, can lead to over-fitting, that is, adapting to the noise in the execution
trace, which would result in a poor generalization performance. Standard machine learning methods can be
used to prevent over-fitting. One could, for example, split the execution trace into a training trace and a test
trace. The test trace would be used for cross-validation, stopping the Baum-Welch method when the fit of the
generated POMDPs starts to decrease on the test trace. This will usually happen before the probabilities have
converged.

The Baum-Welch method operates as follows: It first uses the initial POMDP and all information contained
in the training trace to calculate, for every point in time, a state distribution that represents the belief that
the POMDP process was in a certain state at a certain point in time, using Bayes rule. It then estimates an
improved POMDP from these probability distributions, using a maximum-likelihood method. The running
time of such an iteration is linear in the product of the length of the training trace and the size of the
POMDP. In the following, we describe a slight generalization of the Baum-Welch method that takes into
account that the decision maker can choose from several actions in every state and not every action has to
be defined in every state. In this case, the fit is the probability of generating the observations made for
the executed sequence of actions times the probability that the sequence of actions can be executed, that
is,
� � � 1 � � � � ' ! 1 � � � � � 1 � � � can execute ! 1 � � � � � 1 � .2 The Baum-Welch method estimates the improved POMDP in

three steps:

First Step: It uses a dynamic programming method (the forward-backward method) [Devijver,
1985] that applies Bayes rule repeatedly. The forward phase calculates scaling factors ����!�� � � �
� � ����' � 1 � � � ��� 1 �	! 1 � � � ��� 1 � � � can execute ! ��' � 1 � � � ��� 1 �"! 1 � � � ��� 2 � and alpha values � � � ��� � � � � � � �#' � 1 � � � �	�	! 1 � � � ��� 1 � ���� � � � � � � � 1 � � � ��' ! 1 � � � ��� 1 � � � can execute ! 1 � � � ��� 1 � � ��� � / � 1 � � � � ����!�� � � / for all � � �

and
� � 1 � � ��� .

A1. Set
� � �����

1 := (
��� � � � � 1

� � ��� ��� ���
.

A2. Set
�

1
��� �

:=
� � �

1

� � ��� ��� � � � � ����� 1 for all
� ���

.

A3. For
�

:= 1 to � �
1

(a) Set
� � ����� ���

1 := (
��� � � � � ��� 1

� � � (
 / ���� � � ������
 / � � � ��� � � � ��� � � � � ��� � ��� � .
(b) Set

� ���
1
��� �

:=
� � � � � �

1

� � � (
 / ���� � � ��� ��
 / � � � ��� � � � ��� � � � � ��� � ��� � � � � ����� ��� 1 for all
� � �

.

The backward phase of the forward-
backward method calculates beta values � � � ��� � ��� � � �
	 1 � � � � ' � � � �,�	! �

� � �
� � 1 � � � can execute ! �

� � �
� � 1 ' � � �

��� � � ��� � ���
� � �
� ' � 1 � � � ��� 1 �	! 1 � � � � � 1 � � � can execute ! ��� 1 � � � � � 1 ' � 1 � � � ��� 1 �"! 1 � � � ��� 2 � � � ��� � ���
	 1 � � � � ' � � �

2POMDPs in which not every action is defined in every state can be transformed into POMDPs in which every action is defined in
every state. This is done by adding the undefined actions to the states. All of the added actions lead with probability one to a new state
in which only one observation can be made. This observation is different from all existing observations. The Baum-Welch method can
then be applied to either the original or the transformed POMDP, with identical results.

3.2. POMDPs 91

� �"! �
� � �
� � 1 � � � can execute ! �

� � �
� � 1 ' � � � ��� � � � � / � �

� � �
� ����!�� � � / for all � � �

and
� � 1 � � ��� . Unlike the

other state distributions, (�*)�+ � � � ��� is not guaranteed to equal one:

A4. Set ��� ��� � := 1 � � � ����� � for all
� � �

.

A5. For
�

:= � �
1 downto 1

(a) Set � � ��� � :=
� (
 / �� � � ��� � � ����� � � � � � ��� 1

� � � � � ��� 1
��� � ��� � � � ����� � if

� � � � ��� �
0 otherwise

for all
� � �

.

Second Step: The Baum-Welch method calculates the gamma values � � � �,�	� 1 � � � � � � � � �	� �
	 1
�

� 1 ' � 1 � � � � �	! 1 � � � � � 1 � for all
� � 1 � � � � 4 1 and �,�	� 1 � �

with ! � � ��� ��� , and � � � ��� � � � � � � �#' � 1 � � � � �	! 1 � � � � � 1 �
for all

� � 1 � � ��� and � � �
.

A6. Set �
� ������� � �

:=
� � ��� � � ��� � � ����� � � � � � ���

1

� � � � � � � 1
��� � �

for all
�

1
����� � �

1 and
����� � � �

with
� � � � ��� �

.

A7. Set �
� ��� �

:=
� � ����� � � � ��� � � � ��� � for all

�

1
� � � � and

� � �
.

The alpha values � � are the same as the state distributions calculated in Section 3.2.1. They take all the
information in a prefix of the training trace into account and are calculated forward from

� � 1. They can
be calculated on the fly, because they are conditioned only on the part of the training trace that is available
at the current time

�
. The beta values ��� , in contrast, take all the information in a suffix of the training trace

into account and are calculated backward from
� � � . The gamma values � � combine the information from

the alpha and beta values and take all the information of the training trace into account. Thus, the gamma
values � � � ��� are more precise estimates of the same state distribution as the alpha values � � � ��� , because they
also utilize information (represented by the beta values) that became available only after time

�
. For example,

going forward three meters and seeing a wall ahead at time
�

provides strong evidence that at time
� 4 3

the robot was three meters away from the end of the corridor. The scaling factors are used to prevent the
numerators of the alpha and beta values from underflowing. They are also convenient for calculating the fit,
since

� � � 1 � � � � ' ! 1 � � � � � 1 � � � can execute ! 1 � � � � � 1 � � � � � � 1 ����!�� � � .
Third Step: The Baum-Welch method uses the following frequency-counting re-estimation formulae to
calculate the improved initial state distribution, transition probabilities, and observation probabilities. The
over-lined symbols represent the probabilities that constitute the improved POMDP:

A8. Set
�̄ ��� �

:= �1
��� �

.

A9. Set
�̄ ��� � � ����� �

:= (� �
1 � � � � � 1

� � � �2� � �
������� � � � (� �

1 � � � � � 1
� � � �2� � �

��� �
for all

����� � � �
and

� � � ��� �
.

A10. Set
�̄ � � � � �

:= (� �
1 � � � � � � � � � �

� ��� � � (� �
1 � � � � �

� ��� �
for all

� � �
and all

� � �
.

Figure 3.4 summarizes the calculations performed by the Baum-Welch method.

The Baum-Welch method can improve the transition and observation probabilities of a POMDP only for those
probabilities that are not either zero or one. This means that transitions that were impossible (or certain) in
the original POMDP remain so in the improved POMDP. Thus, the Baum-Welch method cannot change the
structure of a POMDP, namely, its number of states and how they connect. This property has the following
implications: First, if

� � � 1 ' � �"!#� � 0, then the values � � � �,�	� 1 � need not be computed for � �	� 1 � �
and� � 1 � � ��� 4 1. This saves computation time. Second, the transition and observation probabilities of the

initial POMDP have to be different from zero or one if one wants the Baum-Welch method to be able to
adjust them. (Probabilities close to zero or one are acceptable, though.) Third, transition and observation
probabilities originally different from zero or one can get indistinguishably close to these extremes during
learning (a precision problem). After that the Baum-Welch method cannot change them any longer. To
avoid this problem one often keeps the probabilities suggested by the re-estimation formulae away from the
extremes by keeping them within the interval :�� � 1 4 � ; for a small � � 0, provided that the initial probabilities
were different from zero or one.

92 Chapter 3. Acting with POMDPs

st
at

es
 s

2. Backward Phase: Calculating the Beta Values (Steps A4 and A5)

st
at

es
 s

1. Forward Phase: Calculating the Scaling Factors and Alpha Values (Steps A1 to A3)

st
at

es
 s

3. Calculating the Gamma(s,s’) Values (Step A6)

Gamma(s) Gamma(s)

..

Gamma(s,s’) Gamma(s,s’)

..

st
at

es
 s

4. Calculating the Gamma(s) Values (Step A7)

5. Calculating the Improved POMDP: Re-Estimating the Probabilities using the Gamma Values (Steps A8 to A10)

time t

st
at

es
 s

scaling factor and alpha values
beta values

T1

one time slice

Figure 3.4: An Overview of the Baum-Welch Method

3.2.4 Most Likely Path: Determining the State Sequence from Observations

Assume that an observer wants to determine the most likely sequence of states that the POMDP process
visited. This corresponds to determining the path that the robot most likely took to get to its destination.
While the techniques from Section 3.2.3 can determine the most likely state of the POMDP process at each
point in time, merely connecting these states might not result in a continuous path. The Viterbi method is a
dynamic programming method that computes the most likely path efficiently [Viterbi, 1967]. Its first three
steps are the same as Steps A1 to A3 (from page 90), except that summations on Lines A3(a) and A3(b) are
replaced by maximizations:

B1. Set
� � ����� �

1 := (
��� � � � � 1

� � ��� ��� ���
.

B2. Set
� �

1
��� �

:=
� � �

1

� � ��� ��� � � � � ����� �1 for all
� ���

.

B3. For
�

:= 1 to � �
1

(a) Set
� � ����� ����

1 := (
��� � � � � ��� 1

� � �
max

 / ���� � � ������
 / � � � ��� � � � ��� � � � �� ��� � ��� � .
(b) Set

� ����
1
��� �

:= � � � � ��� 1

� � �
max

 / ���� � � ������
 / � � � ��� � � � ��� � � � �� ��� � ��� � � � � ����� ���� 1 for all
� � �

.

B4. Set
�̄ � := max

��� � �� ��� � .
B5. For

�
:= � �

1 to 1

(a) Set
�̄ �

:= one-of arg max

 / ���� � � �*� ��
 / � � � � �̄ ��� 1

� � � ��� � � � �� ��� � ���
.

�̄ � is the state at time
�

that is part of the most likely state sequence.

3.3. The POMDP-Based Navigation Architecture 93

goal location

mapping from pose distributions to directives (“POMDP policy”)

directive selection

policy generation

POMDP

motion generation

desired directive

motor commandsraw sonar data raw odometer data

occupancy grid

sensor interpretation

sensor report motion report

pose estimation

current pose distribution

topological map
prior actuator model

prior sensor model
prior distance model

POMDP compilation

Navigation and Path Planning

Obstacle Avoidance

Real-Time Control

Figure 3.5: The POMDP-Based Navigation Architecture

3.3 The POMDP-Based Navigation Architecture

This section describes the architecture of an office-navigation system that applies the general models and
methods presented in Section 3.2 to the office-navigation task. The POMDP-based navigation architecture
implements the navigation layer of Xavier’s autonomous mobile-robot system for office delivery. The role of
the navigation layer is to send directives to the obstacle avoidance layer that move the robot towards its goal,
where a directive is either a change in desired heading or a “stop” command. The obstacle avoidance layer
then heads in that direction while using sensor data to avoid obstacles.

The POMDP-based navigation architecture consists of several components (Figure 3.5): The sensor-
interpretation component converts the continual motion of the robot into discrete motion reports (heading
changes and distance traveled) and produces sensor reports of high-level features observed in the environ-
ment, such as walls and openings of various sizes, observed in front of the robot and to its immediate left and
right. The pose-estimation component uses the motion and sensor reports to maintain a pose distribution by
updating the state distribution of the POMDP.

The policy-generation component generates a POMDP policy that maps pose distributions to directives.
Whenever the pose-estimation component generates a new pose distribution, the directive-selection component
uses the new pose distribution to index the pre-calculated POMDP policy and sends the resulting directive
(heading) to the obstacle avoidance layer, which then generates the robot motion commands. Thus, directive
selection is fast and very reactive to the motion and sensor reports. The directives are also fed back to the
sensor-interpretation component (not shown in Figure 3.5), since the interpretation of the raw odometer and
ultrasonic sensor data is heading dependent.

The initial POMDP is generated once for each environment by the POMDP-compilation component. It uses a
topological map and initial approximate actuator, sensor, and distance models. In Section 3.3.4, we will also
add an unsupervised, passive model-learning component to the POMDP-based navigation architecture. As
the robot gains more experience while it performs its office-navigation tasks, the model-learning component
uses extensions of the Baum-Welch method to automatically adapt the initial POMDP to the environment
of the robot, which improves the accuracy of the actuator and sensor models and reduces the uncertainty
about the distances in the environment. This increases the precision of the pose-estimation component, which
ultimately improves the office-navigation performance of the robot.

94 Chapter 3. Acting with POMDPs

In the following, we first describe the interface between the POMDP-based navigation architecture and the
obstacle avoidance layer, including the sensor-interpretation component. Then, we describe the POMDP
and the POMDP-compilation component in detail. Finally, we explain how the POMDP is used by the
pose-estimation, policy-generation, and directive-selection components and report on experiments performed
with the POMDP-based navigation architecture.

3.3.1 Interface to the Obstacle Avoidance Layer

An advantage of a layered robot system is that the navigation layer is insulated from many details of the
actuators, sensors, and the environment (such as stationary and moving obstacles). The navigation layer
itself provides further abstractions in the form of discrete motion and sensor reports that further insulate the
POMDP from details of the robot control.

These abstractions have the advantage of enabling us to discretize the possible poses of the robot into a
finite, relatively small number of states, and keep the number of possible motion and sensor reports small. In
particular, we discretize the location of the robot with a precision of one meter, and discretize its orientation
into the four compass directions. We have used other discretization granularities as well, but found this one
to be sufficient in our building. While more fine-grained discretizations yield more precise models, they also
result in larger POMDPs and thus in larger memory requirements and more time consuming computations.

3.3.1.1 Directives

The task of the navigation layer is to supply a series of changes in desired headings, which we call directives,
to the obstacle avoidance layer to make the robot reach its goal pose. The main role of the obstacle avoidance
layer is to make the robot head in the given direction while avoiding obstacles.

The directives issued by the navigation layer are: change the desired heading by ninety degrees (“turn right”),
minus ninety degrees (“turn left”), zero degrees (“go forward”), and stop. Directives are cumulative, so that,
for example, two successive “right turn” directives result in a smooth 180 degree turn. If the robot is already
moving, a new directive does not cause it to stop and turn, but merely to change the desired heading, which
the obstacle avoidance layer then tries to follow. This results in the robot making smooth turns in corridor
junctions.

The robot uses Reid Simmons’ Curvature Velocity Method [Simmons, 1996] for local obstacle avoidance.
The Curvature Velocity Method formulates the problem as one of constrained optimization in velocity space.
Constraints are placed on the translational and rotational velocities of the robot that stem from physical
limitations (velocities and accelerations) and the environment (the configuration of obstacles). The robot
chooses velocity commands that satisfy all the constraints and maximize an objective function that trades off
speed, safety, and goal directedness. These commands are then sent to the motors and, if necessary, change
the actual heading of the robot.

The obstacle avoidance layer also keeps the robot centered along the main corridor axis by correcting for
angular dead-reckoning error. It tries to fit lines to the ultrasonic sensor data and, if the fit is good enough,
uses the angle between the line (for example, a wall) and the desired heading to compensate for angular drift.

3.3.1.2 Sensor Interpretation: Motion and Sensor Reports

The sensor-interpretation component asynchronously generates discrete motion and sensor reports that are
abstractions of the continuous stream of data provided by the sensors on-board the robot (wheel encoders
for the motion reports and ultrasonic sensors for the sensor reports). An execution trace is the chronological
sequence of motion and sensor reports, preceded by the initial pose distribution (Figure 3.6). One can
specify a uniform distribution over all poses (corresponding to no initial knowledge), the exact initial pose

3.3. The POMDP-Based Navigation Architecture 95

no initial knowledge given
left sensor report: saw wall (1.0)
right sensor report: saw small_opening (1.0)
front sensor report: saw unknown (1.0)
motion report: went forward 1 meter
left sensor report: saw unknown (1.0)
right sensor report: saw wall (1.0)
front sensor report: saw unknown (1.0)
motion report: went forward 1 meter
left sensor report: saw wall (1.0)
...

Figure 3.6: An Execution Trace

Sensor Features that the Sensor Reports on
front unknown, wall
left unknown, wall, small opening, medium opening, large opening
right unknown, wall, small opening, medium opening, large opening

Figure 3.7: The (Virtual) Sensors and their Features

(corresponding to complete initial knowledge), or a noisy version of the initial pose, such as, “the robot is
approximately two meters West of corridor junction X facing North;” the initial pose distribution is then
normally distributed around this pose with a specified variance. The execution trace is recorded automatically
as the robot moves around. The pose-estimation component uses Bayes rule after each motion and sensor
report to update the pose distribution, starting with the initial pose distribution.

Motion reports are derived by discretizing the smooth motion of the robot. The sensor-interpretation
component periodically receives reports from the odometer on-board the robot. It combines this information
with the robot’s commanded heading to produce a virtual odometer that keeps track of the distance traveled
along, and orthogonal to, that heading. This ensures that the distance the robot travels in avoiding obstacles
is not counted in determining how far it has traveled along a corridor. The sensor-interpretation component
integrates the odometer reports over time and generates a “forward” motion report after each meter of
cumulative travel in the desired heading. Similarly, the sensor-interpretation component reports when the
heading of the robot has changed relative to the desired heading, and reports this in units of ninety degree
turns. This assumes that corridors are straight and perpendicular to each other. The sensor-interpretation
component also generates motion reports when the robot moves orthogonally to the desired heading. Such
slide motions often occur in open spaces (such as foyers) where the robot can move a significant distance
orthogonally to the desired heading during obstacle avoidance.

Sensor reports are generated for three virtual (that is, high-level) sensors that report features in the immediate
front, to the immediate left, and to the immediate right of the robot. We do not model a virtual sensor that
reports features immediately behind the robot, partly because the POMDP-based navigation architecture can
usually infer this information from past sensor reports and partly because this enables researchers to follow the
robot undetected. However, new virtual sensors, such as a “back” sensor, or a “front” sensor based on vision
instead of ultrasonic sensors, can easily be added by specifying their sensor probabilities (Section 3.3.2.2).

Figure 3.7 lists the virtual sensors that we currently use, together with the features that they report on. The
features are currently predetermined although navigation performance can be improved by optimizing the set
of features [Thrun, 1996]. The sensor-interpretation component derives them from the ultrasonic sensor data
by using a small local occupancy grid (obstacle map) [Elfes, 1989] in the coordinates of the robot that is
centered around the robot (Figure 3.8). The occupancy grid combines the raw data from all ultrasonic sensors
and integrates them over the recent past. The sensor-interpretation component then processes the occupancy
grid by projecting a sequence of rays perpendicular to the robot heading until they intersect an occupied grid
cell. If the end points of the rays can be fit to a line with a small chi-squared statistic, a wall has been detected

96 Chapter 3. Acting with POMDPs

large opening
(corridor opening)

small opening
(door)

wall

robot

Figure 3.8: An Occupancy Grid with Features of the Environment

type:
length:

corridor segment
3 m with probability 0.30
4 m with probability 0.50
5 m with probability 0.20

type:
length:

corridor segment
2 m with probability 0.25
3 m with probability 0.25
4 m with probability 0.25
5 m with probability 0.25

Figure 3.9: Topological Map Augmented with Distance Information

with high probability. Similarly, a contiguous sequence of long rays indicates an opening.

The occupancy grid filters some noise out of the ultrasonic sensor data by integrating them over time and
over different ultrasonic sensors. This is important since raw data from ultrasonic sensors can be very noisy
due to specular reflections. The virtual sensor reports also approximate the Markov property better than the
ultrasonic sensor data. Two ultrasonic sensors, for example, that point in approximately the same direction
produce highly correlated data. By bundling their raw data into one virtual sensor we attempt to make sensor
reports more independent of each other.

3.3.2 POMDP Compilation

A POMDP is defined by its states and its initial state distribution, its observations and observation proba-
bilities, its actions and transition probabilities, and its immediate rewards. In our POMDP-based navigation
architecture, the states of the POMDP encode the pose of the robot. The initial state distribution encodes
the available knowledge about the initial pose and thus coincides with the initial pose distribution. The
observations are probability distributions over the features, one for each virtual sensor, and the observation
probabilities encode the sensor models. The actions are the motion reports (for pose estimation) and directives
(for policy generation). The transition probabilities encode the actuator model and the map, including the
distance uncertainty. Finally, the immediate rewards (here, costs) express the average execution times of
the actions, and the objective is to determine a POMDP policy that minimizes the average total cost. This
minimizes the average travel time of the robot to the given goal pose (modulo discounting). A more general
preference model will be discussed in Chapter 4.

The map information is initially encoded as a topological map whose nodes represent junctions between
corridors, doorways, or foyers. The nodes are connected by undirected edges that indicate how the landmarks
connect. The edges are augmented with uncertain distance information in the form of probabilitydistributions

3.3. The POMDP-Based Navigation Architecture 97

r
l ll

rr

l
r

Figure 3.10: A Group of Four States Modeling One Location

over the possible edge lengths (Figure 3.9). We assume that the topological map of the environment can easily
be obtained. Approximate distances can then be obtained from either rough measurements, general knowledge,
or the model-learning component. The remainder of this section describes how the robot navigation problem
maps to the states, observations, and actions of the POMDP and then how the topological map is used to
create the POMDP automatically.

3.3.2.1 States and the Initial State Distribution

Since we discretize the orientation of the robot into the four compass directions, a group of four states
together with “left turn” (�) and “right turn” (�) actions, is necessary to fully represent the possible robot
poses at each spatial location (Figure 3.10). Since we discretize space with a resolution of one meter, each
group of four nodes represents one square meter of free space. The initial state distribution of the POMDP
process then encodes the possibly uncertain knowledge of the initial robot pose and thus coincides with the
pose distribution. We do not treat it as part of the POMDP, but specify it as part of the execution trace
(Section 3.3.1.2), since different office-navigation tasks in the same environment differ in their initial state
distributions but share all other information.

3.3.2.2 Observations and Observation Probabilities

We denote the set of sensors by � and the set of features that sensor
� ��� reports on by � � � � . Sensor

�
reports a probability � � � + � for each feature + ��� � � � . This simplifies the interpretation of the raw sensor data,
because it allows more than one interpretation as to which feature is present. By weighting the presence of
features, the sensor-interpretation component is not forced to report the most likely interpretation only, but
can report the other interpretations as well, with a lower degree of belief.

The sensor model is specified by the sensor probabilities � � � + ' ��� for all
� ��� , + ��� � � � , and � � �

,
which encode the sensor uncertainty. ��� � + ' ��� is the probability with which sensor

�
reports feature + in state

� . We do not represent the observations explicitly, but calculate only their probability: If sensor
�

reports
feature + with probability ��� � + � , then we model this as an observation � with the observation probabilities
�
� � ' ��� � � �)�� (��)�	87 � 9 : ��� � + ' ������� � + �<; for all � � �

. This formula assumes that the sensor reports of different
sensors are independent, given the state. It is only an approximate solution if the sensors report true probability
distributions over their features, especially when the sensor probabilities have to be learned, but it seems to
work well in practice.

A sensor that has not issued a report is assumed to have reported the feature unknown with probability
one. This can happen because, for example, the sensor-interpretation component has made no determination
which feature is present. It can also happen because the sensor-interpretationand pose-estimation components
operate asynchronously and the sensor-interpretation component was not able to issue a report in time. The
probabilities � � � unknown ' ��� are chosen so that the state distribution remains unaffected in this case, that is,
��� � unknown ' ��� � � � � unknown ' � 1 � for all

� �
� and � �"� 1 � �
. Learning can change these probabilities later

because even a sensor report unknown can carry information (Section 3.3.4.4.1).

To simplify the specification of the sensor model, rather than characterizing � � � + ' ��� for each state � � �
individually, we characterize it for a partition � of the state space

�
, where the classes (state sets) � ���

have to be exhaustive and mutually exclusive. Figure 3.11 shows the classes that we use. New classes can

98 Chapter 3. Acting with POMDPs

Class � Explanation
wall a wall about one meter away
near-wall a wall about two meters away
open a wall three or more meters away (for example, a corridor opening)
closed-door a closed door
open-door an open door
door a door with unknown door state (open or closed)

Figure 3.11: Classes of States

easily be added, for example, for walls adjacent to corridor openings so that a sensor could pick up some of
the corridor opening. An example is the wall marked X in Figure 3.13. The sensor model is then specified
by probabilities � � � + ' ��� , that is, probabilities that a sensor reports a given feature when the robot is in that
particular class of states. We then define � � � + ' ��� := � � � + ' � � ��� � for all �$� �

, where � � ��� is the unique class
with � � � . For example, the “left” sensor is partially characterized by:

� “left” sensor (wall � open) = 0.05
� “left” sensor (small opening � open) = 0.20
� “left” sensor (medium opening � open) = 0.40
� “left” sensor (large opening � open) = 0.30
� “left” sensor (unknown � open) = 0.05

These probabilities indicate that corridor openings to the left are most commonly detected as medium-sized
openings, but can often be seen as either large or small openings although they are hardly ever confused for
walls. Also, the left sensor usually provides some report when in the vicinity of openings; it hardly ever
reports the feature unknown.

3.3.2.3 Actions and Transition Probabilities

We first discuss how to model actions in general, then how to encode corridors, and finally how to encode
corridor junctions, doorways, rooms, and foyers.

3.3.2.3.1 Modeling Actions The actions of the POMDP encode the motion reports (for pose estimation)
and directives (for policy generation). The transition probabilitiesof actions encode the actuator (and distance)
uncertainty, and their immediate costs encode how long it takes to complete them. In general, all actions
have their intended effect with high probability. However, there is a small chance that the robot ends up in an
unintended pose, such as an unintended orientation (this is not shown in Figure 3.10 and subsequent figures
because it makes them hard to comprehend). Exactly which poses these are is determined by the actuator
model. For example, the robot might fail to turn, overshoot the turn, or move forward while turning. Likewise,
dead-reckoning uncertainty usually results in the robot overestimating its travel distance in corridors (due to
wheel slippage). This can be modeled with self transitions, that is, “forward” actions do not change the state
with small probability.

There is a trade-off in which possible transitions to model and which ones to leave out. Modeling fewer
transitions results in smaller POMDPs and thus in smaller memory requirements and less time consuming
computations. One loses predictive power if one models nonexisting transitions since nonexisting transitions
make the pose estimates less exact. On the other hand, if one does not model all possible action outcomes,
the robot may do something unmodeled and the POMDP will lose track of the pose. In the worst case, the
pose estimates can become inconsistent, that is, every possible pose is ruled out. This is undesirable, because
the robot can only recover from an inconsistency by re-localizing itself. Therefore, while we found that most
actions have fairly deterministic outcomes, we introduce probabilistic outcomes where appropriate. This also
benefits the Baum-Welch method used by the model-learning component, because the Baum-Welch method

3.3. The POMDP-Based Navigation Architecture 99

corresponds
to topological node

corresponds
to topological node

a. Markov model for topological edges (if the edge length is known exactly)

f

f

f

f

f

f

f

f

f

f

f

f ff

f

b. The “parallel chains” Markov model (if the edge length is not known exactly)

f

f

f

f

f

ff f

f

f

f
f

f
f

c. “Come from” semantics (if the edge length is not known exactly)

B

A C

f f

ff

f

f

f

X

Y

Figure 3.12: Representations of Topological Edges

is not able to change probabilities that are zero but is able to reduce nonzero transition probabilities to values
close to zero. This means that it cannot “generate” necessary transitions that were not present initially, but
it can “remove” unnecessary transitions. Consequently, when in doubt whether to model a transition, one
should include it in the initial POMDP rather than leaving it out.

There is a slight difference between an action that encodes a motion report and the action that encodes the
corresponding directive. For the most part, their transition probabilities are identical. A motion report “turned
left” and a directive “turn left,” for example, both lead with high probability to a state at the same location
whose orientation is ninety degrees counterclockwise. Only the semantics of “forward” motion reports and
“forward” directives differ slightly. Basically, “forward” actions are not defined in states that face walls when
dealing with motion reports but they are defined and result in self-transitions (that is, not changing state) when
dealing with directives: If the robot is able to move forward one meter, it is unlikely that it was facing a wall.
Thus, for dealing with motion reports, the self-transition probability of “forward” actions are set very low in
states that face walls. We actually define “forward” actions in these states to avoid eliminating the true state
from the state distribution in the face of slippage and the effects of discretization. On the other hand, for
planning purposes, the same self-transition probabilities are set high, since we know that low-level control
routines prevent the robot from moving into walls.

3.3.2.3.2 Modeling Corridors The representation of topological edges is a key to our approach. Topolog-
ical edges correspond, for example, to corridor segments, that is, the part of a corridor between two corridor
junctions, doorways, or foyers. We will refer to topological edges as corridors, although corridors are usually
composed of several corridor segments and corridor segments are just one example of topological edges. If
the true length � � � � 	 � ��� of some corridor � is known, it is simple to model the ability to traverse the corridor
with a state chain that has “forward” (f) actions between those states whose orientations are parallel to the
main corridor axis (Figure 3.12(a)). Often, however, the length of a corridor will not be known precisely. In
this case, one can estimate a probability distribution

� � over the possible lengths � � : ��� � � � �����
��� � (� ���!; , where
��� � � � ��� and ��� � (� � � are a lower and upper bound, respectively, on � � � � 	 � ��� . Then,

� � � � � is the probability that

100 Chapter 3. Acting with POMDPs

the length is � , and the corridor can be modeled as a set of parallel state chains that share their first and last
states (Figure 3.12(b)). Each chain corresponds to one of the possible lengths � � : � � � � � ��� � ��� � (� ���!; , and the
“forward” actions in the shared states have probabilistic outcomes according to the probabilities

� � � � � . These
transition probabilities thus model the distance uncertainty. Each “forward” action after that is deterministic
(modulo actuator uncertainty). While this parallel-chain semantics best captures the actual structure of the
environment, it is relatively inefficient, since the number of states is quadratic in � � � (� ��� 4 � � � � � ��� , the
difference between the maximum and minimum length to consider for the corridor.

As a compromise between fidelity and efficiency, one can model corridors by collapsing the parallel chains
in a way that we call the come-from semantics (Figure 3.12(c)). The groups of four states that we collapse
into one group are framed in Figure 3.12(b). Each corridor is then represented using two chains, one for each
of the corridor directions. In the come-from semantics, the spatial location of a state is known relative to the
topological node (for example, corridor junction) from which the robot comes, but its location relative to the
end of the chain is uncertain. For example, state B in Figure 3.12(c) is one meter away from A, but is between
one and three meters away from C. An alternative representation is the go-to semantics, in which the location
of a state is specified relative to the topological node towards which the robot is heading, but the distance
from the start node is uncertain.

The come-from semantics seems more natural than the go-to semantics, since it models the intuition that one
is typically more certain about where one just came from than about one’s destination. For example, if the
robot turns around at some state � within the corridor and heads back towards the start node, the come-from
semantics will correctly predict that the robot will reach that node when it has traveled the same distance it
took to reach state � in the first place (modulo actuator uncertainty). That is, even though the exact length of
the corridor is uncertain, the robot remembers how long it has traveled in coming from a given topological
node. This can be important when the robot misses a corridor opening and overshoots, then realizes that and
turns around. In this case, the additional information about how far it went into the corridor helps to locate
the corridor opening. However, the come-from semantics also has disadvantages. In particular, it is difficult
to integrate sensors that detect features well ahead of the robot, such as sensors based on vision.

When the distance uncertainty is large, the come-from or go-to semantics can save significant memory space
over the parallel-chains semantics, since the number of states is only linear in � � � (� ��� , the maximum length
to consider for the corridor. For example, they need only 80 states (that is, 20 groups of four states) to
encode a corridor that is between two and ten meters long, compared to 188 states for the parallel-chains
semantics. Since the distance uncertainty in our maps is not that large, we actually switched from the
come-from semantics to the parallel-chains semantics in our implementation of the POMDP-based navigation
architecture. We did this because the parallel-chains semantics combines the advantages of the come-from
and go-to semantics: it models both how far the robot went into a corridor and how far it is still away from
the next topological node (landmark). Some of our experiments use the come-from semantics and others use
the parallel-chains semantics.

3.3.2.3.3 Modeling Corridor Junctions, Doorways, Rooms, and Foyers While we could represent
corridor junctions simply with a single group of four states, our experience with the real robot has shown
this representation to be inadequate, since the spatial resolution of a state is one meter, but our corridors are
two meters wide. To understand why this approach can lead to problems, consider the scenario shown in
Figure 3.13: The robot is actually one state away from the center of a T-junction (facing the wall), but due to
distance uncertainty still believes to be further away from the corridor junction. The “left” sensor picks up the
corridor opening and reports it. This increases the belief that the robot is already in the corridor junction. Now
assume that, due to communication delays among distributed processes, the robot continues to move forward
and generates a “forward” motion report, which is possible because the corridor junction is two meters wide.
According to the model, however, this rules out that the robotwas in the corridor junctionsince the robotcannot
move forward in a corridor junction that is one meter wide, except for a small probability of self-transitioning.
Consequently, the most likely state jumps back into the corridor, and the resulting state distribution is
approximately the same as if the “left” sensor had not issued its report. Thus, the sensor report contributes

3.3. The POMDP-Based Navigation Architecture 101

initial pose distribution (prior):

- after left sensor report: medium_opening with probability one

- after movement report: robot moved forward one meter (posterior)

most likely pose

most likely pose

most likely pose

0.050 0.050 0.700 0.050 0.050 0.050 0.050

0.026 0.026 0.359 0.026 0.026 0.026 0.513

0.000 0.053 0.053 0.737 0.053 0.053 0.053

reality model

actual location
of the robot

Case 1: the left sensor issues a report and then the robot moves forward

Case 2: the left sensor does not issue a report, but the robot moves forward

- after movement report: robot moved forward one meter (posterior)

most likely pose

0.000 0.053 0.053 0.737 0.053 0.053 0.053

X

1 meter

actual location
of the robot

actual location
of the robot

actual location
of the robot

Figure 3.13: The Effect of Pretending that Corridors are One Meter Wide

0.5 0.5

0.5 0.5
rl

fr l

(for clarity, only actions from the highlighted nodes are shown)

A

D C
B

North

Figure 3.14: The Representation of Corridor Junctions

little to the current state distribution and its information is essentially lost. Figure 3.13 illustrates this effect
under the simplifying assumption that there is no distance uncertainty, the actuator model is completely
deterministic, and the “left” sensor is characterized by � “left” sensor (medium opening ' open) � 0 � 40 and
� “left” sensor (medium opening ' wall) � 0 � 02. However, the general effect is independent of the sensor
model or the initial state distribution.

While one remedy is to represent corridor junctions using four (that is, two by two) groups of four states
each, we achieve nearly the same result with four groups of two states each, which both saves memory
space and makes the model simpler (Figure 3.14). The basic idea is that turns within a corridor junction are
nondeterministic and transition with equal probability to one of the two states of the appropriate orientation in
the corridor junction. For example, in entering the corridor junction of Figure 3.14 from the South, the robot
would first encounter state A, then state B if it continued to move forward. If it then turned left, it would be
facing West, and would transition to either states C or D with equal probability. This model agrees with how
the robot actually behaves in corridor junctions. In particular, it corresponds to the fact that it is very difficult
to pin down the robot’s location exactly while it is turning in the middle of a corridor junction.

102 Chapter 3. Acting with POMDPs

f

(for clarity, only the “forward” action from the highlighted node is shown)

Figure 3.15: The Representation of Two-Dimensional Space

Doorways can be modeled more simply, since the width of our doors is approximately the resolution of the
POMDP. A single exact-length state chain, as in Figure 3.12(a), leads through a door into a room. The
state of a door (open or closed) can typically change and is thus often not known in advance. We therefore
associate with doorways a probability

�
that the door is open. This probability encodes the uncertainty about

the dynamic state of the environment. The observation probabilities associated with seeing a doorway are:

� � � �
door

�
 � � � � � �
open-door

� � �
1

� � � � � � � �
closed-door

���

While we model corridors as one-dimensional chains of states, we represent foyers and rooms by tessellating
two-dimensional space into a matrix of locations. From each location, the “forward” action has some
probability of transitioning straight ahead, but also some probability of self-transitioning and moving to
diagonally adjacent states which represents the robot drifting sideways without noticing it (Figure 3.15).
Currently, we do not have a good approach for efficiently representing distance uncertainty in rooms and
foyers.

3.3.3 Using the POMDP for Planning and Acting

In this section, we explain how the POMDP-based navigation architecture uses POMDP methods for estimating
the robot’s pose and for directing its behavior.

3.3.3.1 Pose Estimation

The pose-estimation component uses the motion and sensor reports to update the state distribution using
Formulae (3.1) and (3.2) from Section 3.2.1. The updates are fast, since they require only one iteration over
all states, plus an additional iteration for the subsequent normalization. While the amount of computation
can be decreased by performing the normalization only once in a while (to prevent rounding errors from
dominating), it is fast enough that we actually do it every time.

Reports by the same sensor in the same pose are clearly dependent since they depend on the same cells of
the occupancy grid. Therefore, aggregating multiple reports without a motion report in between would not
possess the Markov property. To avoid this problem, the pose-estimation component uses only the latest
report from each sensor between motion reports to update the state distribution.

Motion reports tend to increase the pose uncertainty, due to nondeterministic transitions (actuator and distance
uncertainty), while sensor reports tend to decrease it. An exception are “forward” motion reports that can
decrease uncertainty if some of the states with nonzero probability are “wall facing,” because knowing that
a “forward” directive could be executed successfully carries information. In practice, this effect can be seen
when the robot turns within a corridor junction: Before the turn, there is often some probability that the robot

3.3. The POMDP-Based Navigation Architecture 103

goal

start

Path 2

Path 1

Figure 3.16: A Corridor Environment

has not yet reached the corridor junction. After the robot has turned and successfully moved forward a bit,
the probability that it is still in the original corridor quickly drops. This is a major factor in keeping the pose
uncertainty low, even when the robot travels long distances.

3.3.3.2 Policy Generation and Directive Selection

The policy-generation component has to compute a POMDP policy that minimizes the average travel time
of the robot. The directive-selection component then simply indexes this POMDP policy repeatedly with the
current state distribution to determine which directives to execute.

For policy generation, we need to handle “stop” directives. This is done by adding a “stop” action to the set��� ��� of each state � . The immediate cost of the “stop” action is zero in states that correspond to the goal pose
and high otherwise, rapidly increasing with the distance from the goal pose. In all cases, executing a “stop”
action stops the execution and the robot does not incur any future costs. The immediate costs of all actions
reflect their execution times. The policy-generation component then has to determine a POMDP policy that
minimizes the average total cost incurred. This minimizes the average travel time of the robot to the given
goal pose (modulo discounting). This is similar to the action-penalty representation from Section 2.5.6.1.

If all actions have approximately the same cost, one can also use the goal-reward representation from
Section 2.5.6.1. Executing a “stop” action again stops the execution and the robot does not incur any future
rewards. This time, however, the immediate reward of the stop action is high in states that correspond to the
goal pose and low otherwise. The immediate rewards of all other actions are zero. Thus, the only reward that
the robot receives is for stopping. The policy-generation component then has to determine a POMDP policy
that maximizes the average total reward. Discounting ensures that planning attempts to minimize the number
of action executions. (Section 4.6.4 discusses the difference between using the action-penalty representation
and the goal-reward representation.)

Optimal POMDP planning methods allow the robot to act optimally in the face of arbitrary initial pose
uncertainty, including when and where to sense and how to trade-off between exploitation (acting to exploit
existing knowledge) and exploration (acting to acquire further knowledge). Since our POMDPs typically
have thousands of states, we need to use the greedy POMDP planning methods from Section 3.2.2. These
methods pretend that the POMDP is completely observable. Under this assumption, they determine an optimal
mapping from poses to directives (a policy) and then transform it into a mapping from pose distributions to
directives (a POMDP policy). This, however, can lead to very suboptimal results. In Figure 3.16, for example,
Path 1 is shorter than Path 2 and thus requires less travel time if the states are completely observable. Because
of sensing uncertainty, however, a robot can miss the first turn on Path 1 and overshoot. It then has to turn
around and look for the corridor opening again, which increases its travel time along Path 1. On the other
hand, when the robot follows Path 2 it cannot miss turns. Thus, it might actually be faster to follow Path 2
than Path 1, but the greedy POMDP planning methods would always recommend Path 1.

We address this problem by using a different method for generating the policy, but continue to use the methods
from Section 3.2.2 to complete it. Figure 3.17 depicts the resulting POMDP-based navigation architecture.
To generate the policy, its uses Richard Goodwin’s decision-theoretic path planner [Goodwin, 1997], that
takes into account that the robot can miss turns and corridors can be blocked. The planner uses a generate,
evaluate, and refine strategy to determine a path in the topological map that minimizes the average travel

104 Chapter 3. Acting with POMDPs

goal location

mapping from poses to directives (“policy”)

directive selection

policy generation

POMDP

motion generation

desired directive

motor commandsraw sonar data raw odometer data

occupancy grid

sensor interpretation

sensor report motion report

pose estimation

current pose distribution

topological map
prior actuator model

prior sensor model
prior distance model

POMDP compilation

Navigation

Obstacle Avoidance

Real-Time Control

path planning

Path Planning path

goal location

directive selection

policy generation

POMDP

motion generation

desired directive

motor commandsraw sonar data raw odometer data

occupancy grid

sensor interpretation

sensor report motion report

pose estimation

current pose distribution

topological map
prior actuator model

prior sensor model
prior distance model

POMDP compilation

Navigation

Obstacle Avoidance

path planning

path

Figure 3.17: The Greedy POMDP-Based Navigation Architecture

goal

AB

D C

Figure 3.18: Two Parallel Corridors

time of the robot [Koenig et al., 1996]. This also makes planning more efficient, since POMDP planners
can plan for such contingencies only by augmenting the state information with the status of each blockage,
which increases the number of states exponentially in the number of possible blockages. The POMDP-based
navigation architecture then converts this path to a policy. For states corresponding to a topological node on
the path, directives are assigned to head the robot towards the next node, except for the states corresponding
to the last node on the path, which are assigned “stop” directives. Similarly, for all states corresponding to the
topological edges between two nodes on the path, directives are assigned to head the robot towards the next
node. Finally, for states not on the path, directives are assigned that move the robot back towards the planned
path, again taking the travel times into account. This way, if the robot strays from the nominal (optimal)
path, it will automatically execute corrective directives once it realizes its mistake. Thus, re-planning is only
necessary when the robot detects that the nominal path is blocked. Figure 3.18 shows the resulting preferred
headings for a simple corridor environment. Notice that the preferred heading between

�
and � is towards

� because this way the robot does not need to turn around if it overshoots
�

. This minimizes its travel time,
even though the goal distance is a bit longer. While this planning method is still suboptimal, it is a reasonable
compromise between planning efficiency and plan quality. If suboptimal planning or changes to the building
topology (for example, corridors being blocked) lead to limit cycles (similar to those described in [Simmons,
1994a]), such as spinning in place or repeatedly traversing the same area of the building, we have added
execution monitors that detect the problem and re-plan.

As described in Section 3.2.2, there are several greedy POMDP planning methods for choosing which directive
to issue, given a policy and the current state distribution. It turns out that the “Most Likely State” strategy

3.3. The POMDP-Based Navigation Architecture 105

Figure 3.19: Xavier

does not work well with our models, because topological entities are encoded in multiple states. For example,
since corridor junctions are modeled using several states for each orientation, it is reasonable to consider all
of their recommendations when deciding which directive to issue. The “Voting” and “Completely Observable
after the First Step” strategies both work well in our environment if the initial pose uncertainty is not overly
large. Both strategies are relatively immune to the pose uncertainty that arises during navigation.

These greedy POMDP planning methods also have disadvantages. Since they operate on a policy and account
for pose uncertainty only greedily, they make the assumption that the robot collects sensor data on the fly as
it moves closer to its destination. As opposed to other POMDP planning methods, they do not plan when,
where, and what to sense. This property fits virtual sensors based on ultrasonic sensors well, since ultrasonic
sensors produce a continuous stream of data and do not need to be pointed. A disadvantage of this property is,
however, that the robot does not handle well situations in which localization is necessary (including those with
large initial pose uncertainty), and we thus recommend using more sophisticated POMDP planning techniques
as they become more efficient. For example, it is often more effective to actively gather information that helps
the robot to reduce its pose uncertainty, even if this requires the robot to move away from the goal temporarily.

On the other hand, the greedy POMDP planning methods often lead to an optimal behavior of the robot. For
example, even if the robot does not know for certain which of two parallel corridors it is traversing, it does
not need to stop and re-plan, as long as the directives associated with both corridors are the same. This way
the robot can continue making progress towards its desired goal, while at the same time collecting evidence,
in the form of sensor readings, that can help to disambiguate its true location. If, for example, the robot is
trying to reach the goal pose in Figure 3.18 but is unsure as to whether it is at

�
facing West or � facing West,

it does not need to resolve its uncertainty. Instead, it can turn left into the corridor, move to its end, turn left
again, move to the end of that corridor and stop. It is likely that the robot will localize itself depending on
whether it senses the corridor opening corresponding to � when it traverses the final corridor and localization
is certain at the end of that corridor. Behaviors like this one take advantage of the fact that floors of buildings
are usually constructed in ways that allow people to obtain sufficient clues about their current location from
past experience and the local part of the environment only – otherwise they would easily become confused.
Of course, ultrasonic sensors are much more noisy than human vision and cannot detect some landmarks that
can be observed by people, such as signs or door labels, which makes the office-navigation task harder for
robots than for people.

3.3.3.3 Experiments

The POMDP-based navigation architecture has to be evaluated experimentally because the world cannot
be expected to completely satisfy the independence properties (Markov property) that POMDPs assume.
In the end, one has to test experimentally whether they satisfy the Markov property well enough for the

106 Chapter 3. Acting with POMDPs

Figure 3.20: The Simulator (left) and Graphical Interface (right)

Ta
sk

 C
on

tr
ol

 A
rc

hi
te

ct
ur

e

W
or

ld
 W

id
e

W
eb

-B
as

ed
 U

se
r

In
te

rf
ac

e

Real-Time Control

Task Planning

Path Planning

POMDP-Based Navigation

Obstacle Avoidance

Figure 3.21: A Layered Architecture for Office-Delivery Robots

POMDP-based navigation architecture to yield reliable office-navigation behavior. In this section, we perform
experiments with the POMDP-based navigation architecture in two environments for which the Markov
property is only an approximation: Xavier, an actual mobile robot navigating in our building (Figure 3.19),
and the real-time Xavier simulator (Figure 3.20), a realistic simulation of Xavier that allows us to perform
repeatable experiments. The Xavier simulator is not based on the POMDP used for office navigation and
consequently does not possess the Markov property assumed by that POMDP (just like reality). We use the
same code for both sets of experiments, since the robot and its simulator have the exact same interfaces, down
to the level of the real-time control layer.

The POMDP-based navigation architecture is implemented in C, and is one layer of the autonomous, mobile-
robot system for office delivery (Figure 3.21) developed by the Xavier group at Carnegie Mellon University
[Simmons et al., 1997]. Besides the navigation layer described here, the layers of the system include a real-time
control layer that provides the raw sensor data and controls the motors of the robot, Reid Simmons’ obstacle
avoidance layer that keeps the robot moving smoothly in a goal direction while avoiding static and dynamic
obstacles [Simmons, 1996], Richard Goodwin’s path-planning layer that uses a generate, evaluate, and refine
strategy to find paths with minimal average travel time between two given locations on the topological
map [Goodwin, 1997], and Karen Haigh’s task-planning layer that uses PRODIGY [Veloso et al., 1995]
(a symbolic nonlinear planner) to schedule multiple office-navigation requests that arrive asynchronously
[Haigh and Veloso, 1996]. The layers, which are implemented as a number of distributed, concurrent
processes operating on several processors, are integrated using Reid Simmons’ Task-Control Architecture
which provides facilities for interprocess communication, task decomposition and sequencing, execution
monitoring and exception handling, and resource management [Simmons, 1994b]. Finally, interaction with
the robot is via the World Wide Web, which provides pages for both commanding the robot and monitoring its
progress (Figure 3.22). Users worldwide can specify goal locations for Xavier on one floor of our building,
and then monitor the execution of the office-navigation request by viewing frequent updates of both the
current image taken by the camera on-board the robot and Xavier’s most likely pose, as determined by the
POMDP-based navigation architecture.

3.3. The POMDP-Based Navigation Architecture 107

Figure 3.22: The World Wide Web Interface

108 Chapter 3. Acting with POMDPs

In all experiments, we model the uncertainty about the length of each topological edge as a uniformdistribution
over the interval ranging from 80 to 150 percent of its true length and keep the initial pose uncertainty minimal:
The initial probability for the robot’s actual pose is about 70 percent. The remaining probability mass is
distributed in the vicinity of the actual pose according to a normal distribution.

We report results for the “Voting” Strategy of policy generation and directive selection. The experiments
illustrate that this efficient strategy performs well for the office-navigation tasks considered here and the
Markov property is satisfied well enough for the POMDP-based navigation architecture to yield a reliable
office-navigation performance. Cassandra et al. [Cassandra et al., 1996] contains an experimental comparison
of several greedy policy generation and directive selection strategies in more complex environments, but using
simpler POMDPs than we use here.

3.3.3.3.1 Experiments with the Robot Xavier was designed and built by the Xavier group at Carnegie
Mellon University. It is built on top of a 24 inch diameter RWI B24 base, which is a four-wheeled synchrodrive
mechanism that allows for independent control of the translational and rotational velocities. The sensors on
Xavier include bump panels, wheel encoders, a Denning ultrasonic sensor ring with 24 ultrasonic sensors, a
front-pointing Nomadics laser light striper with a 30 degree field of view, and a Sony color camera that is
mounted on a pan-tilt head from Directed Perception. The experiments do not use the laser light striper, and
the camera is used only for fine positioning at the destination.

Control, perception, and planning are carried out on two on-board 66 Megahertz Intel 486 computers under
the Linux operating system. An on-board color Intel 486 lap-top computer is used to monitor Xavier’s status
with a graphical interface, a screen shot of which is shown in Figure 3.23. The computers are connected to
each other via Ethernet and to the outside world via a Wavelan radio connection.

A partial map of our environment is shown in Figure 3.23. This part corresponds to half of one floor of
our building, which is half of the environment used in the experiments. The part shown has 95 topological
nodes and 180 edges, and the corresponding POMDP has 3,348 states. In the period from December 1, 1995
to August 31, 1997, Xavier attempted 3,417 office-navigation requests and reached its intended destination
in 3,227 cases, where each job required it to move 43 meters on average (Figure 3.24). Most failures are
due to problems with Xavier’s hardware (boards shaking loose) and the wireless communication between
the on-board robot system and the off-board user interface (which includes the statistic-gathering software),
and thus are unrelated to the POMDP-based navigation architecture. Failures that are attributable to the
POMDP-based navigation architecture are often caused by its insufficient ways of modeling rooms. Rooms
are modeled with only one group of four states and self-transitions. The self-transitions lead to the problem
that decreasing the probability of being in a room takes a long time.

The completion rate is 94 percent. Its fluctuation is due to other researchers experimenting with their new
code for other layers of the office-delivery system. The completion rate before using the POMDP-based
navigation architecture was only 80 percent [Simmons, 1994a]. It was obtained on the same robot with an
otherwise unchanged robot system except that a traditional landmark-based navigation technique was used
in place of the POMDP-based navigation architecture. Thus, the difference in performance can be directly
attributed to the different office-navigation techniques.

3.3.3.3.2 Experiments with the Simulator To show the performance of the POMDP-based navigation
architecture in an environment that has a more complex topology than what we have available in our building,
we also perform two experiments with the Xavier simulator. The topological map of the corridor environment
shown in Figure 3.25 has seventeen topological nodes and eighteen edges, and the corresponding POMDP
has 1,184 states.

First Experiment: In the first experiment, the task is to navigate from � � ! � � 1 to � � !�� 1 . The preferred headings
are shown with solid arrows in Figure 3.25. We ran a total of fifteen trials (Figure 3.26), all of which were
completed successfully. The robot has to travel a rather long distance from � � ! � � 1 before its first turn. Since
this distance is uncertain and corridor openings are occasionally missed, the robot occasionally overshoots

3.3. The POMDP-Based Navigation Architecture 109

Figure 3.23: The Graphical Interface

� , and then becomes uncertain whether it is really at � or � . However, as discussed earlier in the context of
Figure 3.18, this ambiguity does not need to be resolved since the same directive is assigned to both nodes.
The robot turns left in both cases and then goes straight. The same thing happens when it gets to

�
, since

it thinks it might be at either
�

or � . The robot eventually corrects its beliefs when, after turning left and
traveling forward, it detects a corridor opening to its left. At this point, the robot becomes fairly certain that
it is at � . A purely landmark-based navigation technique can easily get confused in this situation, since it
has no expectations about seeing this corridor opening, and can only attribute it to sensor error, which, in this
case, is incorrect.

Second Experiment: In the second experiment, the robot has to navigate from � � ! � � 2 to � � !�� 2. The preferred
headings for this office-navigation task are shown with dashed arrows in Figure 3.25. Again, we ran fifteen
trials (Figure 3.27). For reasons that are similar to those in the first experiment, the robot can confuse with
� . If it is at but thinks it is probably at � , it turns right and goes forward. However, when it detects the
end of the corridor but does not detect a right corridor opening, it realizes that it is at � rather than � . Since
the probability mass has now shifted, it turns around and goes over , � , and � to the goal. This shows that
the POMDP-based navigation architecture can gracefully recover from misjudgments based on wrong sensor
reports – even if it takes some time to correct its beliefs. It is important to realize that this behavior is not
triggered by any explicit exception mechanism, but results automatically from the way the pose estimation
and directive selection interact.

3.3.4 Using the POMDP for Learning

110 Chapter 3. Acting with POMDPs

Month Days in Use Jobs Attempted Jobs Completed Completion Rate Distance Traveled
December 1995 13 262 250 95 % 7.7 km
January 1996 16 344 310 90 % 11.4 km
February 1996 15 245 229 93 % 11.6 km
March 1996 13 209 194 93 % 10.0 km
April 1996 18 319 304 95 % 14.1 km
May 1996 12 192 180 94 % 7.9 km
June 1996 7 179 170 95 % 8.2 km
July 1996 7 122 121 99 % 5.4 km
August 1996 — — — — % — km
September 1996 9 178 165 93 % 8.2 km
October 1996 11 168 151 90 % 7.8 km
November 1996 11 228 219 96 % 10.5 km
December 1996 9 172 167 97 % 8.8 km
January 1997 9 157 154 98 % 7.5 km
February 1997 4 87 77 89 % 4.2 km
March 1997 1 13 13 100 % 0.6 km
April 1997 4 51 46 90 % 2.7 km
May 1997 6 60 58 97 % 2.9 km
June 1997 11 148 145 98 % 7.1 km
July 1997 10 131 128 98 % 6.0 km
August 1997 13 152 146 96 % 5.8 km
Total 199 3,417 3,227 94 % 148.4 km

Figure 3.24: Performance Data (all numbers are approximate)

5 meters

start1

start2 goal1

goal2

ABC

D EF G

HI

...

...

...

J

K

Figure 3.25: A Corridor Environment

Path Frequency Time
ABE 12 68.2 s
ABCDE 3 79.7 s

Figure 3.26: The First Experiment

Path Frequency Time
JFI 11 60.6 s
JFGFI 2 91.5 s
JFGHGFI 1 116.0 s
JFGFGFI 1 133.0 s

Figure 3.27: The Second Experiment

So far, we have assumed that the POMDP is compiled from a topological map and given actuator, sensor, and
distance models. Two common approaches are to provide the robot with the models or let it learn the models
autonomously by exploring its environment. Both approaches have disadvantages:

3.3. The POMDP-Based Navigation Architecture 111

goal location

mapping from poses to directives (“policy”)

directive selection

policy generation

POMDP

motion generation

desired directive

motor commandsraw sonar data raw odometer data

occupancy grid

sensor interpretation

sensor report motion report

pose estimation

current pose distribution

topological map
prior actuator model

prior sensor model
prior distance model

POMDP compilation

Navigation

Obstacle Avoidance

Real-Time Control

path planning

Path Planning path

model learning

Figure 3.28: The Greedy POMDP-Based Navigation Architecture with Learning

� Providing the robot with the necessary information suffers from the problem that some information
is difficult or impossible to provide by humans. For example, the actuator and sensor models depend
on the environment of the robot, such as how slippery the floor is, how wide the corridors are, or how
well the walls reflect ultrasonic waves. Thus, accurate models cannot be factory programmed. The
models also depend on characteristics of the robot itself (its actuators and sensors, for example) and one
cannot expect naive users of a robot (consumers) to be familiar with details of their newly purchased
delivery robot. Even expert users have problems specifying the models because the models depend
also on communication delays among distributed processes and their relationship to the speed with
which the robot moves. Some information could be provided by users or expert users, but might be
cumbersome to obtain. If the users do not know the exact lengths of their corridors, for example, they
have to measure them – a task that the robot could do itself.

� Letting the robot explore its environment autonomously, an approach that many researchers have
investigated, suffers from the problem that the robot cannot be used immediately and,during exploration,
is likely to get into situations of confusion or danger that require human intervention, since it has no
initial knowledge of its environment.

We therefore suggest using a third approach: providing the robot with the information that is easily available to
humans, and then letting it autonomously learn the rest of the information needed for reliable office navigation
while in the process of performing its office-navigation tasks.

We start by supplying the robot with a topological map of its environment and other information, such as initial
approximate actuator and sensor models. The topological map can easily be obtained from a sketch drawn
by people familiar with the environment in a way similar to what is done for interface design [Landay, 1995].
Figure 3.29 (center and right), for example, shows a sketch of a corridor environment and the corresponding
topological map. This information is sufficient for the robot to perform office-navigation tasks and collect
training data. Learning then uses this data to make navigation both more reliable and efficient by adapting
the actuator and sensor models to the environment and learning distance information.

112 Chapter 3. Acting with POMDPs

Figure 3.29: A Corridor Environment, its Sketch, and the Corresponding Topological Map

Figure 3.30: Two Examples for the Utility of Learning Distances

The advantage of learning distance information is illustrated in Figure 3.30. It takes the robot longer to notice
that it overshot its destination when it is uncertain about the position of the orthogonal corridor (left) and it
might even turn into the wrong corridor of two adjacent corridors if the first one is temporarily blocked (right).
Notice, however, that we do not want to provide the robot with distance information that is generated from
sketches of corridor environments because people often err with respect to distances, unless they measure
them. Although the sketch of Figure 3.29 (center) correctly specifies the topology of the environment, some
of the arc lengths are incorrect. It is therefore much more reliable and convenient to let the robot learn the
distance models itself.

We desire that the learning be unsupervised and passive. Unsupervised learning means that the robot gets
no additional information from a teacher after it has been supplied with the initial topological map and other
easily available information. In particular, during office navigation, the robot is not told where it really is
or what it really observed. This is desirable because providing the robot with correct pose information is a
tedious task. Unsupervised learning, on the other hand, can be done autonomously and, ideally, without any
external help. Passive learning means that the robot learns while it is performing office-navigation tasks; the
learning method does not need to control the robot at any time (for example, to execute localization actions).
This is desirable because then the robot does not need a separate training phase; it can be used immediately
to perform office-navigation tasks and collects training data whenever it moves. This way it never stops
learning and improves its office-navigation performance continuously. Since learning takes place while the
robot is performing its office-navigation tasks, the training data reflect the environment in which the robot has
to perform. The robot also gains more information about routes that it traverses more often and, as a result,
learning focuses its attention on routes that are more relevant for the office-navigation tasks encountered.

Unsupervised, passive learning is difficult in the presence of state uncertainty, however, because there is no
ground truth to compare against. For example, the robot’s pose uncertainty prevents it from simply learning
corridor lengths by first moving to the beginning of a corridor and then to its end while measuring the distance
traveled. A similar problem arises for learning actuator and sensor models. For example, if the robot always
knew its pose exactly, it could learn the sensor probabilities simply by counting frequencies, for example, how
often sensor

�
reports feature + in state � . However, because the robot is uncertain about its pose it does not

know exactly when it was in state � . Furthermore, the pose uncertainty of the robot can be quite significant

3.3. The POMDP-Based Navigation Architecture 113

2

3

1

POMDP Model

Extended Baum-Welch Algorithm Execution Traces

improve the
probabilities

improve the
structure

Improved POMDP Model

Planning and
Navigation

Components2

Topological Map
Actuator Model
Sensor Model

Distance Model

2

Figure 3.31: An Overview of GROW-BW

even with good models, as shown in Figures 3.23 and 3.20 (right). The sizes of the small circles in these
figures are proportional to the probability mass with which the robot believes itself to be in each corridor. The
amount of pose uncertainty shown is typical. In addition, robot learning is hard because it must run within
the CPU and memory constraints of the robot’s computers, and must deal with the fact that collecting data is
time consuming.

Our POMDP learning method, called the Grow Baum-Welch Method (GROW-BW), is an unsupervised,
passive learning technique that addresses these concerns. Whenever the robot moves, GROW-BW gains more
and more experience with the environment, in form of execution traces, which it continually uses to change
the structure of the initial POMDP and fine-tune the initial (“factory programmed”) probabilities so that they
more closely reflect the actual environment of the robot. This improves the accuracy of the actuator and
sensor models and reduces the uncertainty about the corridor lengths, ultimately resulting in an improved
navigation performance of the robot. GROW-BW extends the Baum-Welch method to decrease its memory
consumption and training-data requirements, and to enable it to change the topology of the initial POMDP.

GROW-BW uses an extension of the Baum-Welch method as a subroutine. The Baum-Welch method
overcomes the problem of unsupervised, passive learning in the presence of pose uncertainty by using the
given POMDP and execution trace to derive state distributions for each point in time. It then uses these
state distributions when counting frequencies and, this way, is able to determine improved transition and
sensor probabilities (Section 3.2.3). To enable the Baum-Welch method to run on-board the robot, we have
extended it to use a sliding time window on the execution trace, which decreases its memory requirements
while producing comparable results and maintaining its efficiency. To reduce the need for training data, the
extension utilizes additional knowledge in the form of constraints, such as symmetry in the sensors or the
topological map. For example, it can utilize information such as the “left” and “right” sensors being identical
or two corridors having the same (although unknown) length. The extended Baum-Welch method learns the
best POMDP for a given structure. Based on the resulting POMDP, GROW-BW then decides whether to
change the structure and repeat the process. The resulting method improves the actuator, sensor, and distance
model efficiently in terms of running time, memory consumption, and the required length of the execution
trace.

Figure 3.31 summarizes GROW-BW: First, GROW-BW compiles the initial POMDP from the topological
map augmented with initial actuator and sensor models and an initial distance model (Section 3.3.2). Lacking
other information, it simply assumes that actuation and sensing work perfectly (modulo a small amount of
noise) and that all possible corridor lengths are equally likely � 1 . GROW then uses the extended Baum-Welch
method to improve the POMDP based on the execution traces generated during office navigation (Figure 3.6)

� 2 . The resulting POMDP has improved actuator and sensor models and less distance uncertainty but the same
structure as the initial POMDP. GROW-BW then uses a hill-climbing technique that iteratively changes the
structure of the POMDP based on the results of the extended Baum-Welch method � 3 . In the following, we

114 Chapter 3. Acting with POMDPs

first describe our implementation of the Baum-Welch method, then our extensions, and finally GROW-BW in
detail.

3.3.4.1 The Baum-Welch Method

The Baum-Welch method (Section 3.2.3) is an ideal candidate for the implementation of an unsupervised,
passive learning method, because it is efficient and does not introduce transitions between states that were not
present in the initial POMDP. Thus, the improved POMDP always conforms to the topological map.

When implementing the Baum-Welch method as part of our learning methods, we made the following design
decisions:

Updating the Sensor Probabilities: We are not really interested in updating the observation probabilities
�
� � ' ��� as is done by the Baum-Welch method; we want to update the sensor probabilities � � � + ' ��� instead.

Our implementation of the Baum-Welch method therefore uses the following re-estimation formula instead
of re-estimation formula A10 (from page 91):

A10’. Set
�̄ ���� � � �

:= (� �
1 � � � � � �� � � ��� � � � ��� ��� � (� �

1 � � � � �
� ��� �

for all �
���

,
� ��� � � � , and

� � �
.

Influence of the Initial POMDP: Because the Baum-Welch method converges to a local optimum, the final
POMDP can, in theory, depend on the initial POMDP. We found that the Baum-Welch method is very robust
towards variations of the initial probabilities. This might be due to the fact that our initial POMDP is usually
pretty accurate: Its basic structure is correct and even rough estimates of the actuator and sensor models
(like the assumption that actuation and sensing work almost perfectly) provide good estimates. For example,
it is reasonably safe to assume that a sensor reports the correct feature with larger frequency than incorrect
features (with the exception of the feature unknown). Thus, the initial POMDP is a good starting point for
the hill-climbing search of the Baum-Welch method and perturbations of the initial POMDP do not change
this starting point significantly. Consequently, local maxima do not appear to be a problem when applying the
Baum-Welch method to office-navigation tasks, making it unnecessary to perturb the probabilities of the initial
POMDP multiple times and applying the Baum-Welch method to each of the resulting POMDPs. Therefore,
our implementation applies the Baum-Welch method only once, namely, to the initially given POMDP, after
it has added a small amount of noise to the probabilities. Perturbing the probabilities of the initial POMDP is
sometimes necessary to distinguish otherwise equivalent states in the initial POMDP since the Baum-Welch
method is unable to remove symmetries in the POMDPs.

3.3.4.2 The Extended Baum-Welch Method

Despite its theoretical elegance, the Baum-Welch method has two deficiencies that make it impractical for
robots: its memory and training-data requirements. We address these problems by extending the Baum-Welch
method in straightforward ways [Koenig and Simmons, 1996f]. We have not seen these extensions before,
but expect that variants of some of them might have been developed independently in the speech literature.
The extended Baum-Welch method might no longer be guaranteed to converge, but this does not appear to be
a problem in practice.

3.3.4.2.1 Memory Requirements The Baum-Welch method has to run on-board the robot and share its
memory with many other processes that run concurrently. Traditional implementations of the Baum-Welch
method need arrays of floating point numbers whose sizes are on the order of the product of the number
of states and the length of the execution trace. This is a problem since even our smallest POMDPs have
thousands of states, the Baum-Welch method needs execution traces with hundreds of action executions to
get sufficient data, and the length of the execution trace grows over time as more data are collected. Since
many other processes are run on the same on-board computer, the memory requirements of a learning method
should be rather small and relatively constant.

3.3. The POMDP-Based Navigation Architecture 115

C1. Set �̄ � ��� � � � � � � := 0 for all
� ��� � �	�

and � �	� �����
.

C2. Set �̄
� ��� � �#� := 0 for all � ��� , �	��� � � � , and

�8� �
.

C3. Initialize
� ���	� � 1 using A1 and
 1 using A2 (both from page 90).

C4. Set
��� � � � := 1 and �� � := 	 .

C5. While
��� � � ����� :

(a) If �� �
�� , then set �� � ��� .

(b) Calculate
� ����� � � and
 � for

��� ��� � � ������� �� � , working forward from
� ���	� �
��� ��� and

��� ��� using A3(a) and A3(b)

(from page 90). Previously calculated scaling factors and alpha values can be re-used.

(c) Approximate the beta values � � for
� � ��� � � ������� �� � , initializing � ���� ����� := 1 � � ���	� � ���� for all

�8� �
and working

backward from � ��	� using A5(a) (from page 91). Previously calculated beta values cannot be re-used.

(d) If �� � ��� , then set ��� ��� � � � :=
�

else set ��� ��� � � � := �� � % � �	� & 1.

(e) For all
� � ��� � � ������� ��� ��� � � � % 1:

i. Calculate �$�"���<��� � for all
� �<��� � �

with � � � � �"�#�
, using
 � and the approximation of � � � 1 in A6 (from

page 91).

ii. Calculate �#�"�#� for all
���	�

, using
 � and the approximation of � � in A7 (from page 91).

iii. Set �̄ �"�"��� � � � � �� := �̄ ������� � ��� � �!� &! �$��� �<����� for all
���<��� � �

with � � �	� �"�#�
(these values will be normalized in

C6).

iv. Set �̄
� �"� � ��� := �̄

� �"� � ��� & � � � ����� �$�"�#� for all � �#���$� �%� � � � , and
� � �

(these values will be normalized in
C7).

(f) Forget all
� ���	� � � and
 � for

� � ��� � � �&����� ��� ��� � � �2% 1, and all � � for
� � ��� � � ������� �� � .

(g) Set
��� � � � := ��� ��� � � � and �� � := ��� ��� � � � & 	 %

1 (that is, move the time window).

C6. Set �̄ ��� � � ��� � � := �̄ �"�"��� � ��� � � � (
 / �� �̄ � ����� � � � � � for all
� ����� �	�

and � �
�
(that is, normalize the transition probabilities).

C7. Set �̄
 ��� � �#� := �̄

� �"� � ��� � ((' ��)2� � �̄
� ��� � �#� for all � �*� , � �+� � � � , and

�8� �
(that is, normalize the sensor probabilities).

Figure 3.32: The Window-Based Baum-Welch Method

Remember that the alpha values � � take all the information in a prefix of the training trace into account and
are calculated forward from

� � 1. The beta values � � , in contrast, take all the information in a suffix of
the training trace into account and are calculated backward from

� � � . The gamma values � � combine the
information from the alpha and beta values and take all the information of the training trace into account.
To reduce the amount of memory space of the Baum-Welch method, one could modify the Baum-Welch
method to calculate the alpha and beta values anew for each point in time. This, however, would be giving
up the running-time efficiency of the Baum-Welch method. Standard pruning methods make the memory
requirements effectively proportional to the length of the execution trace while maintaining running-time
efficiency [Young, 1994]. Here, we reduce the memory requirements even further while maintaining its
running-time efficiency. We use a sliding time window on the execution trace. Time windows add a small
overhead to the running time and cause a small loss in precision of the improved POMDP, but decouple the
memory requirements from the length of the execution trace: the memory requirements are independent of
the length of the execution trace and can be scaled (even dynamically) to the available memory space.

The window-based Baum-Welch method proceeds similarly to the traditional Baum-Welch method. It still
calculates the alpha values precisely, since they can be calculated incrementally with only two arrays whose
sizes are the number of states: one for the current alpha values and another one for the alpha values of the
next time step. The beta values, however, are approximated using a sliding time window on the execution
trace, that is, using a limited look-ahead. The gamma values are then calculated using the alpha and beta
values, as before. Consequently, the gamma values at time

�
are approximated by conditioning them on all

information in the execution trace before time
�
, but only a small look-ahead after that. This can approximate

the gamma values closely because floors of buildings are usually constructed in ways that allow people to
obtain sufficient clues about their current location from past experience and the local part of the environment
only – otherwise they would easily become confused.

Figure 3.32 describes the window-based Baum-Welch method. For simplicity, the figure does not show how

116 Chapter 3. Acting with POMDPs

st
at

es
 s

2. Backward Phase: Calculating the Beta Values (Step C5(c))

1. Forward Phase: Calculating the Scaling Factors and Alpha Values (Step C5(b))

3. Calculating the Gamma(s,s’) Values (Step C5(e)i)

Gamma(s)

..........

Gamma(s,s’)

..........

4. Calculating the Gamma(s) Values (Step C5(e)ii)

5. Accumulating the Re-Estimation Probabilities from the Gamma Values (Steps C5(e)iii and C5(e)iv)

time t
st

at
es

 s

scaling factor and alpha values
beta values

time window

st
at

es
 s

st
at

es
 s

Gamma(s,s’)

st
at

es
 s

Gamma(s)

start start+x-1

x
lamin

T1

= minimal look-ahead
= window size

one time slice

6. Deleting the Beta Values and Moving the Time Window (Steps C5(f) and C5(g))

st
at

es
 s

start+x-lamin T1 time t

Figure 3.33: An Overview of the Window-Based Baum-Welch Method

the initial state distribution � is updated or the values � �
� ��� are calculated. Figure 3.33 summarizes the

calculations of the window-based Baum-Welch method between two movements of the time window, in a
way similar to how Figure 3.4 summarized the calculations of the traditional Baum-Welch method. First, the
window-based Baum-Welch method calculates the scaling factors and alpha values for all time steps in the
time window, working forward from the first time step in the time window using the dynamic programming
formulae A3(a) and A3(b) from page 90 (re-using previously calculated scaling factors and alpha values).
Then, it calculates the beta values for all time steps in the time window under the approximation assumption
that the last time step in the time window is also the last time step in the execution trace, working backward
from the last time step in the time window using the dynamic programming formula A5(a) from page 91
(previously calculated beta values cannot be re-used). Next, it calculates the gamma values in a prefix of
the time window, and accumulates the re-estimation probabilities from the gamma values to calculate the
quantities in Steps A9 and A10 from page 91 incrementally. Finally, it deletes the scaling factors and alpha
values that are no longer necessary and the beta values that cannot be re-used, moves the time window, and
repeats the process. Once it has reached the end of the execution trace, the window-based Baum-Welch
method normalizes the accumulated re-estimation probabilities, resulting in the probabilities that constitute

3.3. The POMDP-Based Navigation Architecture 117

the improved POMDP. Notice that the window-based Baum-Welch method can read the motion and sensor
reports sequentially, for example, from a file; they do not need to be in memory all the time.

A time window of size
-

stores the scaling, alpha, and beta values from
� � � � ! � � � � � � � ! � � 5 - 4 1. The beta val-

ues � � � ��� are approximated with
��� � � � 	 1 � � � �����	�
�
	 (� 1 ' � � � �,�	! �

� � �
�����	�
�
	 (� 2 � � � can execute ! �

� � �
�����	�
�
	 (� 2 ' � � �

��� � � ��� � � �
� � �
� ���	� � 	 (� 1 ' � 1 � � � ��� 1 �	! 1 � � � ��� �	� �
	 (� 2 � � � can execute ! ��� 1 � � � � ���	�
�
	 (� 2 ' � 1 � � � ��� 1 �	! 1 � � � ��� 2 �
� . This approx-

imates the gamma values � � � �,�	� 1 � with
� � � � � �,�	� �
	 1

� � 1 ' � 1 � � � � ���	�
�
	 (� 1 �	! 1 � � � � ���	� � 	 (� 2 � and the gamma
values � � � ��� with

� � � � � �#' � 1 � � � �����	�
�
	 (� 1 �	! 1 � � � ��� �	� �
	 (� 2 � . To guarantee a minimal look-ahead � ! � � � , the
gamma values are only calculated for

� � � � ! � � � � � � � ! � � 5 - 4 � ! � � � 4 1. This way, the actual look-ahead
of the gamma values � � � � �	� 1 � and � � � ��� is

� � � ! � � 5 - 4 1 � 4 �
, which is guaranteed to be at least as large as

the minimal look-ahead ��! � � � . The minimal look-ahead is a parameter of the window-based Baum-Welch
method with 1 � ��! � � � � - 4 1. It is chosen so that the gamma values are approximated closely. Currently,
we use a constant value ��! � � � for all

�
, but it is easy to modify the window-based Baum-Welch method to use

arbitrary nonuniform minimal look-aheads.

With the window-based Baum-Welch method, there is a tradeoff between running time, precision of the
improved POMDP, and memory requirements. All three factors depend on the window size

-
and the

minimal look-ahead ��! � � � .

Running-Time Overhead: In addition to a small amount of bookkeeping required for maintaining the
time window, the window-based Baum-Welch method incurs overhead only for calculating the beta values
repeatedly. While the traditional Baum-Welch method calculates every state distribution � � only once, the
window-based Baum-Welch method calculates it on average

- � �- 4 ��! � � ���� 1 times for long execution
traces, because the time window is always moved by

- 4 ��! � � � time steps after all
-

beta state distributions in
the time window have been calculated once (we count the initialization of the beta values as one calculation).

Precision: The precision of the improved POMDP depends on the average actual look-ahead � ! 	 � � . The
larger this value, the more precise the gamma values and, consequently, the improved POMDP. ��! 	 � � �
1 � �- 4 ��! � � � � � (� / � ��� ���

� � �
(� 1

� 1 � 1 � 2 �
�- 5 ��! � � � 4 1 � for long execution traces, because

- 4 � ! � � �
gamma state distributions with look-aheads ranging from ��! � � � to

- 4 1 are calculated each time before the
time window is moved. Thus, the average actual look-ahead is usually much larger than ��! � � � if the window
size is large.

Memory Requirements: The window-based Baum-Welch method can operate with as much or as little
memory space as is available. In particular, a time window of size

-
only needs arrays of floating point

numbers whose sizes are on the order of
-

times the number of states, and thus its memory requirements no
longer depend on the length of the execution trace. The memory requirements can be dynamically scaled to
the available memory space and the required precision. In fact, the window-based Baum-Welch method can
utilize additional memory space immediately when it becomes available to increase the window size.

To summarize, the precision can be increased by increasing the minimal look-ahead ��! � � � or the window
size

-
. Increasing the minimal look-ahead produces a small amount of running-time overhead, but leaves the

memory requirements unchanged (if
- � ��! � � � 5 1); increasing the window size decreases the overhead,

but increases the amount of memory space needed. We therefore suggest making the window size as large
as possible and setting the minimal look-ahead based on the average distance between corridor junctions,
because the most useful sensor reports are obtained when the robot traverses corridor junctions. If the time
window is sufficiently large, the window-based Baum-Welch method behaves identically to the Baum-Welch
method, both in terms of running time and the POMDP that it produces.

3.3.4.2.2 Training-Data Requirements The traditional Baum-Welch method requires a long execution
trace: As the degree of freedom (that is, the number of probabilities to be estimated) increases, so does the
need for training data, to decrease the likelihood of over-fitting the model. Given the relatively slow speed
at which mobile robots can move, we want the extended Baum-Welch method to learn good POMDPs with
as short a travel distance as possible. Thus, we use several methods to decrease the number of probabilities
that must be adjusted. All of the methods utilize domain knowledge to keep the number of probabilities

118 Chapter 3. Acting with POMDPs

c1

c2

c 3 c 4

Figure 3.34: Equally Long Corridors

small. Nothing prevents one from using the Baum-Welch method with an initial POMDP that has not been
derived from a topological map but consists only of a large number of completely interconnected states. The
initial structure of our POMDP, on the other hand, already reduces the number of probabilities considerably
by disallowing transitions that are clearly impossible, such as tele-porting to distant locations. We employ
three additional techniques to reduce the degrees of freedom further or provide a better bias:

Leaving Probabilities Unchanged: The extended Baum-Welch method does not adjust probabilities that we
believe to be approximately correct. Actuator and sensor models, for example, are often similar in different
environments and consequently need be learned only once.

Imposing Equality Constraints: The extended Baum-Welch method constrains some probabilities to be
identical. This has the advantage that the Baum-Welch method can now update a probability using all the
information that applies to any probability in its class. If the equality constraints are only approximately
correct, we trade off model quality and thus predictive power for the length of the execution trace required to
learn the POMDP. Consider the following examples:

� Actuator Model: We assume that the models for the “left turn” and “right turn” actions are the same
for all states. We further constrain the “left turn” and “right turn” probabilities to be symmetrical.

� Sensor Model: Instead of learning separate sensor models for each state, we learn them for classes
of states (Figure 3.11). These classes reflect our prior knowledge about how the sensors are supposed
to operate – they are currently predefined and not learned. For example, all states that have a wall on
their left are construed to have the same probability that the “left” sensor reports a wall. The extended
Baum-Welch method also assumes that the “left” and “right” sensors behave symmetrically, so their
models are constrained to have the same probabilities. For example, the probability that the “left”
sensor correctly reports a wall to the left of the robot equals the probability that the “right” sensor
correctly reports a wall to the right of the robot.

� Distance Model: We constrain the transition probabilities of the “forward” actions for “corridor
junction” states that lead into the same corridor to be identical. An example are states X and Y in
Figure 3.12. This forces the length estimates for a corridor to be the same in both directions. In
general, we group all corridor junction states that are known to lead into equally long corridors. These
geometrical constraints can often be deduced from the topological map. One might know, for example,
that two corridors are the same length, because both are intersected orthogonally by the same pair of
corridors. In Figure 3.34, for example, it holds that ��� ��� 	 � � 1 � � � � � � 	 � � 2 � and � � ��� 	 � � 3 � � � � ��� 	 � � 4 � ,
although the lengths themselves are unknown.

For example, after forming classes � ��� of states (page 97) but before imposing equality constraints between
different sensors, the re-estimation formula for the sensor probabilities A10’ (from page 114) becomes

A10”. Set
�̄ ��� � � � := (� �

1 � � � � (
���� � � � � ��� � � � ��� ��� � (� �
1 � � � � (
�� � � � ��� � for all �

���
,
� ��� � � � , and � ��� .

Using Bayesian Probability Estimates: Imposing equality constraints enables the Baum-Welch method to
operate with smaller execution traces. However, frequency-based estimates, as used by the Baum-Welch

3.3. The POMDP-Based Navigation Architecture 119

method to re-estimate the probabilities, are not very reliable if the sample size is small. To understand why,
consider the following analogy: If a fair coin were flipped once and came up heads, the frequency-based
estimate would set

� � � � ! � ��� � 1. This completely overfits the sample (Section 3.2.3). If this model were
used to predict future coin flips, one would be very surprised if the coin came up tails next time – this
would be inconsistent with the learned model. This is mostly a problem for the transition probabilities of the
“forward” actions that are used to estimate the corridor lengths since, to collect & data points, the robot has to
pass through the corresponding state & times if no equality constraints on the lengths are known. Thus, & is
typically very small. Learning the other transition and observation probabilities can take advantage of forming
classes to quickly collect many data points. To avoid the problem of frequency-based estimates, we change the
re-estimation formulae A9 (from page 91) and A10’ (from page 114) to use Bayes rule (Dirichlet distributions)
instead of maximum-likelihood estimates in form of frequencies. Both methods produce asymptotically the
same results for long execution traces. However, using Bayes rule solves three problems for shorter execution
traces that implementations of the Baum-Welch method often tackle using special techniques: The problem of
over-fitting the execution trace, the problem that probabilities easily get close to zero and one (Section 3.2.3),
and the problem of small denominators in the original re-estimation formulae A9 and A10 (from page 91). If
the denominators of the re-estimation formulae A9 or A10 are small, then the execution trace does not contain
sufficient experience to estimate these probabilities reliably.

Appendix 6.2 contains the derivation of the new re-estimation formulae. The re-estimation formula A9 for
the transition probabilities, for example, becomes (probability classes are not shown):

A9’. Set
�̄���� � � ����� �

:=
� (� �

1 � � � � � 1
� � � � � � �

������� � � ��� � ��� � � ����� ����� � � (� �
1 � � � � � 1

� � � �2� � �
��� � ��� � for all

����� � ���
and� � � ��� �

.

In this formula,
� � � 1 ' � �"!#� are the transition probabilities before learning and

� � 0 is a constant whose
magnitude indicates the confidence that one has in the initial probabilities. If

�
were set to zero, then the

original re-estimation formula A9 resulted. If
�

were set to infinity, then the transition probabilities did not
change at all. For us,

� � 1 works well. It makes the probabilities change sufficiently while avoiding the
problems of frequency-based estimates.

3.3.4.3 GROW-BW

The Baum-Welch method and the extensions we have made can improve the probabilities of a POMDP, but
never change its structure. This is desirable since it guarantees that the improved POMDP always conforms
to the topological map. It also poses a problem, however, because the distance model is partly encoded in
the structure of the POMDP. In particular, the possible lengths �$� : � � � � � � ���
� � � (� ���<; of some corridor �
are determined by the structure, while the probability distribution

� � over � is determined by the transition
probabilities. Consequently, the extended Baum-Welch method cannot assign a positive probability

� � � ��� to
lengths ���� : � � � � � �����
� � � (� ���<; . Thus, it cannot learn the true length � � ��� 	 � � � if it is not within the bounds.
Estimating a lower bound � � � � � � � on � � � � 	 � ��� is easy even if the bounds are unknown: We can use the smallest
positive length according to our discretization granularity. Estimating an upper bound � � � (� � � on � � � � 	 � ��� is
harder: We could, of course, estimate a ridiculously large value, but this has the drawback that the POMDPs
become very large – and so do the running time and memory consumption. Since these factors determine the
tractability of POMDP learning methods, we investigate learning methods that are able to actually change the
structure of the POMDP.

Alternatives to the Baum-Welch method for learning POMDPs are described in [Chrisman, 1992, Stolcke
and Omohundro, 1993, McCallum, 1995a], among others. These methods are able to change the structure
of a POMDP, but have the disadvantage that they either require a long execution trace, learn task-specific
representations only, or cannot utilize prior knowledge. Consequently, we have designed a novel learning
method that we call the Grow Baum-Welch Method (GROW-BW) [Koenig and Simmons, 1996e]. GROW-BW
achieves its power by utilizing the regularities in the structure of the POMDPs used by the POMDP-based
navigation architecture. It takes advantage of the fact that the extended Baum-Welch method learns a good

120 Chapter 3. Acting with POMDPs

GROW-BW uses the following parameters: � �
0
�
1
�
2
�������

; � �
0
�
1
�
2
��������� � ; � �

0
�
1
�
2
�������

, and � � �
0
�
1
�
. In its simplest

form, it uses � � � � � �
0 and a small positive value for � . It then operates as follows:

1. For each corridor � : set � � ����� � � := � � � � � &�� & 1. (If a lower bound � � � � � on � ����� � � � � is not known, use � � � � � � 1.)

2. Compile the POMDP (Section 3.3.2).

3. Use the extended Baum-Welch method on the POMDP and the given execution trace to determine improved � � � � � for all
corridors � and lengths � with � � � � ��� � � � � ��� � � � (Section 3.3.4.2).

4. For each corridor � : if (�
	 �
� ��� �	��� � � � � � � �� � , then set � � ��� � � � := � � ��� � � � &��'& 1.

5. If any � � ��� � � � was changed in Step 4, then go to Step 2, else stop.

Figure 3.35: GROW-BW

8 meters

Figure 3.36: An Example of Myopic Effects

POMDP for the given structure, even if the structure is incorrect. This allows GROW-BW to start with a
small POMDP, learn the best probabilities for that structure, see if the resulting model is “good enough,”
and grow the corridor lengths if not: For each corridor, GROW-BW starts with a small interval of possible
lengths. It then compiles a POMDP for these lengths and uses the extended Baum-Welch method to assign
probabilities to the lengths. If the possible lengths do not include the true length of the corridor, then the
extended Baum-Welch method likely places a large amount of probability on the largest possible lengths.
Therefore, if this probability mass exceeds a given threshold, GROW-BW increases the range of possible
lengths for this corridor and repeats the procedure. Using GROW-BW is advantageous if no upper bounds
on the corridor lengths are available (for example, because the distance model is completely unknown), if the
given bounds might not include the true corridor lengths, or to avoid having to consider a large number of
possible corridor lengths when the bounds are loose (� � � (� ����� ��� � � � ���).
In the following, we describe GROW-BW in more detail and explain its parameters - , � , and � (all
nonnegative integers) and its parameter � (a probability). - determines how many possible lengths to
consider initially, � determines how many of the largest possible lengths to consider when calculating the
probability mass, � is the probability threshold that triggers growing the range of possible lengths, and �
specifies how many additional lengths to consider during the next iteration. GROW-BW starts with a small
value � � � (� ��� , not necessarily an upper bound on � � ��� 	 � ��� , and grows it if necessary until there is a high
probability that � � ��� 	 � ���$� : � � � � � � ���
� � � (� ���<; (Figure 3.35). If no bounds on � � ��� 	 � ��� are known, GROW-
BW initially considers all lengths from one to - 5 2. It then compiles a POMDP and uses the extended
Baum-Welch method to learn the probabilities of that POMDP. Since it is easier for GROW-BW to determine
the new probability distribution over the possible lengths if no self-transitions are present, we change the
POMDP-compilation component so that it does not model dead-reckoning uncertainty with self-transitions.
As a consequence, � � � � 	 � � � now refers to the perceived length of corridor � , which includes the dead-reckoning
error of the robot. If � � ��� 	 � ��� is larger than � � � (� ��� , the extended Baum-Welch method likely places a high
probability mass on the largest lengths considered. GROW-BW therefore adds up the probabilities assigned
to the � 5 1 largest lengths considered. If the resulting probability mass is at least as large as the given
threshold � , GROW-BW increases � � � (� ��� by � 5 1. It then adds � 5 1 new parallel chains (Figure 3.12(b))
to the corridor and repeats the whole procedure. This way, if the initially chosen range of lengths was too
small, it can be increased to include the true length of the corridor. GROW-BW could be modified to not
increase � � � (� ��� if the evidence that corridor � was actually traversed is small.

GROW-BW is a hill-climbing method and, thus, can suffer from myopic effects. Consider the most myopic

3.3. The POMDP-Based Navigation Architecture 121

f

f

f

f ff

f

f f

ff

f

f

f

Figure 3.37: A Corridor with Self-Transitions

version of GROW-BW, that uses the parameter values - � � � � � 0. To simplify our argument, assume
that a robot with perfect actuators and almost perfect sensors moves back and forth in the main corridor of the
corridor environment shown in Figure 3.36. If � � � (� ��� � 4 for all corridors of the main corridor, then the best
fitting model is the one where all traversed corridors are four meters long. The robot expects to see corridor
openings every four meters, but sees them only every eight meters. For the purpose of the example, we
assume that corridors are one meter wide and do not distinguish between small, medium, or large openings.
If W denotes a wall and O a corridor opening, then

expected: OWWWO WWWOWWWOWWWO
observed: OWWWWWWWOWWWWWWWO

Thus, assuming almost perfect sensors, the model cannot explain four observations on each round-trip, and no
distance model whose corridors are at most four meters long can do better. This leads GROW-BW to increase
��� � (� ��� to five meters for all traversed corridors. However, at this point the model where all corridors are four
meters long is still among the models that, of all models considered, explain the observations best. Another
such model is the one where adjacent corridors of the main corridor alternate between lengths three and five.
If the extended Baum-Welch method learns the former model, then GROW-BW stops without having learned
the true lengths of the corridors.

Notice that we have constructed this example artificially. Despite the theoretical limitations of hill-climbing,
our experience with GROW-BW is that it appears to work well in practice. We attribute this to architectural
features of buildings – they are usually constructed in ways that prevent people from getting lost, which
appears to dampen myopic effects. However, it is possible that a problem similar to the one described could
show up in conjunction with doors along a corridor. We therefore recommend to use a less myopic version of
GROW-BW by setting the parameters - , � , and possibly � to values that are larger than the typical distance
between adjacent doors. Similarly, � has to be chosen small enough to prevent GROW-BW from terminating
prematurely.

If � � ��� 	 � ��� � ��� � (� ��� , the execution traces can be inconsistent with the POMDP, in the sense that the model
cannot explain the experience. One problem this might lead to is that the pose-estimation component of the
POMDP-based navigation architecture may rule out all possible poses, leading the robot to become totally
uncertain as to where it is. The robot then has to explicitly re-localize itself, which may take a fair amount of
time. Another problem is that learning can no longer take place. As an example, consider again the corridor
environment shown in Figure 3.36 and assume that the robot traverses the main corridor from beginning to
end for a total distance of 40 meters. This, however, is impossible according to a model that assumes that
� � � (� ��� � 4 for all corridors of the main corridor. We avoid this problem by having the POMDP-compilation
component add self-transitions with a small transition probability � (an additional parameter of GROW-BW)
in both directions of the longest chain in the POMDP representation of each corridor (Figure 3.37). This
way the probability

� � � ��� for every length � with � � � � � � ��� is positive. This does not mean, of course, that

122 Chapter 3. Acting with POMDPs

Corridor Environment

c8

c7

c10

c6

c3

c1

c4

c9

c5

c2

c 2
1

c 1
8

c 1
4

c 1
2

c 1
9

c 1
5

c 1
6

c 1
3

c 1
1

c 2
0

c 1
7

4 4

4

4 4 4

4 4 4

8
5

8
5

4
4

5

4
5

4

5 5

True Lengths: ltrue(c) (in meters)

Figure 3.38: Corridor Environment

GROW-BW is no longer needed. Using such a POMDP directly with the extended Baum-Welch method would
not work very well if � � ��� 	 � ��� � ��� � (� ��� , because only the probabilities

� � � ��� for ��� � � � ����� � ��� � (� ��� can
be specified individually. The probabilities for � � � (� ����� � are completely determined by these probabilities
since they are exponentially decreasing according to the following formula:

� � � � �
 ��
1

� �
�
� � � � � ��� � /�� � � � � �	� �

� � � � � ���� �
1

�	� � � � � � � ��� �	��� �

3.3.4.4 Experiments

We perform all experiments in the Xavier simulator with an environment that has a more complex topology
than what we have available in our building, but the learning methods can be used unchanged on Xavier
itself, since the only difference is how the execution traces are generated, via Xavier or its simulator. For all
experiments, we use the prototypical, but locally ambiguous, corridor environment shown in Figures 3.29 and
3.38. This environment has fifteen topological nodes and twenty-one edges. It has many parallel corridors
and indistinguishable corridor junctions, which amplifies the perceptual aliasing problem. Since the POMDP
discretizes the possible lengths of corridors with a precision of one meter, the environment matches this
assumption: All lengths are multiples of one meter. This way, the true distances can be represented by the
learning methods, which allows us to evaluate them better. We use the following obvious equality constraints
between the corridor lengths. These constraints are not necessary for the learning methods, but they increase
the quality of the learned models if the number of traversals of each corridor is small:

� ����� � � �
1

�
 � ����� � � �
3

�
 � ����� � � �
6

�
 � ����� � � �
10

�
� ����� � � �

2

�
 � ����� � � �
5

�
 � ����� � � �
9

�
� ����� � � �

4

�
 � ����� � � �
7

�
 � ����� � � �
8

�
� ����� � � �

11

��
 � ����� � � �
13

�
� ����� � � �

12

��
 � ����� � � �
14

�
 � ����� � � �
18

�
 � ����� � � �
21

�
� ����� � � �

15

��
 � ����� � � �
19

�

3.3. The POMDP-Based Navigation Architecture 123

� ����� � � �
17

��
 � ����� � � �
20

�

The only information that the robot has available is the topological map, the motion and sensor reports, and the
equality constraints between the lengths. Given this information, the task of the robot is to refine the structure
and probabilities of the POMDP, that is, to learn better actuator, sensor, and distance models. However, we
do not inform it about its start pose, its route, or its destination. Instead, we let it gain experience with the
environment by guiding it through the corridors. This learning task is a bit harder than learning during actual
office navigation, since the robot does not even know its approximate start pose.

The experimental results illustrate that our learning methods are able to acquire good actuator, sensor, and
distance models even with only a small execution trace. The resulting models help the robot to determine its
pose more accurately and to navigate more efficiently and reliably. This illustrates that the learning methods
can learn during office navigation even if they are not sure whether the robot follows the desired path to the
goal.

The environment that we use to evaluate the learning methods is relatively small. This makes it possible to
use learning methods whose running time is exponential in the length of the execution trace, for example
learning methods that match the routes probabilistically against the topological map, possibly combined with
branch-and-bound methods to prune the search space. The extended Baum-Welch method and GROW-BW
have two advantages over these learning methods: First, the models that they learn (POMDPs) can directly
be used by our probabilistic planning and acting methods. Thus, there is no need for a model transformation
that might degrade the quality of the learned models. Second (and more importantly), the running time of our
learning methods is only polynomial in the length of the execution trace (and the size of the POMDP).

3.3.4.4.1 Experiments with the Extended Baum-Welch Method For the experiments with the extended
Baum-Welch method we use a uniform distributionover the lengths from two to nine meters for each corridor,
yielding a POMDP with 2,472 states. This allows the extended Baum-Welch method to learn all lengths since
they are all between four and eight meters long. Unless stated otherwise, we use the extended Baum-Welch
method with a minimal look-ahead of five time steps and a window size of twenty time steps resulting in
an average actual look-ahead of twelve time steps for long execution traces. This results in an overhead of
calculating each beta value on average 1.3 times (instead of once) and a small amount of bookkeeping for
maintaining the time window.

First Experiment: In the first experiment, we simultaneously learn the actuator, sensor, and distance models
using an execution trace that consists of ten smaller execution traces with various start poses of the robot, that
the robot is not informed about. In total, every corridor is traversed five times. The purpose of this experiment
is to learn good actuator and sensor models for use in the subsequent experiments.

Figure 3.39 lists the learned sensor model together with the human estimates that the POMDP-based navigation
architecture used originally. Open and closed doors are omitted, since they do not appear in the environment.
Notice that the “left” and “right” sensors are reasonably accurate when they issue a report. The relatively
high probability of reporting feature unknown is due to the sensors being quite conservative: They do not
report features until they have collected sufficient evidence. It is also partly due to the fact that the sensor-
interpretation component is implemented as an asynchronous process, and the execution trace fills in an
unknown whenever the sensor-interpretation component is not able to issue a report to the pose-estimation
component in time. Learning makes this problem less severe by changing the meaning of unknown.
Initially, for example, the state distribution remains unchanged when the “left” sensor reports unknownwith
probability one. After learning, however, states in which there is a corridor opening to the left of Xavier
become more likely when “left” sensor reports unknown because the sensor-interpretation component issues
this report frequently in these cases.

Second Experiment: The second experiment holds the previously learned actuator and sensor models constant
and learns the distance model again (from scratch), this time using an execution trace that is generated by

124 Chapter 3. Acting with POMDPs

“left” and “right” sensors original human estimates learned probabilities
reality reality

sensor report wall near-wall opening wall near-wall opening
wall 0.90 0.54 0.05 0.784432 0.669705 0.010528
small-opening 0.03 0.01 0.20 0.000010 0.000010 0.001762
medium-opening 0.02 0.15 0.40 0.000649 0.000010 0.146208
large-opening 0.01 0.25 0.30 0.001779 0.000010 0.291644
unknown 0.05 0.05 0.05 0.213130 0.330265 0.549859

“front” sensor original human estimates learned probabilities
reality reality

sensor report wall near-wall opening wall near-wall opening
wall 0.98 0.50 0.02 0.034271 0.057838 0.000010
unknown 0.02 0.50 0.98 0.965729 0.942162 0.999990

Figure 3.39: Original and Learned Sensor Probabilities

4 4

4

4 4 4

4 4 4

8
5

8
5

3
4

5

4
5

4

5 5

Learned Lengths: arg maxl pc(l)
(one corridor traversal each)

4 4

4

4 4 4

3 4 3

7
5

8
5

4
4

5

4
4

4

4 5

Learned Lengths: arg maxl pc(l)

(without equality constraints)
(two corridor traversals each)

most probable length most probable length = true length

most probable length most probable length ≠ true length

Figure 3.40: The Distances Learned by the Extended Baum-Welch Method

traversing every corridor only once, resulting in two execution traces with different start poses each, that
the robot is not informed about (there is no single path that traverses every corridor exactly once). The
extended Baum-Welch method needs fifteen iterations to converge and produces the distance model shown
in Figure 3.40 (left), that is determined by the most probable length for each corridor. Even with only one
traversal per corridor, the learned distance model is very accurate: The extended Baum-Welch method makes
only one mistake, where it counts as a mistake if the most probable corridor length is not its true length. In
general, it is our experience that the Baum-Welch method can learn good models with about one to three
traversals of each corridor, depending on how confusing the environment is. Although the dead-reckoning
error of the robot is not overly large, we cannot expect the Baum-Welch method to learn the corridor lengths
perfectly: The estimates are actually the perceived lengths, and the perception can be distorted by dead-
reckoning uncertainty, the discretization granularity used, and how sharply the robot turns within corridor
junctions, which may change the distance traveled along the corridors by up to a meter.

While we can compare the learned corridor lengths against the true lengths, we cannot do the same

3.3. The POMDP-Based Navigation Architecture 125

1 � ��� �
ln � � � 1 � � � � � � 1 � � � � � 1

� & ln � � can execute � 1 � � � � � 1
�!�

“how well a model explains (or, synonymously, generates) an execution trace”
(closer to zero is better)

actuator and sensor models
distance model original learned
original -3.188194 -1.917637
learned -2.917535 -1.684340

Figure 3.41: The Quality of the Learned Models: Fit

1 � � � ln � � � ��� (� �
1 � � � � (
���
 �$�"�#� ln

�
 �<�"�#�� �
“how certain the robot is about its pose”

(closer to zero is better)

actuator and sensor models
distance model original learned
original -0.101616 -0.050821
learned -0.049178 -0.044137

Figure 3.42: The Quality of the Learned Models: Entropy

with the actuator and sensor models, since the correct models are unknown. To determine how good
the learned models are, we therefore calculate how well they fit a (different) long evaluation execution
trace. We use 1 � � �

�
ln
� � � 1 � � � � ' ! 1 � � � � � 1 � 5 ln

� �
can execute ! 1 � � � � � 1 �
� as a transformation of the fit� � � 1 � � � � ' ! 1 � � � � � 1 � � � can execute ! 1 � � � � � 1 � that makes it independent of the length of the execution trace.

Learning improves the models if the value of this transformation gets closer to zero. Figure 3.41 shows
that this is indeed the case both for the learned actuator and sensor models alone, for the learned distance
model alone, and for their combination. To determine how much the learned models improve Xavier’s on-line
pose-estimation capabilities and thus its office-navigation performance, we calculate the average entropy of
the alpha values (the pose distributions used during office navigation) after every action execution of the
evaluation execution trace, that is, 1 � � � ln ' � ' � � (� � 1 � � � � (�*),+ : � � � ��� ln

�
� � � ��� �!; . The entropy is a measure

for how certain the robot knows its current pose, ranging from zero (absolute certainty at every point in time)
to minus one (absolute ignorance, a uniform state distribution). If learning improves the models, we expect
the entropy to get closer to zero, resulting in improved on-line pose estimates and thus better office-navigation
performance. Figure 3.42 shows that this is indeed the case.

Third Experiment: To test the power of the equality constraints, we repeat the second experiment without
them except that we require each corridor to be equally long in both directions. The model learned in this
experiment has six corridors where the most probable length is not the correct one. Even if we use an execution
trace that is twice as long (starting with the original execution trace), the result does not improve dramatically.
Figure 3.40 (right) shows the learned distance model. There are still five corridors where the most probable
length is not the correct one. Thus, the distance model is inferior to the distance model learned in the second
experiment, despite the longer execution trace. We conclude that equality constraints are an effective means
for reducing the length of the execution trace required to learn good models.

3.3.4.4.2 Experiments with GROW-BW For the experiments with GROW-BW we assume that no dis-
tance information is available. Again, we guide the robot through every corridor once and do not inform it
about its start pose.

First Experiment: Our first experiment is similar to the second experiment in the previous section. It uses the
extended Baum-Welch method directly. To make sure that it is able to learn the true lengths of the corridors,

126 Chapter 3. Acting with POMDPs

4

4

4

4

4

4

4

4

4

4

5555

55

4

88

44

Learned Lengths: arg maxl pc(l)
(one corridor traversal each)

2 - 5

2 - 5

2 - 5

2 - 5

2 - 5

2 - 5

2 - 5

2 - 5

2 - 5

2 - 5

2
-

7

2
-

7

2
-

7

2
-

7

2
-

7

2
-

7

2
-

9

2
-

9

2
-

9

2
-

7

2
-

7

Final Length Intervals for GROW-BW: lmin(c) - lmax(c)

most probable length most probable length = true length

most probable length most probable length ≠ true length

Figure 3.43: The Distances Learned by GROW-BW

we estimate their minimal and maximal lengths cautiously to guarantee that � � ��� 	 � ���%� : ��� � � � �����
��� � (� ���!; .
We use ��� � � � ��� � 2 meters and � � � (� ��� � 14 meters for every corridor � . The resulting POMDP has 6,672
states and 80,346 state transitions (action outcomes). Figure 3.43 (left) depicts the lengths with the largest
probability

� � � � � in the learned model: All 21 predicted lengths correspond to the true lengths.

Second Experiment: Our second experiment uses GROW-BW with the parameters - � 0, � � 0, � � 1,
� � � � 0 � 05, and ��� � � � ��� � 2 meters for all corridors. That is, the initial estimate for every corridor is
��� � (� ��� � 3 meters and, if GROW-BW extends a length, it increases it by two meters. GROW-BW assumes
a uniform probability distribution over the possible lengths. Given this information, GROW-BW needs only
four iterations to converge. Figure 3.43 (right) shows � � � � � ��� and � � � (� ��� for each corridor � in the final
model. The corresponding POMDP has only 1,176 states and 16,260 state transitions, and is thus much
smaller than the POMDP from our first experiment. This results in GROW-BW being 1.84 times faster than
the extended Baum-Welch method to learn the same model, although it has to call the extended Baum-Welch
method repeatedly. The probabilities

� � � ��� that GROW-BW learns are similar to those learned in the first
experiment, and the lengths with the largest probability

� � � ��� are even identical: Again, all lengths are learned
correctly.

We repeat both experiments eight more times with different robot routes. The results are summarized in
Figure 3.44. A mistake in the column “corridors” indicates that, after learning, the length with the largest
probability among all lengths in : � � � � � ��� � � � � (� ���!; is not the correct one. If a group of corridor lengths are
constrained to be equal, then a mistake counts multiple times in the column “corridors.” The column “groups”
is identical to the column “corridors” except that we count only one mistake per group. In general, the more
ambiguous the routes are (the harder it is to match them against the topological map), the more mistakes the
learning methods make. In all experiments, both the extended Baum-Welch method and GROW-BW learn
good (although not perfect) distance models with only one traversal of each corridor and err by only one meter
when they make a mistake. The predicted corridor lengths are always identical.

The experiments show that the sizes of the POMDPs produced by GROW-BW are roughly between four and
six times smaller than the size of the POMDP that we used in conjunction with the extended Baum-Welch
method. As a result, GROW-BW is almost two times faster than the extended Baum-Welch method.3 Thus,

3The seventh experiment in Figure 3.44 is an exception. It contains a highly ambiguous execution trace and GROW-BW expands the

3.4. Related Work 127

mistakes of mistakes of improvement improvement
ext. Baum-Welch GROW-BW in the number in running time

corridors groups corridors groups of states
(out of 21) (out of 8) (out of 21) (out of 8)

1 0 0 0 0 4.79
�

1.80
�

2 0 0 0 0 4.46
�

1.76
�

3 0 0 0 0 5.67
�

1.67
�

4 5 2 5 2 5.67
�

2.08
�

5 5 2 5 2 5.20
�

1.99
�

6 0 0 0 0 5.20
�

1.97
�

7 3 2 3 2 3.66
�

0.53
�

8 0 0 0 0 5.20
�

1.78
�

Figure 3.44: A Comparison of GROW-BW and the Extended Baum-Welch Method

route 1
route 2
route 3
route 4
route 5
route 6

X

route 7

3 meters

Figure 3.45: A Long Corridor with Doors

GROW-BW produces results similar to those of the extended Baum-Welch method, but works on much
smaller POMDPs and therefore needs less memory space and often less running time. We could also augment
GROW-BW with a post-processing step that prunes the final POMDP, thus making it even smaller.

3.3.4.4.3 Further Experiments The extended Baum-Welch method has been used successfully to learn
in more complex environments than the one used here. Consider, for example, the slightly more difficult
corridor environment shown in Figure 3.45. The robot traverses a long corridor and has to learn the distances
between adjacent doors and corridors. We let it traverse parts of the corridor seven times such that it passes
each topological node a total of about three times. However, we do not inform the robot of its start poses, the
status of the doors (all of which are open), or any distance constraints except that we require each corridor to
be equally long in both directions. The initial distance uncertainty from one landmark to the next is given as
a uniform distribution over the lengths from one to ten meters. Notice that none of the traveled routes contain
turn actions. Thus, each of them can be matched in numerous ways against the topological map. Furthermore,
doors are hard to detect: The robot cannot detect closed doors, misses open doors 22 percent of the time, and
can confuse them with corridor openings. Nevertheless, the extended Baum-Welch method, using a minimal
look-ahead of twenty time steps, learns all distances but two correctly: It places the corridor marked X one
meter to the left of its correct position.

3.4 Related Work

There are several other approaches that use Markov models for office navigation: Dean et al. [Dean et al., 1993]
use Markov models, but, different from our approach, assume that the location of the robot is always known
precisely. Nourbakhsh et al. [Nourbakhsh et al., 1995] use models that are similar to Markov models. They
do not assume that the location of the robot is known with certainty, but do not utilize any distance information.

upper bound of one corridor to a length of 21(!) meters, which requires ten iterations. We could not replicate this phenomenon when we
used execution traces that traversed each corridor more than once.

128 Chapter 3. Acting with POMDPs

The states of the robot are either at a topological node or somewhere in a connecting corridor. Burgard et al.
[Burgard et al., 1996] (University of Bonn) also use Markov models that do not assume that the location of the
robot is known with certainty, but derive the Markov models from a very fine-grained tessellation of metric
space. Cassandra et al. [Cassandra et al., 1996] (Brown University) use Markov models similar to ours, but
assume that the distances are known with certainty. Other researchers who are experimenting with POMDP-
based navigation architectures similar to ours include Asoh et al. (Electrotechnical Laboratory, Ministry of
International Trade and Industry, Japan), Mahadevan (Michigan State University), Murphy (Colorado School
of Mines), and Gutierrez-Osuna (North Carolina State University).

The extended Baum-Welch method and GROW-BW, our learning methods, learn quantitative information
that is difficult to obtain from humans (actuator, sensor, and distance models), but are able to utilize a large
variety of qualitative and quantitative information that humans can easily provide. Since then, Shatkay and
Kaelbling [Shatkay and Kaelbling, 1997] also applied the Baum-Welch method to map learning. In contrast
to our approach, many traditional map learning approaches attempt to learn maps from scratch, not utilizing
prior knowledge that is easily available. Furthermore, GROW-BW is a passive learning method, while many
traditional map learning methods are active learning methods. In particular, most other approaches in the
literature use active exploration to learn either metric or topological maps from scratch (sometimes assuming
perfect actuators or sensors) with the goal to either map the environment completely or reach a given goal
pose. Approaches whose properties have been analyzed formally, for example, include [Iyengar et al., 1986,
Oommen et al., 1987, Rao et al., 1991, Lumelsky et al., 1990, Zelinsky, 1992]. Approaches that have been
illustrated experimentally include [Kuipers and Levitt, 1988, Mataric, 1990, Thrun, 1993]. The approaches
in [Basye et al., 1989] and [Dean et al., 1992] learn Markov models of the environment, as we do, but they
use active exploration, while our approach is passive. The learning approach in [Engelson and McDermott,
1992] uses a passive learning approach, but it learns a topological map only. These approaches also differ
from our learning method in that they learn their models from scratch.

3.5 Future Work

In this chapter, we reported first experiments with the POMDP-based navigation architecture. It is important
that more experience be gained with this architecture, both on different robots and in different environments.
This will happen automatically since other researchers are working with the POMDP-based navigation
architecture already. Also, the architecture has already been used to conduct Ph.D. level work by others, for
example in [Haigh, 1995] and [Goodwin, 1997].

Currently, the weakest spots of the architecture are the POMDP planning methods. We have not spent
much time on them since the greedy POMDP planning methods work well in our office environment and
more sophisticated POMDP planning methods are currently being investigated by other researchers. One
can construct environments that confuse the greedy POMDP planning methods, for example, by providing
no initial knowledge about the starting pose of the robot. Therefore, we would like to use slightly more
computationally intensive POMDP planning methods that produce solutions of better quality, and thus provide
a trade-off between running time and solution quality that mediates between optimal and greedy POMDP
planning methods. While this could be done without a specific application in mind, it is probably best done
in the context of the office-navigation task, since the office-navigation task defines which solutions are of
acceptable quality and allows POMDP planning methods to exploit the structure of the POMDP to obtain
these solutions efficiently. However, any novel approximate POMDP planning methods, whether developed
by us or other researchers, can be used unchanged in the context of the office-navigation task.

The learning methods (the extended Baum-Welch method and GROW-BW) could be extended as well. We
have assumed that they can be provided with a correct topological map. Although this is a realistic assumption
for many robot learning scenarios, weakening it broadens the application area of our methods. We thus would
like to extend our learning methods to be able to detect and correct inaccurate prior knowledge. For example,
we want them to be able to correct slightly incorrect topological maps and, if necessary, learn them from

3.6. Conclusions 129

scratch. For the latter task it should be possible to combine them with the passive topological map learning
method in [Engelson and McDermott, 1992] to extend the applicability of our learning methods to scenarios
where a topological map is not available at all. It would also be interesting to investigate GROW-BW in the
context of applications other than robot navigation.

3.6 Conclusions

This chapter presented a navigationarchitecture that uses partially observable Markov decision process models
(POMDPs) for autonomous office navigation. POMDPs have been studied in operations research and provide
a uniform, theoretically grounded framework for acting, planning, and learning. While we cannot use existing
POMDP methods unchanged, we can build on previous work. Our POMDP-based navigation architecture
provides for reliable and efficient navigation in office environments, even in the presence of noisy actuators
and sensors as well as distance uncertainty.

The POMDP-based navigation architecture maintains a probability distribution over all poses, rather than a
single estimate for the current robot pose. This way, the robot always has some idea as to what its current
pose is. The POMDP-based navigation architecture uses probabilities to model actuator, sensor, and distance
uncertainty explicitly, and updates the pose distribution using both motion reports and sensor reports about
landmarks in the environment. Thus, it is robust towards sensor uncertainty without explicit exception
handling. Different from Kalman filters, the POMDP-based navigation architecture discretizes the poses,
which allows it to represent arbitrary probability distributions over them.

The POMDP-based navigation architecture uses POMDP planning methods for planning and acting. Our
POMDP planning method neglects state uncertainty during planning and then accounts for it greedily during
navigation. It achieves fast and reactive robot control at average travel speeds of around 50 centimeters per
second and is robust, as illustrated by experiments that required the robot to navigate about 150 kilometers in
total.

The POMDP-based navigation architecture uses the GROW-BW method in conjunction with the extended
Baum-Welch method for unsupervised, passive learning. The extended Baum-Welch method decreases the
memory requirements of the Baum-Welch method by using a sliding time window on the training data.
It decreases the training-data requirements of the Baum-Welch method by imposing equality constraints
between probabilities and using Bayesian probability estimates instead of maximum likelihood estimates.
The GROW-BW method uses the extended Baum-Welch method as a subroutine. It is a hill-climbing method
that is able to change the structure of the POMDP. It can simultaneously learn accurate actuator, sensor, and
distance models that result in an improved office-navigation performance. The quality of the models improves
as the length of the execution trace increases, and the training data are generated in the course of normal office
navigation, without requiring a teacher or control of the robot.

We believe that probabilistic navigation techniques such as the POMDP-based navigation architecture hold
great promise for getting robots reliable enough to operate unattended for long periods of time in complex
and uncertain office environments. Applying POMDPs to office navigation also opens up new application
areas for more theoretical results in the area of planning and learning with Markov models.

130 Chapter 3. Acting with POMDPs

Chapter 4

Acting with Nonlinear Utility Functions

20cm

Planning methods have to decide which of the plans that solve a given planning task they consider best.
In other words, they have to measure the quality of plans. For example, if they just choose any plan that
solves the planning task, they implicitly assume that all solutions are equally preferable. Often, planning
methods have more sophisticated preference models. For example, the planning method studied in Chapter 2
(Min-Max LRTA*) attempted to find plans that achieve the goal with minimal worst-case plan-execution cost
and the POMDP planning methods studied in Chapter 3 attempted to find plans that achieve the goal with
minimal average plan-execution cost. In this chapter, we extend these preference models.

The preference model of most probabilistic search and planning methods from artificial intelligence is to
find plans with maximal probability of goal achievement or, if the goal can be achieved for sure, find plans
that achieve the goal with minimal average plan-execution cost. The preference model of planning methods
from robotics is often to find plans that achieve the goal with minimal worst-case plan-execution cost. Utility
theory, on the other hand, suggests a more general preference model, namely, to find plans that achieve the
goal with maximal average utility, where the utility is a strictly monotonically decreasing function of the cost.
Maximizing average utility and minimizing average cost result in the same decisions if either the domain is
deterministic or the utility function is linear. However, many domains are probabilistic. Nonlinear utility
functions are then needed for planning with deadlines and planning with risk attitudes in high-stake one-shot
planning domains. For example, when people have to decide whether they would like to get 4,500,000
dollars for sure or get 10,000,000 dollars with fifty percent probability, many people prefer the safe alternative
although its average pay-off is clearly lower – they are risk-averse. Utility theory explains this as follows: If a
person has a non-linear utility function that associates utility (here: pleasure) 0.00 with a wealth of 0 dollars,
utility 0.74 with a wealth of 4,500,000 dollars, and utility 0.95 with a wealth of 10,000,000 dollars, then the
average utility of getting 4,500,000 dollars for sure is 0.74, whereas the average utility of getting 10,000,000
dollars with fifty percent probability is only 0.48. Thus, the safe alternative maximizes the average utility for
this person. Similarly, the utility of a delivery can be a non-linear function of the delivery time.

We study how to find plans efficiently that achieve the goal with maximal average utility for nonlinear
utility functions in probabilistic domains. We focus on one particular class of nonlinear utility functions,
namely, exponential utility functions, for the following reason: Planners that find plans that achieve the goal
with minimal average cost often decompose planning tasks into subtasks that can be solved independently.
The solutions can then be assembled into an overall solution of the planning task. This makes planning
efficient. Unfortunately, planning tasks that are decomposable with respect to average cost are not necessarily
decomposable with respect to average utility for nonlinear utility functions. Exponential utility functions are
nonlinear utility functions that preserve the decomposability of planning tasks. This allows us to generalize
the preference model of many search and planning methods from artificial intelligence without giving up
efficiency. Exponentialutilityfunctions are well suited for expressing immediate soft deadlines and expressing
a continuum of risk attitudes in high-stake one-shot planning domains, including risk-seeking behavior (such as

131

132 Chapter 4. Acting with Nonlinear Utility Functions

gambling) and risk-averse behavior (such as holding insurance). They can also trade-off between minimizing
the worst-case, the average, and the best-case plan-execution cost.

We develop efficient methods that transform planning tasks with exponential utility functions to planning
tasks that many search and planning methods from artificial intelligence can solve, including those that do not
reason about plan-execution costs at all. The transformations are simple context-insensitive representation
changes that can be performed locally on various representations of planning tasks. The additive planning-task
transformation applies to planning tasks that can be solved with sequential plans (more precisely: planning
tasks whose actions have deterministic outcomes but whose rewards can be nondeterministic) and transforms
them to deterministic planning tasks. The original planning task can then be solved by finding a plan that
achieves the goal with minimal plan-execution cost for the transformed planning task. The multiplicative
planning-task transformation applies to planning tasks that can be solved with conditionalplans and transforms
them to probabilistic planning tasks. The original planning task can then be solved by finding a plan with
maximal probability of goal achievement or a plan that achieves a goal with minimal average plan-execution
cost for the transformed planning task. We illustrate the transformations using path planning for goal-directed
navigation tasks in the presence of blockages.

To summarize, we study how to act in order to maximize average utility for exponential utility functions,
including acting in the presence of deadlines and in the presence of risk attitudes in high-stake one-shot
planning domains. Our main contribution is the following: First, we apply exponential utility functions from
utility theory to robot navigation and other planning tasks from artificial intelligence. Second, we extend
the range of planning methods that find plans with maximal average utility for exponential utility functions
from dynamic programming methods from operations research to search and planning methods from artificial
intelligence, using transformations that we call additive and multiplicative planning-task transformations.
Other contributions are the following: We show how exponential utility functions can unify planning methods
that minimize worst-case, average, and best-case plan-execution cost. We also show how studying exponential
utility functions can provide an interesting interpretation for discounting.

We proceed as follows: Section 4.1 contrasts maximizing average utility with the preference models typically
used in artificial intelligence. Section 4.2 motivates the importance of nonlinear utility functions for planning
with deadlines and planning with risk attitudes in high-stake one-shot planning domains. Section 4.3 investi-
gates the problem encountered when maximizing average utility for nonlinear utility functions in probabilistic
domains, namely, the loss of decomposability. Section 4.4 introduces exponential utility functions, shows
how they solve this problem, and illustrates that they are expressive for modeling immediate soft deadlines
and modeling risk attitudes in high-stake one-shot planning domains. Section 4.5 describes our planning
methods for finding plans that achieve the goal with maximal average utility for exponential utility functions:
Section 4.5.1 discusses the additive planning-task transformation and Section 4.5.2 discusses the multiplica-
tive planning-task transformation. Section 4.6 then applies the multiplicative planning-task transformation to
Markov decision process models. Sections 4.5 and 4.6 also discuss advantages and limitations of our plan-
ning methods. Finally, Section 4.7 describes possible extensions of our planning methods, and Section 4.8
summarizes our conclusions.

4.1 Traditional Approaches

Plans in probabilistic domains can have more than one chronicle, where a chronicle is a specification of the
state of the world over time, representing one possible course of execution of the plan.

We partition the state space into goal states and nongoal states. If the agent stops in a goal state, it has solved
the planning task or, synonymously, achieved the goal, otherwise it has not achieved the goal. A plan achieves
the goal if all of its chronicles achieve the goal, otherwise the plan does not achieve the goal.

Although the agent cannot determine apriori which chronicle results from the execution of the plan, it is often
(but not always, see Chapter 2) realistic to assume that it is able to determine the probabilities with which the
chronicles occur and the amount of resources consumed during their execution. We consider planning tasks
with exactly one limited resource (such as time, energy, or money). The cost of a chronicle then is the amount

4.1. Traditional Approaches 133

Preference Model C1
find a plan that achieves the goal

Preference Model C2
find a plan that achieves the goal

Preference Model C3
find a plan

Preference Model C4
find a plan that achieves the goal

Preference Model C5
find a plan that achieves the goal

deterministic domains

probabilistic domains

in
cr

ea
si

ng
 g

en
er

al
ity

with maximal reward

with maximal average reward

with maximal average utility

with maximal probality of goal achievement

A B

A B

the plan determined by B for every planning task that A can handle satisfies A

every planning task that A can handle can be transformed so that the plan determined
by B for the transformed planning task satisfies A for the original planning task

Figure 4.1: Preference Models for Planning Tasks

of that resource consumed. To be consistent with the terminology of the previous chapters, we model the cost
as a negative reward. Thus, larger rewards (smaller amounts of the resource consumed) are preferable over
smaller rewards (larger amounts of the resource consumed).

The probability and reward of a chronicle can be calculated from the action executions and their outcomes.
We assume for now that the number of action executions is bounded for every chronicle of every possible plan
and that cyclic plans do not exist. Thus, the agent stops after a bounded number of action executions, either in
a goal state or a nongoal state. (We drop this assumption in Section 4.6.) We further assume that the rewards
of action executions and the probabilities of their outcomes are known and do not change over time and that
the rewards are bounded. The probability of a plan chronicle is calculated as the product of the probabilities
of its action outcomes. This assumes probabilistic independence. The reward of the chronicle is calculated
as the sum of the rewards of its action executions. This assumes an additive value function (which is, for
example, a reasonable assumption for resource consumptions). Since a chronicle has a bounded number of
action executions and each action execution results in a bounded reward, the reward of a chronicle is bounded
as well.

Given these assumptions, not all planning methods share the same planning objective since they use different
preference models to compare plans. In the following, we discuss common preference models and relate them
to the preference model studied in this chapter.

Preference Model C1: Traditionally, planners have been used in deterministic domains with the objective to
find plans that achieve the goal. Thus, they prefer plans that achieve the goal over ones that do not achieve
the goal. This preference model is binary since a plan either achieves the goal or does not achieve the goal.

Preference Model C2: To make the preference model richer, planners then began to associate rewards
(execution costs) with plans and preferred plans that achieve the goal with maximal reward (minimal cost).
We are interested in generalizing these preference models to probabilistic domains, where the success and
reward of a plan can vary from plan execution to plan execution. Several generalizations are possible.

Preference Model C3: When the goal cannot be achieved for sure, or it takes too long to find plans
that achieve the goal, plans are often preferred that maximize the probability of goal achievement. In
particular, if the execution of plan

� � leads with probability
� � to chronicle

�
and the chronicles

� ���
achieve the goal, then its probability of goal achievement is (�)�� � � . Planning methods that maximize
or approximately maximize the probability of goal achievement include [Bresina and Drummond, 1990,
Blythe, 1994, Goldman and Boddy, 1994, Draper et al., 1994, Kushmerick et al., 1995].

Preference Model C4: When the goal can be achieved for sure, plans are often preferred that achieve the
goal with maximal average reward. In particular, if the execution of plan

� � leads with probability
� � to a

134 Chapter 4. Acting with Nonlinear Utility Functions

chronicle with reward � � , then its average reward is � �
��� ��� := (� : � � � � ; (� � = expected reward). Even if

the goal cannot be achieved for sure, preference model C4 is often used by making every state a goal state
and then introducing a reward (measured in units of the resource consumption) for stopping in the original
goal states. The amount of this reward has to be determined empirically. The larger it is, the more important
it becomes to stop in the original goal states. Planning methods that maximize or approximately maximize
average reward include [Smith, 1988, Etzioni, 1991, Russell and Wefald, 1991, Goodwin and Simmons, 1992,
Boutilier and Dearden, 1994, Boutilier et al., 1995b] and many others.

Preference Model C5: In this chapter, we prefer plans that achieve the goal with maximal average utility,
where the utility is a strictly monotonically increasing function that maps rewards � to the resulting real-valued
utility � � � � . In particular, if the execution of plan

� � leads with probability
� � to a chronicle with reward � � ,

then its average utility is � � ��� ��� := (� : � � � � � � �<; (� � = expected utility). Notice that, different from Wellman
and Doyle [Wellman and Doyle, 1991], preference model C5 does not use utilities to explain what goals are.
Instead, it combines goals with utilities. This makes it possible to plan efficiently by using goals to direct the
search effort. In the remainder of this chapter, we always implicitly assume that utility functions are strictly
monotonically increasing in the reward.

In the following, we discuss the relationships among the various preference models, to show that preference
model C5 subsumes the other ones. Figure 4.1 summarizes the discussed relationships.

The following relationships are obvious: Preference Model C2 versus C1: Preference model C2 generalizes
preference model C1, since it continues to prefer plans that achieve the goal over plans that do not achieve
the goal. Preference Model C3 versus C1: Preference model C3 generalizes preference model C1, since
it continues to prefer plans in deterministic domains that achieve the goal over ones that do not achieve the
goal. Preference Model C4 versus C2: Preference model C4 generalizes preference model C2, since it
continues to prefer plans in deterministic domains that achieve the goal with maximal reward. Preference
Model C5 versus C2: Preference Model C5 generalizes preference model C2, since it continues to prefer
plans in deterministic domains that achieve the goal with maximal reward. This is so since the utility function
is strictly monotonically increasing and thus a larger utility implies a larger reward and vice versa.

Preference Model C4 versus C3: Preference model C4 generalizes preference model C3 for a particular
reward structure. We transform the original planning task (with preference model C3) by making every state a
goal state and introducingrewards. The reward for stopping in an original goal state is ��� 0 (the precise value
does not matter) and there are no other rewards. If a plan for the original planning task achieves a goal state
with probability

�
, then its transformation achieves a goal state with average reward

�
�	�25 �

1 4 � � � 0 which is
proportional to

�
. Thus, a larger probability of goal achievement always implies a larger average reward, and

vice versa. Consequently, a planner with preference model C4 determines a plan for the transformed planning
task that maximizes the probability of goal achievement for the original planning task. This generalizes
preference model C3, since it continues to prefer plans that maximize the probability of goal achievement.

Preference Model C5 versus C4: Preference model C5 generalizes preference model C4 for particular utility
functions, namely, all linear utility functions � � � � � � � � 5 & with � � 0. Then, the average utility of plan� � is � � ��� ��� � � � � �

��� ��� 5 & which is proportional to � �
��� ��� . Thus, a planner with preference model C5

determines a plan that achieves the goal with maximal average reward. This generalizes preference model
C4, since it continues to prefer plans that achieve the goal with maximal average reward.

In the following, we show that preference model C5 is more general than preference model C4 because, for
nonlinear utility functions in probabilistic domains, a plan that achieves the goal with maximal average utility
does not necessarily maximize the average reward, and vice versa. As an example, we use path planning for
the goal-directed navigation tasks from the previous chapter and assume that the only limited resource is the
travel time of the robot. In this example, the planning uncertainty results from external events, namely, people
opening and closing doors. Goodwin [Goodwin, 1997] uses this example in the context of preference model
C4.

Example 1: Consider the simple navigation task shown in Figure 4.2. The robot drives at speed � meters
per second and can take either Path 1 or Path 2, both of which solve the navigation task. If the robot takes

4.1. Traditional Approaches 135

x

y

zdoor
start goalPath 2

Pa
th

 1

Figure 4.2: Navigation Example

Path 1, it reaches the goal location in � � � seconds for sure. Thus, it receives reward �
��� ! � � 1 � � 4 � � � with

probability
� ��� ! � � 1 � � 1. Path 2 leads through a door that the robot is not able to open. The robot does not

know whether the door is open or closed, but it knows that the door is usually open with probability
�

1
��� ! � � 2 �

and closed with probability
�

2
��� ! � � 2 � � 1 4 � 1

��� ! � � 2 � and that it can find out about the state of the door by
using its sonar sensors, which requires it to move close to the door. If the robot takes Path 2, then the door
is open with probability

�
1
��� ! � � 2 � and the robot reaches the goal location in

�- 5��,� � � seconds and thus
receives reward � 1

��� ! � � 2 � � 4 �- 5��,� � � . With the complementary probability
�

2
��� ! � � 2 � the door is closed

and the robot has to return to its starting position and take Path 1 to the goal. In this case it reaches the goal
location in

�
2
- 5 �,� � � seconds and thus receives reward � 2

��� ! � � 2 � � 4 �
2
- 5 �,� � � . To make the example

more concrete, assume that
�

1
��� ! � � 2 � � � 2

��� ! � � 2 � � 0 � 50,
- � 29 meters, � � 86 meters, � � 1 meter, and

� � 0.25 meters per second. Then, Path 1 reaches the goal in 344.00 seconds with probability 1, and Path 2
reaches the goal in 120.00 seconds with probability 0.50 and in 576.00 seconds with probability 0.50.

Preference model C4 decides between Path 1 and Path 2 as follows: The (average) reward of Path 1 is 4 344 � 00
seconds and the average reward of Path 2 is 0 � 50 �

� 4 120 � 00 � 5 0 � 50 �
� 4 576 � 00 � � 4 348 � 00 seconds.

Consequently, preference model C4 chooses Path 1 over Path 2.

Preference model C5 decides between Path 1 and Path 2 as follows: Assume that the utility function is
� � � � � �

21 � 300 � � , where � is the negative travel time of the robot, measured in seconds (the negative travel
time of Path 1 is, for example, 4 344 � 00 seconds). We justify this particular utility function in Section 4.2.1.
The average utility of Path 1 from Example 1 is � � 4 344 � 00 � � 0 � 45. The average utility of Path 2 is
0 � 50 � � � 4 120 � 00 � 5 0 � 50 � � � 4 576 � 00 � � 0 � 51. Thus, preference model C5 chooses Path 2 over Path 1,
contrary to most path planners and other search and planning methods from artificial intelligence.

Instead of using preference model C5 directly, we often use an equivalent preference model. In the following,
we discuss this preference model and why it sometimes has advantages.

Preference Model C5 (alternative version): We prefer plans that achieve the goal with maximal certainty
equivalent, where the certainty equivalent of plan

� � is � � ��� ��� := � � 1 � � � ��� ��� � (� � = certainty equivalent).
Again, the utility is a strictly monotonically increasing function that maps rewards � to the resulting real-
valued utility � � � � and thus its inverse (denoted by a superscript of minus one) is a strictly monotonically
increasing function that maps utilities to their corresponding rewards. An agent with preference model C5 is
indifferent between a plan and a deterministic plan (that is, obtaining a certain reward for sure) if and only if
the reward of the deterministic plan is the same as the certainty equivalent of the other plan. This explains the
name of this concept from utility theory. (Notice that the certainty equivalent of deterministic plans is their
(average) reward.)

Since the utility function is strictly monotonically increasing, a larger certainty equivalent always implies a
larger average utility, and vice versa. Thus, a planner that achieves the goal with maximal certainty equivalent
determines a plan that achieves the goal with maximal average utility, and vice versa. The advantage of
certainty equivalents over average utilities is that differences in certainty equivalents are meaningful whereas
differences in utility are meaningless. We explain this in the following.

Utilities are defined only up to positively linear transformations, where a positively linear transformation of a
function + is a function � such that there exist real constants � and & with � � 0 and � �!- � � � � + �!- � 5 &
for all

-
. Consequently, all utility functions � � � � � � 5 & with � � 0 are equivalent. The difference in utility

136 Chapter 4. Acting with Nonlinear Utility Functions

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500

ut
ili

ty

cost (= travel time) [seconds]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-2500 -2000 -1500 -1000 -500 0

ut
ili

ty
 u

(r
)

reward r (= negative travel time) [-seconds]

Figure 4.3: Immediate Soft Deadline (left) and Corresponding Utility Function (right)

between two plans
� � and

� � 1 is � �
� � � ��� ��� 4 � � ��� � 1 �
� for � � 0 and thus depends on � . This means

that utility differences are meaningless in the sense that their magnitudes are not correlated with how much
better one plan is over another. On the other hand, the certainty equivalent of any plan is the same for all
equivalent utility functions. Therefore, differences between certainty equivalents are meaningful and easy to
interpret since certainty equivalents are measured in the same unit as the rewards. Thus, if we want to compare
the quality of two plans, we have to use certainty equivalents instead of utilities. For example, the inverse
function of � � � � � �

21 � 300 � � is � � 1 � � � � 300 log2 � . Thus, the certainty equivalent of Path 1 from Example 1
is � � 1 � 0 � 45 � � 4 344 � 00 seconds. The certainty equivalent of Path 2 is � � 1 � 0 � 51 � � 4 290 � 53 seconds. Thus,
choosing Path 2 over Path 1 leads to a difference in certainty equivalents of

� 4 290 � 53 � 4 � 4 344 � 00 � � 53 � 47
seconds.

To summarize, we have discussed several preference models for planning and shown that maximizing average
utility generalizes the other ones. Unfortunately, utility theory is a purely descriptive theory that specifies
only what optimal plans are, but not how they can be obtained other than by enumerating every chronicle of
every possible plan. Operations research has picked up on the results from utility theory and uses dynamic
programming methods to find plans with maximal average utility [Marcus et al., 1997]. For example, an
early method in the context of Markov decision process models is [Howard and Matheson, 1972] and an early
method in the context of linear stochastic systems is [Jacobson, 1973]. These methods do not utilize available
domain knowledge. Artificial intelligence has investigated knowledge-based search and planning methods
that scale up to larger domains, but traditionally not for finding plans that achieve the goal with maximal
average utility. In the remainder of this chapter, we first argue why finding plans that maximize average utility
for nonlinear utility functions is important and then study how to solve planning tasks efficiently that involve
such utility functions.

4.2 Nonlinear Utility Functions

In the following, we give two examples of utility functions that are strictly monotonically increasing but
nonlinear in the rewards, namely, utility functions for acting in the presence of immediate soft deadlines and
in high-stake one-shot planning domains. In both cases, we argue that it is better to maximize the average
utility rather than the average reward. We also give a short overview of how utility theory uses nonlinear
utility functions to model risk attitudes for planning tasks in high-stake one-shot planning domains.

4.2.1 Immediate Soft Deadlines

4.2. Nonlinear Utility Functions 137

Immediate deadlines coincide with the time at which the execution of the plan begins. Soft deadlines are
those whose utility does not drop to zero immediately after the deadline has passed but rather declines slowly.
We use path-planning examples to illustrate how to model immediate soft deadlines with nonlinear utility
functions.

As an example of immediate soft deadlines, consider indoor delivery tasks. Often, delivery requests are not
made in advance, the goods are needed right away, and the utility of the deliveries declines over time. These
situations can be modeled with immediate soft deadlines. An example is the delivery of emergency medicine
with hospital delivery robots to patients that have unexpectedly developed problems that deteriorate their
health until they take the medicine.

Another example of immediate soft deadlines is the delivery of printouts on demand. Imagine, for instance,
that you are debugging a program on your computer. To get a better overview of the program, you print it
out and send your office delivery robot to fetch the printout from the remote printer room. In this case, the
printout is needed right away, but you do not need it any longer if you find the problem with the program
before the printout has been delivered to you. Thus, the utility of the delivery is highest if it could be done in
no time. It decreases over time because the probability increases that you find the problem before the time
of delivery. Thus, the printout delivery task is one with an immediate soft deadline. Its utility function is
nonlinear in the plan-execution time: The preference model is to maximize the expectation of the probability
that the problem has not been found before the time of delivery. Thus, the utility is this probability. If the
probability to find the problem in any period of time ∆�

is
�

, then the probability that it has not been found
after & such time periods (assuming probabilistic independence) is

�
1 4 � � � . Thus, the utility function is

exponentially increasing in the negative plan-execution time. An example of such a utility function is shown
in Figure 4.3 (right). It is the exponential utility function � � � � � �

21 � 300 � � , where � is the negative travel time
of the robot, measured in seconds. Thus, the utility of the delivery halves every five minutes.

A third example of immediate soft deadlines arises for navigation with outdoor rovers, that can be damaged
during navigation to their destination. The preference model is to maximize the expectation of the survival
probability. Thus, the utility is this probability. The utility function is nonlinear in the plan-execution time: If
the probability of damage in any period of time ∆ �

is
�

, then the probability of surviving & such time periods
(assuming probabilistic independence) is

�
1 4 � � � . Thus, the utility function is again exponentially increasing

in the negative plan-execution time.

4.2.2 Risk Attitudes in High-Stake One-Shot Planning Domains

Maximizing average reward is reasonable if the execution of a plan is repeated a large number of times since
the variance of the total reward (summed over all plan executions) approaches zero according to the law of
large numbers. However, planning systems are often used to make decisions in high-stake one-shot planning
domains. High-stake domains are domains in which huge wins or losses are possible. In high-stake one-shot
planning domains, many people do not maximize average reward. We call them risk-sensitive agents to
differentiate them from risk-neutral agents that maximize average reward. For example, risk-seeking agents
(gamblers) are risk-sensitive agents that focus on the desirable outcomes, the highest possible rewards. They
hope to be able to do much better than average. Risk-averse agents (insurance holders) are risk-sensitive
agents that focus on the undesirable outcomes. They are afraid to do much worse than average. Consider, for
example, that you could participate once in one (and only one) of the following two free lotteries.

Lottery Probability Reward
Lottery 1 50 percent 10,000,000 dollars

50 percent 0 dollars
Lottery 2 100 percent 4,500,000 dollars

Many people are risk-averse and prefer Lottery 2, although the average reward (pay-off) of Lottery 1 is
slightly larger. These people would be very disappointed fifty percent of the time if an automated planning

138 Chapter 4. Acting with Nonlinear Utility Functions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 0 5000000 10000000 15000000 20000000

ut
ili

ty
 u

(r
)

(=
 p

le
as

ur
e)

reward r (= pay-off) [dollars]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 0 5000000 10000000 15000000 20000000

ut
ili

ty
 u

(r
)

(=
 p

le
as

ur
e)

reward r (= pay-off) [dollars]

Figure 4.4: Purely Risk-Averse Attitude (left) and Purely Risk-Seeking Attitude (right)

system chose Lottery 1 for them. In general, the plans produced by planning systems should reflect the risk
attitudes of the people that depend on them. Unfortunately, artificial intelligence has largely ignored how to
incorporate risk attitudes into their search and planning methods.

Planning systems are usually not used to decide which lotteries to play, but often have to solve other planning
tasks in high-stake one-shot planning domains. People are risk-averse for some of these planning tasks and
risk-seeking for others. Examples of risk-averse planning domains are Lunar rover navigation [Simmons et
al., 1995] and marine oil spill containment [Blythe, 1996]. Many people prefer to avoid the huge losses that
are possible in these domains. An example of a risk-seeking planning domain is robot contest participation.
Imagine that your task is to design a robot for the annual AAAI robot competition [Simmons, 1995], where
it has to complete a given navigation task (for example, “find the coffee pot”) in as short a time as possible.
You want the robot to win the competition, but – in case it loses – do not care whether it makes second or last
place. You know that your robot is not much faster than your competitors’ robots, maybe even a bit slower.
In this case, many people prefer their robot to take chances.

Utility theory [Bernoulli, 1738, von Neumann and Morgenstern, 1947] provides a well-understood normative
framework for making rational decisions according to a given risk attitude, provided that the agent accepts a
few simple axioms and has unlimited planning resources available. According to utility theory, it is optimal
to select the plan with maximal average utility for execution, where the utility is a strictly monotonically
increasing (but not necessarily linear) function of the reward. We also make the standard assumption that
the utility function is twice continuously differentiable. This allows us to describe more easily how the risk
attitude of agents depends on the form of their utility functions. As an example, consider an agent with the
utility function

� ��� �
 � � 6

�
6
�

1
� � � 0 � 0000003 � � � � 6

�
6
�

1
�

where � is the reward of the lottery, measured in dollars. (Utility functions are determined only up to positively
linear transformations. We arbitrarily chose it so that � � 0 � � 0 and � � 20 � 000 � 000 � � 1, which explains
why the utility function looks so complicated.) This utility function, shown in Figure 4.4 (left), associates the
following utilities with the rewards of Lottery 1 and Lottery 2:

Reward Utility
0 dollars 0.00

4,500,000 dollars 0.74
10,000,000 dollars 0.95

4.2. Nonlinear Utility Functions 139

reward r (= pay-off)

utility u(r)

r1 r2

u(r1)

u(r2)

eu(ps) = (1-p) u(r1) + p u(r2)

ce(ps) = u-1((1-p) u(r1) + p u(r2))

u(er(ps)) = u((1-p) r1 + p(r2))

er(ps) = (1-p) r1 + p r2

Figure 4.5: A Concave Utility Function

Thus, for an agent with this utility function and no prior wealth, the average utility of Lottery 1 is only (0.00 +
0.95)/2 = 0.48, whereas the average utility of Lottery 2 is 0.74. Similarly, the certainty equivalent of Lottery 1
is only 2,148,532 dollars, whereas the certainty equivalent of Lottery 2 is 4,500,000 dollars. Consequently,
the agent clearly chooses to participate in Lottery 2. Of course, other agents can have other utility functions
and thus arrive at different conclusions.

Agents can be partly risk-averse, risk-neutral, and risk-seeking. There are people, for example, that play the
state lottery (risk-seeking attitude) and have insurance (risk-averse attitude). These people are mixtures of the
following three pure risk attitudes [Watson and Buede, 1987]:

Purely risk-averse agents prefer a deterministic lottery over any nondeterministic lottery with the same
average reward. The certainty equivalent of any nondeterministic lottery is smaller than its average reward.
Purely risk-averse agents have concave utility functions, one of which is shown in Figure 4.4 (left). Figure 4.5
illustrates why agents with concave utility functions are purely risk-averse. It depicts a lottery

� � with two
rewards. Reward � 1 is won with probability 1 4 � and reward � 2 is won with probability

�
. The figure shows

that indeed � � ��� ��� � � � � ��� ���
� or, equivalently, � � ��� ��� � �
��� ��� .

Purely risk-neutral agents are indifferent between any lotteries with the same average reward. The certainty
equivalent of any lottery is the same as its average reward. Purely risk-neutral agents have linear utility
functions.

Purely risk-seeking agents prefer any nondeterministic lottery over a deterministic lottery with the same
average reward. The certainty equivalent of any nondeterministic lottery is larger than its average reward.
Purely risk-seeking agents have convex utility functions, one of which is shown in Figure 4.4 (right).

How does one determine which utility function to use for a given planning task? Since utility functions
encode the individual risk attitudes of agents, they must be elicited from them on an individual basis. Since
utility functions are determined only up to positively linear transformations, one can establish an arbitrary
scale by fixing the utilities of two rewards, say the utility of the smallest possible reward � 1 and the largest
possible reward � 2. Assume that � � � 1 � � 0 and � � � 2 � � 1. To determine the utility of any reward � ,
one asks the agent which probability

�
makes it indifferent between the following two lotteries: Either it

receives reward � 4�� for sure, or it receives reward � 1 4�� with probability 1 4 � and reward � 2 4��
with probability

�
, where � is the wealth of the agent (the dollar amount that it owns initially). Then,

� � � � � � � � 4 �05 � � � �
1 4 � � � � � 1 4 �05 � � 5 � � � � 2 4 � 5 � � � � . Farquhar [Farquhar, 1984] surveys

more practical assessment procedures for utility functions.

140 Chapter 4. Acting with Nonlinear Utility Functions

door
Path 2 Office ZOffice Y

door
Path 2Office X

door
Path 2start

Figure 4.6: Expanded Navigation Example

p32

p31p21

p22p12

p11

subplan ps1 subplan ps2 subplan ps3

ps11 with reward r11

ps12 with reward r12

ps21 with reward r21

ps22 with reward r22

ps31 with reward r31

ps32 with reward r32

robot is at
office X

robot is at
office Z

robot is at
office Y

Figure 4.7: Sequential Plan with Three Parts

4.3 Maintaining Decomposability: Exponential Utility Functions

Utility theory specifies only what optimal plans are (namely, those that maximize average utility) but not
how they can be obtained other than by enumerating every chronicle of every possible plan. How to plan
efficiently is addressed by search and planning methods from artificial intelligence, at least for preference
models different from maximizing average utility. These planners exploit the structure of the planning tasks,
most notably their decomposability. This property allows planners to use the divide-and-conquer principle,
which efficiently solves planning tasks by dividing them into parts, finding subplans for each part individually
(or, at least, with only a small amount of interaction among the parts), and then assembling the subplans into
an overall plan. Planning methods that use the divide-and-conquer principle include means-ends-analysis,
nonlinear planning, and dynamic programming methods.

In this section, we show that planning tasks are not decomposable with respect to arbitrary utility functions
even if the planning tasks are decomposable with respect to linear utility functions (that is, average reward).
This explains why planning with arbitrary nonlinear utility functions can be harder than planning with linear
utility functions: the divide-and-conquer principle cannot necessarily be used to solve planning tasks for
arbitrary nonlinear utility functions, not even those that it can solve for linear utility functions. To illustrate
this point, we use the following extension of Example 1 in Figure 4.2 [Koenig and Simmons, 1996d].

Example 2: Consider the following sequential planning task that consists of three parts. A robot operates in
the environment shown in Figure 4.6. It has to first visit office X to pick up a form, then obtain a signature
in office Y, and finally deliver the signed form to office Z. The plan of the robot consists of trying to take
the route through the door (Path 2) for all three parts of the planning task (Figure 4.7). The first subplan� � 1 corresponds to reaching office X. It has two possible subchronicles

� � 11 and
� � 12. Subchronicle

� � 11

denotes the case where the door is open, whereas subchronicle
� � 12 corresponds to the door being closed.

Subchronicle
� � 11 has reward � 11 and occurs with probability

�
11, subchronicle

� � 12 has reward � 12 and occurs
with probability

�
12 (where

�
11 5 � 12

� 1), and similarly for the other subplans and subchronicles. We assume
that the probabilities of any two different doors being open are independent (a reasonable assumption).

The average utility of the plan from Example 2, the concatenation
� � 1 �

� � 2 �

� � 3 of the three subplans, is

� � ��� �
1

�
� �

2
�
� �

3

�
 2�
 �

1

2�
� �

1

2�
�
�

1

� � 1
 �

2
� �

3
� � ���

1
 � � 2 � � � 3 �

��� �

4.3. Maintaining Decomposability: Exponential Utility Functions 141

The computation of the average utility can be decomposed if it can be split into terms each of which contains
the probabilities and rewards of only one of the subplans. In general, the computation of the average utility
cannot be decomposed, as can be seen by considering, for example, the utility function � � � � � � 2.

Few researchers have addressed this problem, which can be approached in two obvious ways:

First, one can accept the loss of decomposability and attempt to solve the harder planning task as efficiently
as possible. One can enumerate all chronicles of a plan to determine its average utility. Unfortunately, the
number of chronicles (here: 23) is exponential in the number of parts of the planning task (here: 3), making
their enumeration intractable for larger planning tasks. This problem can be reduced with approximative
planning methods [Haddawy and Hanks, 1993] or planning methods with limited look-ahead [Kanazawa and
Dean, 1989].

Second, one can approximate the actual utility function with a utility function that makes it possible to
decompose the computation of the average utility. An obvious solution is to use an additive utility function.
Utility functions are additive if � � � 1 � 5 � � � 2 � � � � � 1 5 � 2 � for all rewards � 1 and � 2. The planning task of
Example 2 is decomposable with respect to additive utility functions. The average utility of the plan from
Example 2 is

� � ��� �
1

�
� �

2
�
� �

3

�
 2�
 �

1

2�
� �

1

2�
�
�

1

� � 1
 �

2
� �

3
� � ���

1
 � � 2 � � � 3 �

���

 2�

 �
1

2�
� �

1

2�
�
�

1

� � 1
 �

2
�
�

3
�
� � ���

1
 � � � ���

2
�
� � � ���

3
�
�����

 2�
 �

1

� � 1
 � ���

1
 ��� � 2�

� �
1

� � 2
� � ���

2
�
��� � 2�

�
�

1

� � 3
� � ���

3
�
���

 � � ��� �
1

� � � � ��� �
2

� � � � ��� �
3

���
(4.1)

Thus, the computation of the average utility can be decomposed and performed in time linear in the size of the
plan, without having to enumerate all eight of its chronicles. The divide-and-conquer principle can be used
to find plans with maximal average utility: The planner can determine separate subplans for the three parts
of the planning task, each of which maximizes the average utility of its part. These three subplans combined
then form a plan with maximal average utility for the planning task.

max��� ��� � � � ��� � 1
� � � �

� �
2
��� �

�
� �

3
��� ��� Formula 4.1

max� � � � � � � � ��� � 1
� � ��� � � � ��� �

2
��� ��� � � � ��� �

3
��� �����

max� � � ��� �
1
� � ��� � max�

� � ��� �
2
��� ��� � max�

� � ��� �
3
��� �����

Unfortunately, the only additive utility functions are the linear utility functions, and Formula 4.1 just says that
the average reward of a plan is the sum of the average rewards of its subplans.1

Approximatingnonlinear utility functions with linear utility functions leads to the same results if the domain is
deterministic. Furthermore, it leads to good results if the nonlinear utility functions are approximately linear.
Many people, for example, are roughly risk-neutral in low-stake domains, resulting in approximately linear
utilityfunctions. Often, however, the utilityfunctions are highly nonlinear and cannot be approximated closely
with linear utility functions, especially in the presence of deadlines and in the presence of risk attitudes in

1To be precise, the only additive utility functions are the linear utility functions � � � � � � � � (with �

0 to ensure that the utility
functions are strictly monotonically increasing in the reward) but these are equivalent to all linear utility functions since utility functions
are defined only up to positively linear transformations.

142 Chapter 4. Acting with Nonlinear Utility Functions

high-stake one-shot planning domains. Appendix 6.3 gives an example that shows that linear utility functions
are not well suited for approximating the exponential utility functions that we used in Section 4.2.1 to model
soft, immediate deadlines. In the example, the approximation error is roughly 2 1/2 minutes for a delivery
task whose average travel time is only about 9 minutes.

We therefore investigate other utility functions that can decompose the computation of the average utility.
We first show which property these utility functions must have and then which utility functions possess it.
The result is that not only linear but also exponential utility functions can decompose the computation of
the average utility. Exponential utility functions allow one, for example, to solve the delivery task from
Appendix 6.3 precisely and efficiently.

Consider again Example 2 in Figure 4.6 and assume that the first two subplans have already been executed,
resulting in a reward of � . Then, the agent is at office � and evaluates the subplan for the third part of the
planning task according to

� � � ��� �
3

�
:= �

�
1 � �

�

� � 3
� � ���

3
� ��� ��� ���

This is the certainty equivalent of the subplan after all of its rewards have been increased by � . This value
depends on � , the reward already accumulated, and thus on the subplans chosen for the previous parts of the
planning task and the resulting subchronicles. This means that, in general, the Markov property (Section 3.2)
no longer holds in pose space (where states correspond to poses of the robot): how to act in the future depends
on how the current pose was reached. Thus, the divide-and-conquer principle can no longer be used in pose
space. The Markov property could be restored by adding the accumulated reward to the state information.
This, however, would increase the state space and thus also the number of plans that need to be considered,
which makes planning inefficient.

To apply the divide-and-conquer principle, we need to evaluate subplans without knowing � . Thus, their
evaluation must be the same for all � . Since � � � ��� � 3 � � � � ��� � 3 � for � � 0, we rank them according to their
certainty equivalents. Now consider subplan

� � 3 and a deterministic subplan whose reward is � � ��� � 3 � . Both
subplans have the same certainty equivalent and thus we rank them as equally good. This is only correct if
they also have the same certainty equivalent after all of their rewards have been increased by � . The resulting
certainty equivalent is � � � ��� � 3 � for subplan

� � 3 and � � ��� � 3 � 5 � for the deterministic subplan. Thus,

�
�

1 � �
�

� � 3
� � ���

3
� ��� ��� ��
 � � � ��� �

3

�
 � � ��� �
3

� ���
 �
�

1 � �
�

� � 3
� � ���

3
�
��� � ��� � (4.2)

In other words, a utility function must have the following property to decompose the calculation of the average
utility: if the rewards of all chronicles of a plan are increased by some real value � , then its certainty equivalent
increases by � as well. In utility theory, this property is known as the delta property [Howard and Matheson,
1972] or constant local risk aversion [Pratt, 1964], where constant local risk aversion means that the local
risk aversion, defined as � 1 1 � � � � � 1 � � � , does not depend on � . The local risk aversion measures the degree of
risk sensitivity better than the second derivative of the utility function since positively linear transformations
of a utility function change its second derivative but not its local risk aversion [Keeney and Raiffa, 1976]. A
large positive value corresponds to strongly risk-seeking agents, zero corresponds to risk-neutral agents, and
a large negative value corresponds to strongly risk-averse agents. A constant local risk aversion implies that
the risk attitude of an agent is independent of its wealth (that is, its choices do not depend on how wealthy it
is).

Linear utility functions possess the delta property. The only nonlinear utility functions that possess the delta
property are the exponential utility functions: the convex exponential functions � � � � � � � with � � 1, concave
exponential functions � � � � � 4 � � with 0 � 1, and their positively linear transformations [Howard and

4.4. Advantages of Exponential Utility Functions 143

Matheson, 1972, Watson and Buede, 1987]. This means that planning tasks are decomposable with respect
to linear utility functions (that is, average reward) if and only if the planning tasks are decomposable
with respect to exponential utility functions. For conciseness, we often refer to both convex and concave
exponential utility functions at the same time: � � � � ��� � � . According to this notation, for example, the
certainty equivalent of a plan

� � whose execution leads with probability
� � to a chronicle with reward � � is

� � ��� ��� � log� : � (� : � � � � � � � �<;�; . We do not explicitly consider their positively linear transformations since
they do not increase the power of planners.

4.4 Advantages of Exponential Utility Functions

We showed that planning tasks with exponential utility functions are decomposable if the planning tasks are
decomposable with respect to linear utility functions (that is, average reward). This makes it possible to use
the divide-and-conquer principle to plan efficiently with exponential utility functions, which is why we study
these nonlinear utility functions. In this section, we argue that they can express or approximate preference
models that linear utility functions cannot express at all, or approximate only poorly. For example, exponential
utility functions can model a continuum of risk attitudes in high-stake one-shot planning domains, including
risk-seeking and risk-averse attitudes, and they trade-off between maximizing the worst-case (minimax
principle), average, and best-case reward. Furthermore, exponential utility functions are expressive for
modeling immediate soft deadlines and make it easy to work with plans whose rewards can be characterized
only with continuous probability distributions. In subsequent sections, we show how existing planners can
plan with exponential utility functions. This allows us to generalize the preference models of many search
and planning methods from artificial intelligence without giving up efficiency.

4.4.1 Expressiveness of Exponential Utility Functions

Exponential utility functions are perhaps the most often used utility functions in utility theory [Watson and
Buede, 1987] and specialized assessment procedures are available that make it easy to elicit them from
decision makers [Farquhar, 1984, Farquhar and Nakamura, 1988]. They may not fit all planning tasks, since
they are bounded from above or below and parameterized with only one parameter � . However, we show in
this section that they are expressive. In particular, convex exponential utility functions can model immediate
soft deadlines, as well as a continuum of risk-seeking attitudes in high-stake one-shot planning domains.
Concave exponential utility functions can model a continuum of risk-averse attitudes in high-stake one-shot
planning domains. Exponential utility functions also bridge a gap between approaches previously studied in
artificial intelligence and robotics since they can trade-off between maximizing the worst-case, average, and
best-case reward.

Immediate Soft Deadlines: Convex exponential utility functions can model, either exactly or approximately,
many immediate soft deadlines, as argued in Section 4.2.1. Figure 4.3 (right), for example, modeled an
immediate soft deadline with the convex exponential utility function � � � � � �

21 � 300 � � , where � is the negative
travel time of the robot, measured in seconds.

Convex exponential utility functions can express immediate soft deadlines of different softness. The smaller
� , the softer the deadline. Similarly, the larger � , the harder the deadline.

Risk Attitudes in High-Stake One-Shot Planning Domains: Exponential utility functions can also model,
either exactly or approximately, risk attitudes in high-stake one-shot planning domains. For example, the
risk-averse utility function in Figure 4.4 (left) is a positively linear transformation of the concave exponential
utility function � � � � � 4 � � � 0 � 0000003� � and the risk-seeking utility function in Figure 4.4 (right) is a positively
linear transformation of the convex exponential utility function � � � � � � � 0 � 0000003 � � , where � is the pay-off of
the lottery, measured in dollars.

Exponential utility functions can express a continuum of pure risk attitudes ranging from being strongly risk-

144 Chapter 4. Acting with Nonlinear Utility Functions

purelypurely
risk attitude extremely risk-averse risk-averse risk-neutral risk-seeking extremely risk-seeking

formalization

eu ps() u max
i

ri()=eu ps() u min
i

ri()= eu ps() pi u ri()⋅[]
i

∑=eu ps() pi u ri()⋅[]
i

∑=eu ps() pi u ri()⋅[]
i

∑=

u r() m r n+⋅=
m 0 0 γ 1< <,>()

u r() m− γr n+⋅= u r() m γr n+⋅=
m 0>() m 0 γ 1>,>()

min-max-ing utility theory utility theory utility theory max-max-ing

utility of plan

utility function

γ ∞≈γ 1≈γ 1≈γ 0≈

(plan ps leads with probability pi > 0 to a chronicle with reward ri for all i)

concave exponential linear convex exponential

gamma increases

purely purelypurely

Figure 4.8: Continuum of Risk Attitudes

averse to being risk-neutral to being strongly risk-seeking (Section 4.2.2). The smaller � , the more risk-averse
(and less risk-seeking) the agent. Similarly, the larger � , the more risk-seeking (and less risk-averse) the
agent:

Proposition 1 If the execution of a plan
� � leads with probability

� � � 0 to a chronicle with reward � � , then

� for any utility function � � � � � 4 � � with 0 � 1 :

lim
��� 0

� � ��� � �
 min � (Case 1)

lim
��� 1

� � ��� � ��
 � ����� � �
(Case 2)

� for any utility function � � � � � � � with � � 1 :

lim
��� 1

� � ��� � ��
 � ����� � �
(Case 3)

lim
���

� � � ��� � ��
 max �� (Case 4).

Proposition 1 is common knowledge in utility theory, that we prove in Appendix 6.4. The proposition is
depicted in Figure 4.8 and can be summarized as follows:

Purely Extremely Risk-Averse: Case 1 shows that the optimal plan for risk-averse agents approaches the
plan with maximal worst-case reward as gamma approaches zero. Thus, the agents behave as if nature
were an opponent that hurt them as much as possible by deliberately choosing the chronicle with the smallest
reward. We call these agents purely extremely risk-averse. They find optimal plans using the minimax
principle. A prominent example is Murphy’s law, which states that everything that can go wrong will indeed
go wrong. This law is attributed to Captain Ed Murphy from Wright Field Aircraft Lab [Dickson, 1978].

Purely Risk-Neutral: Cases 2 and 3 show that the optimal plan for risk-averse and risk-seeking agents
approaches the plan with maximal average reward as gamma approaches one. Thus, these agents assume
that nature is indifferent towards them and flips coins. They are purely risk-neutral (Section 4.2.2).

4.4. Advantages of Exponential Utility Functions 145

Purely Extremely Risk-Seeking: Case 4 shows that the optimal plan for risk-seeking agents approaches the
plan with maximal best-case reward as gamma approaches infinity. Thus, the agents behave as if nature were
a friend that helped them as much as possible by deliberately choosing the chronicle with the largest reward.
We call these agents purely extremely risk-seeking. They assume, for example, that they win the grand prize
whenever they play the lottery. A prominent example is Gladstone Gander, Donald Duck’s lucky cousin.

Proposition1 also shows that exponential utility functions are able to bridge a gap between methods previously
studied in artificial intelligence and robotics, namely, methods that maximize worst-case reward (minimax
principle) and methods that maximize average reward. We showed that the former preference model is the one
of purely extremely risk-averse agents, whereas the latter preference model is the one of purely risk-neutral
agents. However, planning methods that maximize the worst-case reward and planningmethods that maximize
the average reward do not have two totally different preference models. Concave exponential utility functions
balance the two preference models seamlessly: They can approximate both preference models asymptotically
and cover a continuum of risk attitudes in between. Similarly, convex exponential utility functions can trade-
off between maximizing best-case and average reward. Thus, exponential utility functions are able to bridge
a gap between methods previously studied in artificial intelligence and robotics.

The difference between finding plans that maximize the worst-case reward (minimax principle) and the
average reward has been discussed extensively in robotics [Erdmann, 1989, Brost and Christiansen, 1993,
LaValle and Hutchinson, 1994], in particular in the manipulation and motion planning literature, where one
distinguishesnondeterministicand probabilisticuncertainty [Erdmann, 1992]. Plans with maximal worst-case
reward are used to solve planning tasks with nondeterministic uncertainty and plans with maximal average
reward are used to solve planning tasks with probabilistic uncertainty. Often, planning tasks are formulated
as planning tasks with nondeterministic uncertainty and then solved with minimax methods, especially since
domains from robotics can often be solved with them, as was briefly discussed in Section 2.3.1. The best
known minimax method from robotics is probably the pre-image method [Lozano-Perez et al., 1984]. Other
minimax methods from robotics include [Lozano-Perez et al., 1984, Latombe et al., 1991, Latombe, 1991,
Erdmann, 1984]. Minimax methods from artificial intelligence were discussed in Chapter 2. Examples
include the Min-Max LRTA* method [Koenig and Simmons, 1995b], the Parti-Game method [Moore and
Atkeson, 1995], the IG method [Genesereth and Nourbakhsh, 1993], and the Q̂-learning method [Heger,
1996].

4.4.2 Handling Continuous Reward Distributions with Exponential Utility Functions

We have assumed that a chronicle of a plan is characterized by its probability and reward. Sometimes,
however, chronicles can be characterized only by continuous probability distributions over the rewards. The
resulting average utility can be expressed in closed form for exponential utility functions, as the average
reward plus or minus a fraction of the variance. This is why exponential utility functions make it easy to work
with continuous probability distributions over the rewards.

If the execution of plan
� � leads with probability

� � to a chronicle with reward � � , then the average utility of
the plan is

� � ��� � �
 �
 � � � ��� ��� �

If, on the other hand, the execution of plan
� � leads with probability

� � to a chronicle with rewards � that are
distributed according to probability distribution + � � � � , then the average utility of the plan is

� � ��� � �
 �
 � � � �

� � � ��� � � ��� � � � � �

146 Chapter 4. Acting with Nonlinear Utility Functions

An advantage of exponential utility functions is that the integral can easily be solved for normal distributions,
probably the most common continuous probability distributions. If � ��� ��� � � � denotes a normal distribution
of � with mean

�
and standard deviation � , then

� � ��� � �
 �
 � � � �

� � � ��� ��	� �� � � � ��� � � � �

 �

 � � � �
� � 1

2
� � ����

� ��� ��� 22 � 2� ���
�
� � � � �

 � �
 � � � �

��� 1

2
� � ����

� ��� � � 22 � 2�
� �

ln � � � �

 � �

 � � ��� � ln �
�

1
2 � 2� ln2 �

� �
� � 1

2
� � � ��

� �� � � � 2� ln � ��� 2
2 � 2� � � �

 � �
 � � ��� � ln �

�
1
2 � 2� ln2 � � 1

�

 �

 � � ��� � � � � 1
2 � 2� ln � ���

 �
 � � � ��� � 1

2
� 2 ln �

��� �
(4.3)

Thus, a planning task for which the rewards � of chronicle
�

are distributed according to normal distribution
� ��� � ��� � � � � is equivalent to a planning task for which the reward of chronicle

�
is deterministic, namely,

� � � � 5 1
2 � 2� ln � with probabilityone. The second term of this expression is negative for concave exponential

utility functions and positive for convex exponential utility functions. This shows that the average utility of
normal distributions over the rewards can be characterized in closed form for exponential utility functions. It
also shows that the expectation can be separated from the variance. Some researchers approximate plans with
maximal average utility with plans that maximize average reward plus or minus a fraction of the variance
[Filar et al., 1989, Karakoulas, 1993]. Formula 4.3 shows that this is not an approximation but maximizes
average utility exactly for exponential utility functions and normal-distributed rewards.

4.5 Planning with Exponential Utility Functions

In this section, we show how to find plans efficiently that achieve the goal with maximal average utility
(preference model C5) if the utility function is exponential. In particular, we show how existing planners from
artificial intelligence can be used to plan with exponential utility functions, including those planners that do
not reason about rewards at all.

We showed that planning tasks with exponential utility functions are decomposable if the planning tasks
are decomposable with respect to linear utility functions (that is, average reward). This observation can be
used to make planning with exponential utility functions efficient. However, standard planners from artificial
intelligence cannot be used directly to maximize average utility for exponential utility functions. This is so
because, among all preference models of standard planners from artificial intelligence that we studied, only
preference model C4 works with rewards in probabilistic domains, but it requires additive utility functions
and only linear utility functions are additive.

In the following, we develop efficient methods that transform planning tasks with exponential utility functions
to planning tasks that existing planners from artificial intelligence can solve (Figure 4.9). The transformations

4.5. Planning with Exponential Utility Functions 147

planning task transformation

original planning task:
find a plan that achieves the goal with maximal average utility,

transformed planning task

existing planner from Artificial Intelligence

optimal (or near-optimal) plan for the original planning task

where the utility is an exponential function of the reward

Figure 4.9: Planning-Task Transformations

are such that an optimal plan for the transformed planning task is also optimal for the original one, and a good
(“satisficing”) plan for the transformed planning task is also good (“satisficing”) for the original one. Thus,
the transformed planning task can be solved with both optimal and suboptimal (“satisficing”) planners.

We study two transformations, which we call the additive and multiplicative planning-task transformations.
Both transformations are simple context-insensitive representation changes. The importance of representation
changes for planning has been recognized earlier, for example in [Newell, 1965, Newell, 1966, Amarel, 1968,
Hayes and Simon, 1976, Kaplan and Simon, 1990, Fink, 1995]. Our representation changes are fast and scale
well. They can be performed on a variety of planning-task representations without changing their kind and
size, and can be used as black-box methods (that is, they can be applied without an understanding of how or
why they work).

The additive planning-task transformation applies to special cases of planning tasks, namely, planning tasks
where each subplan (“action”) starts in only one state and is “deterministic” in the sense that its execution
always ends in the same state although it can result in different subchronicles and rewards. The start and
end states of the subplan can be different, and the start and end states of different subplans can be different
as well. These planning tasks can be solved optimally with sequential plans (unconditional sequences of
subplans). An example are planning tasks with a number of given subgoals that have to be achieved in some
predetermined ordering. Some delivery tasks fit this description. The transformed planning task requires one
to find a plan that achieves the goal with maximal reward in a deterministic domain. It can be solved with all
planners whose preference model is C2 or C4.

The multiplicative planning-task transformation applies to planning tasks that can be solved optimally with
conditional plans. The transformed planning task requires one to find a plan with maximal probability of goal
achievement or, alternatively, a plan that achieves the goal with maximal average reward in a probabilistic
domain. It can be solved with many planners whose preference model is C3 and all planners whose preference
model is C4, provided that either the exponential utility function of the original planning task is convex and
all rewards are negative, or the exponential utility function is concave and all rewards are positive. This is,
for example, the case for planning with immediate soft deadlines, for risk-seeking planning with resource
consumptions, and for risk-averse planning with lottery pay-offs.

Consequently, the multiplicative planning-task transformation applies to a larger class of planning tasks but
has the disadvantage that the transformed plans, in some cases, cannot be solved with all planners. We also
show that the multiplicative planning-task transformation has the disadvantage that it can amplify the errors
of planners that can find only near-optimal plans for the transformed planning tasks, whereas the additive
planning-task transformation leaves the errors unchanged.

For both the additive and multiplicative planning-task transformation, the transformed planning tasks are
solved with existing planners from artificial intelligence, which extends their functionality to planning with
exponential utility functions. It also makes planning with exponential utility functions as fast as planning
for traditional preference models from artificial intelligence and enables one to participate in performance
improvements achieved by other researchers in the currently very active field of deterministic and probabilistic

148 Chapter 4. Acting with Nonlinear Utility Functions

Real-Time Control

Task Planning

Path Planning

Navigation

Obstacle Avoidance

Planning Task Transformation

Figure 4.10: Augmented Mobile-Robot Architecture

p21

p22p12

p11

subplan ps1 subplan ps2

ps11 with reward r11

ps12 with reward r12

ps21 with reward r21

ps22 with reward r22

Figure 4.11: “Deterministic” (left) and “Nondeterministic” (right) Subplans

planning. Furthermore, it makes it easy to integrate the planning-task transformations into agent architectures
to change their preference models. For example, we can easily modify the mobile-robot architecture to plan
paths in the presence of immediate soft deadlines or risk attitudes in high-stake one-shot planning domains.
This can be done by using its path planner unchanged on a transformation of the path-planning task, which is
produced by a new planning-task transformation layer that sits between the task-planning and path-planning
layers (Figure 4.10).

We first describe the additive planning-task transformation and then the multiplicative planning-task transfor-
mation.

4.5.1 The Additive Planning-Task Transformation

The additive planning-task transformation applies to special cases of planning tasks. These planning tasks
consist of a goal and a collection of atomic subplans (“actions”) that can be used as building blocks to
construct plans that achieve the goal. Each subplan starts in only one state (which is no restriction) and be
“deterministic” in the sense that its execution always ends in the same state although it can result in different
subchronicles and rewards. The start and end states of the subplan can be different, and the start and end states
of different subplans can be different as well. Figure 4.11 shows a subplan that satisfies this requirement (left)
and one that does not satisfy it (right). The requirement is similar to the assumption of the planning methods
in [Loui, 1983] and [Wellman et al., 1995], which also apply to planning tasks with subplans whose effects
are deterministic but whose rewards can be nondeterministic.

The additive planning-task transformation converts the planning task by modifying all of its subplans (every-
thing else remains the same): If a subplan can be executed in state � and its execution leads with probability

� �
and reward ��� to state � 1 (for all

�
), then it is replaced witha deterministic subplan. This subplan can be executed

in state � and its execution leads with probability one and reward � � 1 � (� : � ��� � �����<;�� to state � 1 . This reward
is the certainty equivalent of the original subplan for the exponential utility function. The transformation is
such that a plan that achieves the goal with maximal reward for the transformed planning task also achieves
the goal with maximal average utility for the original planning task. Figure 4.12 summarizes the additive
planning-task transformation. Notice that the transformation does not depend on the exact representation of
the subplans.

4.5. Planning with Exponential Utility Functions 149

find a plan that achieves the goal
with maximal reward

find a plan that achieves the goal

find a plan that achieves the goal

exponential
utility functions

additive planning
task transformation

Preference Models for Planning Tasks

with maximal average utility

with maximal average reward

in probabilistic domains
(C5)

in probabilistic domains
(C4)

in deterministic domains
(C2)

Figure 4.12: Additive Planning-Task Transformation

door
Path 2 Office ZOffice Y

door
Path 2Office X

door
Path 2start

1.01.01.0

subplan ps1 subplan ps2 subplan ps3

reward ce(ps1) reward ce(ps2) reward ce(ps3)

robot is at
office X

robot is at
office Z

robot is at
office Y

p32

p31p21

p22p12

p11

subplan ps1 subplan ps2 subplan ps3

ps11 with reward r11

ps12 with reward r12

ps21 with reward r21

ps22 with reward r22

ps31 with reward r31

ps32 with reward r32

robot is at
office X

robot is at
office Z

robot is at
office Y

Figure 4.13: Transformed Sequential Plan for the Additive Planning-Task Transformation

As an example consider again Example 2, which is repeated in Figure 4.13 (top). A robot has to first visit
office X to pick up a form, then obtain a signature in office Y, and finally deliver the signed form to office Z.
One of the subplans for moving from office X to office Y is to move on a shortest path to office Y and, if
the door is closed, return to office X and take the long path to office Y. This subplan can be executed when
the robot is at office X and always moves the robot to office Y, although its execution can result in different
travel times. If the robot reaches office Y in 120.00 seconds with probability 0.50 and in 576.00 seconds with
probability 0.50, then the subplan is replaced with a deterministic subplan that can be executed when the robot
is at office X and whose execution moves the robot with reward � � 1 � 0 � 50 � � 4 120 � 00 �25 0 � 50 � � 4 576 � 00 �
�
to office Y.

We now explain why the additive planning-task transformation works.

Among all plans that achieve the goal for the original planning task with maximal average utility, there is
always a sequential plan, that is, a sequence of subplans. This is so because the execution of every subplan
always ends in only one state. Since exponential utility functions satisfy the delta property, it is unimportant
how this state was reached or how much reward was accumulated. Thus, there must be an optimal plan that
always executes the same subplan in this state. Thus, if a planner determines a plan that achieves the goal
for the original planning task with maximal average utility among all sequential plans, then this plan also
achieves the goal for the original planning task with maximal average utility among all plans. In other words,

150 Chapter 4. Acting with Nonlinear Utility Functions

planning can be restricted to sequential plans without giving up optimality. (We discuss suboptimal planning
in Section 4.5.3.)

Now consider the certainty equivalent of any sequential plan for the original planning task. As an example,
we use again the plan in Figure 4.13 (center). It solves the planning task from Example 2 by trying to take the
route through the door (Path 2) for all three parts of the planning task. Its certainty equivalent for the original
planning task is

� � ��� �
1

�
� �

2
�
� �

3

�
 �
�

1 � � � ��� �
1

�
� �

2
�
� �

3

���

 �

�
1 � 2�
 �

1

2�
� �

1

2�
�
�

1

� � 1
 �

2
� �

3
� � ���

1
 � � 2 � � � 3 �

��� �

log � � � 2�
 �

1

2�
� �

1

2�
�
�

1

� � 1
 �

2
�
�

3
�
���
�
�

1 � �2� 2 �
�2�

3 �
��� �

log �

2�
 �

1

2�
� �

1

2�
�
�

1

� � 1
 �

2
� �

3
� �

�
1 � �2� 2 �

� �
3 �
�

log �

� 2�
 �

1

� � 1

�
�

1 � � � 2�
� �

1

� � 2
� �

�
2 �
� � 2�

�
�

1

� � 3
� �

�
3 �
� �

log �

2�
 �

1

� � 1

�
�

1 � � � log�

2�
� �

1

� � 2
� �

�
2 �
� � log �

2�
�
�

1

� � 3
� �

�
3 �
�

log � � � 2�

 �
1

� � 1
����
�
�

1 � ��� � � log � � � 2�
� �

1

� � 2
�
���
�
�

2 �
��� � � log � � � 2�

�
�

1

� � 3
�
���
�
�

3 �
��� �

 �
�

1 � � � ��� �
1

��� � �
�

1 � � � ��� �
2

��� � �
�

1 � � � ��� �
3

���
 � � ��� �
1

� � � � ��� �
2

� � � � ��� �
3

���
(4.4)

This means that the computation of the certainty equivalent of a sequential plan for the original planning
task can be decomposed: it is the sum of the certainty equivalents of its subplans. Instead of calculating
the certainty equivalent of the sequential plan directly, we can first transform the plan. Its structure remains
unchanged, but all of its subplans are transformed (as described above): they are made deterministic, and
their new rewards are the same as the certainty equivalents of the original subplans. The reward of the
transformed plan is the same as the certainty equivalent of the original plan. Figure 4.13 (bottom), for
example, shows the transformation of the plan in Figure 4.13 (center). The reward of the transformed plan is
� � ��� � 1 � 5 � � ��� � 2 � 5 � � ��� � 3 � , which is the certainty equivalent of the original plan according to Formula 4.4.

The additive planning-task transformation can be used to find a plan that achieves the goal with maximal
average utility for the original planning task: We transform all subplans of the planning task. Then, a plan that
achieves the goal with maximal reward for the transformed planning task also achieves the goal with maximal
average utility for the original planning task. This is so because there is a bijection from all plans that achieve
the goal for the transformed planning task to all sequential plans that achieve the goal for the original planning
task, and the reward of a plan for the transformed planning task is the same as its certainty equivalent for the
original planning task (as shown above). Consequently, if a plan achieves the goal with maximal reward for
the transformed planning task, then it achieves the goal with maximal average utility among all sequential
plans for the original planning task, and as we have argued, it is impossible for a nonsequential plan to have
a larger average utility.

To summarize, the original planning task can be solved by applying the additive planning-task transformation

4.5. Planning with Exponential Utility Functions 151

and then solving the transformed planning task with any planner with preference model C2 or C4, including
heuristic search methods such as the A* method. It is easy to derive admissible heuristic functions for
the transformed planning task because the rewards of the transformed subplans can easily be overestimated
without calculating them explicitly. (We need to overestimate the rewards instead of underestimating them
because we operate with rewards instead of costs.) The reward of any subplan for the transformed planning
task is its certainty equivalent for the original planning task, and the certainty equivalent is always at most as
large as the best-case reward. To see this, consider any plan

� � that leads with probability
� � to a chronicle

with reward � � . Then,

� � ��� � ��
 �
�

1 � � � � � ��� ��� � � �
�

1 � � � � � � max �� ��� ��
 �
�

1 � � � max �� ���
 max �� �

Consequently, any heuristic function that is admissible for the best-case reward of the original planning task is
also admissible for the reward of the transformed planning task. For concave exponential utility functions, a
heuristic function that is at least as informed (if not better informed) can be obtained as follows: For concave
exponential utility functions, the certainty equivalent of any plan is at most as large as its average reward
(Section 4.2.2). This means that any heuristic function that is admissible for the average reward of the original
planning task is also admissible for the reward of the transformed planning task if the exponential utility
function is concave.

In the following, we give two examples, both indoor delivery tasks, that fit the assumption of the additive
planning-task transformation.

The first example is the planning task from Example 2: A robot has to first visit office X to pick up a form,
then obtain a signature in office Y, and finally deliver the signed form to office Z.

The planning task specifies the subgoals, the ordering in which they have to be achieved, and the subplans
that can be used to achieve them. This planning task satisfies the assumptions of the additive planning-task
transformation because all subplans are able to move the robot to its destination, although the robot can take
different paths and thus incur different travel times.

The additive planning-task transformation applies as follows:

max� � � � � � � ��� � 1
� � � �

� �
2
��� �

�
� �

3
��� ��� Formula 4.4

max��� � � � � � � ��� � 1
� � ��� � � � ��� �

2
��� ��� � � � ��� �

3
��� �����

max� � � ��� �
1
� � ��� � max� � � ��� �

2
��� ��� � max� � � ��� �

3
��� �����

Thus, to find a plan with maximal average utility, a planner can determine separate subplans for the three parts
of the planning task, each of which maximizes the average utility for its part. The three subplans combined
then form a plan with maximal average utility for the planning task. In this case, the parts of the planning
task can be solved completely independently. This is no longer possible in the next example.

The second example is similar to the first example: A robot starts at the secretary’s office with the task of
collecting ten signatures on a form and returning it to the secretary. We assume that all ten people are in their
offices. This planning task is essentially one of task sequencing: we have to determine the order in which to
visit the ten offices.

The planning task specifies the subgoals and the subplans that can be used to achieve them, but not the
ordering in which the subplans have to be achieved. This planning task satisfies the assumptions of the
additive planning-task transformation because all subplans are able to move the robot to its destination,
although the robot can take different paths and thus incur different travel times.

The additive planning-task transformation converts the planning task to a traveling salesman problem on
a directed graph with deterministic edge rewards. The reward of an edge is the certainty equivalent of the

152 Chapter 4. Acting with Nonlinear Utility Functions

find a plan with maximal
probability of goal achievement

find a plan that achieves the goal

find a plan that achieves the goal

convex exponential
utility functions

multiplicative planning
task transformation

Preference Models for Planning Tasks

with maximal average utility

with maximal average reward

in probabilistic domains
(C5)

in probabilistic domains
(C4)

in probabilistic domains
(C3)

Figure 4.14: Multiplicative Planning-Task Transformation

navigationplan withmaximal average utilitybetween the corresponding two locations. The traveling salesman
problem can then be solved with traveling salesman methods, traditional search and planning methods from
artificial intelligence, or scheduling methods in case additional sequencing constraints are given, such as
“office X must be visited before office Y.”

While the additive planning-task transformation is useful, it cannot be used to solve all planning tasks because
it is often not the case that each subplan is atomic and always ends in the same state. As an example, consider
again a robot that has to collect ten signatures. The subplans move the robot to a specified office. The subplans
are not atomic in practice because their execution can be interrupted. For example, while the robot moves to
some office, it might have to take a detour because a door is closed. If this detour leads past another office, it
can be advantageous for the robot to go first to that office in order to obtain another signature on the way to its
original destination. This suggests considering “move to the door” as a subplan because this would allow the
robot to re-plan and change its destination when it recognizes that the door is closed. However, this subplan
can end in two different states: the robot is at the door and the door is either open or closed. Thus, it does not
satisfy the assumption of the additive planning-task transformation and we have to consider ways of finding
conditional plans that achieve the goal with maximal average utility for exponential utility functions.

4.5.2 The Multiplicative Planning-Task Transformation

The multiplicative planning-task transformation is more general than the additive planning-task transforma-
tion. It applies to planning tasks that can be solved optimally with conditional plans. The planning tasks
again consist of a goal and a collection of atomic subplans (“actions”) that can be used as building blocks to
construct plans that achieve the goal, but it is no longer required that the execution of each subplan end in
only one state.

For now, we assume that the exponential utility function is convex and all rewards are negative. This is,
for example, the case for planning with immediate soft deadlines and for risk-seeking planning with resource
consumptions. We discuss the other cases later in this section.

The multiplicative planning-task transformation converts the planning task by modifying all of its subplans
(everything else remains the same): If a subplan can be executed in state � and its execution leads with
probability

� � and reward � � to state ��� (for all
�
), then it is replaced with a subplan that can be executed in

state � and whose execution leads with probability
� � � � � to state ��� (for all

�
) and with probability1 4�(� : � � � � � ;

to a new nongoal state (“death”) in which execution stops. The rewards do not matter. The transformation
is such that a conditional plan that achieves the goal with maximal probability for the transformed planning
task and always stops in the goal states or “death” also achieves the goal with maximal average utility for
the original planning task. The restriction of always stopping in the goal states or “death” is there only to
ensure that the plan achieves the goal for the original planning task. We later show in Section 4.6.2 how the

4.5. Planning with Exponential Utility Functions 153

door
Path 2 Office ZOffice Y

door
Path 2Office X

door
Path 2start

robot dies

robot is at
office X

p11 γ r11

p12 γ r12

subplan ps1

ps11 (with reward 0)

ps12 (with reward 0)

1 - p11 γ r11 - p12 γ r12

robot dies

robot is at
office Z

p31 γ r31

p32 γ r32

subplan ps3

ps31 (with reward 0)

ps32 (with reward 0)

1 - p31 γ r31 - p32 γ r32

robot dies

robot is at
office Y

p21 γ r21

p22 γ r22

subplan ps2

ps21 (with reward 0)

ps22 (with reward 0)

1 - p21 γ r21 - p22 γ r22

p32

p31p21

p22p12

p11

subplan ps1 subplan ps2 subplan ps3

ps11 with reward r11

ps12 with reward r12

ps21 with reward r21

ps22 with reward r22

ps31 with reward r31

ps32 with reward r32

robot is at
office X

robot is at
office Z

robot is at
office Y

Figure 4.15: Transformed Sequential Plan for the Multiplicative Planning-Task Transformation

restriction can be dropped. Figure 4.14 summarizes the multiplicative planning-task transformation. Notice
that the transformation does not depend on the exact representation of the subplans.

As an example consider again Example 2, that is repeated in Figure 4.15 (top). A robot has to first visit
office X to pick up a form, then obtain a signature in office Y, and finally deliver the signed form to office Z.
One of the subplans for moving from office X to office Y is to move on a shortest path to office Y and, if the
door is closed, return to office X and take the long path to office Y. If the robot reaches office Y in 120.00
seconds with probability 0.50 and in 576.00 seconds with probability 0.50, then the subplan is replaced with
a subplan that can be executed when the robot is at office X and whose execution moves the robot with
probability 0 � 5 � � 120 � 00 5 0 � 5 � � 576 � 00 to office Y and with probability 1 4 0 � 5 � � 120 � 00 4 0 � 5 � � 576 � 00 to the
new nongoal state “death.”

We now explain why the multiplicative planning-task transformation works.

We first consider sequential plans as a special case and then conditional plans. As an example, we use again
the sequential plan from Figure 4.15 (center). It solves the planning task from Example 2 by trying to take
the route through the door (Path 2) for all three parts of the planning task. Its average utility for the original
planning task is

� � ��� �
1

�
� �

2
�
� �

3

�

 2�

 �
1

2�
� �

1

2�
�
�

1

� � 1
 �

2
� �

3
� � ���

1
 � � 2 � � � 3 �

���

 2�

 �
1

2�
� �

1

2�
�
�

1

� � 1
 �

2
�
�

3
� �

�
1 � � � 2 �

�2�
3 �
�

 2�
 �

1

� � 1

�
�

1 � � � 2�
� �

1

� � 2
� �

�
2 �
� � 2�

�
�

1

� � 3
� �

�
3 �
�

154 Chapter 4. Acting with Nonlinear Utility Functions

subplan ps1

subplan ps3

subplan ps2

ps11 (with reward 0)

ps12 (with reward 0)

ps31 (with reward 0)

ps32 (with reward 0)

ps21 (with reward 0)

ps22 (with reward 0)

robot dies

robot dies

robot dies

1 - p11 γ r11 - p12 γ r12

1 - p21 γ r21 - p22 γ r22

1 - p31 γ r31 - p32 γ r32

p11 γ r11

p12 γ r12

p21 γ r21

p22 γ r22

p31 γ r31

p32 γ r32

p32

p31

p21

p22

p12

p11

subplan ps1

subplan ps3

subplan ps2

ps11 with reward r11

ps12 with reward r12

ps31 with reward r31

ps32 with reward r32

ps21 with reward r21

ps22 with reward r22

Figure 4.16: Transformed Conditional Plan for the Multiplicative Planning-Task Transformation

 2�
 �

1

�
1
 � 2�

� �
1

�
2

� � 2�
�
�

1

�
3

�
�

(4.5)

where the parameters
�
� � are new values with

�
� � :=

�
� � � � � � . These values satisfy 0 � �

� � � � � �
according to our assumption that the exponential utilityfunction is convex (� � 1) and all rewards are negative
(� � � 0).

Instead of calculating the average utility of the sequential plan directly, we can first transform the plan. Its
structure remains unchanged, but all of its subplans are transformed (as described above): If a subplan can
be executed in state � and its execution leads with probability

� � and reward ��� to state ��� (for all
�
), then it

is replaced with a subplan that can be executed in state � and whose execution leads with probability
� � � � �

to state ��� (for all
�
) and with probability 1 4 (� : � � � � � ; to a new nongoal state (“death”) in which the

execution stops. The rewards do not matter. The average utility of the original plan is the same as the
probability of not dying while executing the transformed plan, which is the product of the probabilities of
not dying while executing its subplans. Figure 4.15 (bottom), for example, shows the transformation of the
plan in Figure 4.15 (center). The probability of not dying during the execution of the transformed plan is
(2� � 1 : � 1 � � � 1 � ; � (2� � 1 : � 2� � � 2 � ; � (2

� � 1 : � 3 � � � 3 � ; , which is the average utility of the original plan according
to Formula 4.5.

Now consider an arbitrary conditional plan for the original planning task. We can use the same transformation
on the conditional plan and it remains true that the average utility of the original conditional plan is the same
as the probability of not dying while executing the transformed conditional plan. This is so because the
average utility of the original conditional plan is the sum of the utility contributions of its chronicles, where
the utility contribution of a chronicle is the product of its probability and utility. A chronicle is a sequence of
subchronicles. If subchronicle

�
of the chronicle has probability

� � and reward � � , then the utility contribution
of the chronicle is

4.5. Planning with Exponential Utility Functions 155

�

� � � � �� ��
 �

�
� (� � �
 �

 � � � � � �
 �

� �

This is the same as the probability of the same chronicle for the transformed conditional plan. The sum of
these probabilities is the probability of not dying during the execution of the transformed conditional plan.
Figure 4.16, for example, shows a conditional plan and its transformation. The average utility of the original
conditional plan and the probability of not dying during the execution of the transformed conditional plan are�

11 � � 11 (2��� 1 : � 2� � � 2 � ;25 � 12 � � 12 (2
� � 1 : � 3 � � � 3 � ; .

The multiplicative planning-task transformation can be used to find a conditional plan with maximal average
utility for the original planning task: We first transform all subplans of the planning task. Then, a conditional
plan that minimizes the probability of dying for the transformed planning task also maximizes the average
utility for the original planning task. Preference model C5, however, requires one to find a conditional plan
that achieves the goal with maximal average utility. This complicates matters but the multiplicative planning-
task transformation can be used for this purpose as well: We first transform all subplans of the planning task.
Then, a conditional plan that achieves the goal with maximal probability for the transformed planning task
and always stops in the goal states or “death” also achieves the goal with maximal average utility for the
original planning task. This is so because there is a bijection from all conditional plans of the transformed
planning task that always stop in the goal states or “death” to all conditional plans that achieve the goal for
the original planning task, and the probability of not dying during the execution of a conditional plan for the
transformed planning task is the same as its average utility for the original planning task (as shown above).
Now consider all conditional plans for the transformed planning task that always stop in the goal states or
“death.” Their probability of achieving the goal is the same as the probability of not dying during their
execution. Consequently, a conditional plan among them that achieves the goal with maximal probability is
also a conditional plan among them that maximizes the probability of not dying during its execution, and it
also achieves the goal with maximal average utility among all conditional plans that achieve the goal for the
original planing task.

To summarize, the original planning task can be solved by applying the multiplicative planning-task trans-
formation and then solving the transformed planning task with any planner that has preference model C3
and is able to consider only conditional plans that always stop in the goal states or “death.” Thus, perhaps
surprisingly, planners that do not reason about rewards at all can be used to find conditional plans with
maximal average utility. The transformed planning task can also be solved with any planner with preference
model C4 by declaring “death” another goal state and making the rewards for stopping in goal states other
than “death” one and all other rewards zero. Notice that the planner with preference model C4 has to be able
to handle zero rewards.

If the exponential utility function is convex but not all rewards are negative, then the
�

� � are not
necessarily probabilities: they are still nonnegative, but their sum (� � � � can exceed one. There are
dynamic programming methods that can solve such planning tasks, but some other methods might break. I
expect that many planners from artificial intelligence are still able to solve the transformed planning tasks
because they can deal with parameters

�
� � whose sum can be larger than one, although they can then no

longer be interpreted as probabilities. Similarly, the value 1 4 (� � � � can become negative and then no
longer be interpreted as the probability of dying. In this case, we do not model the probabilities of dying
explicitly, which is no problem, since they do not enter the calculations explicitly.

So far, we assumed that the exponential utility function is convex. Now assume that the exponential utility
function is concave and all rewards are positive. This is, for example, the case for risk-averse planning
with lottery pay-offs. In this case, the average utility from Formula 4.5 becomes

� � ��� �
1

�
� �

2
�
� �

3

�

156 Chapter 4. Acting with Nonlinear Utility Functions

 2�
 �

1

2�
� �

1

2�
�
�

1

� � 1
 �

2
� �

3
� � ���

1
 � � 2 � � � 3 �

���

 2�

 �
1

2�
� �

1

2�
�
�

1

� � 1
 �

2
�
�

3
�
� �
�
�

1 � �2� 2 �
� �

3 �
���

 � 2�
 �

1

� � 1

�
�

1 � � � 2�
� �

1

� � 2
� �

�
2 �
� � 2�

�
�

1

� � 3
� �

�
3 �
�

 � 2�
 �

1

�
1
 � 2�

� �
1

�
2

� � 2�
�
�

1

�
3

�
�

where the parameters
�
� � are new values with

�
� � :=

�
� � � � � � . These values satisfy 0 � �

� � � � � �
according to our assumption that the exponential utility function is concave (0 � 1) and all rewards are
positive (� � � � 0).

This means that we can continue to use the multiplicative planning-task transformation from above, but now
the negative probability of not dying while executing any conditional plan for the transformed planning task
is the same as its average utility for the original planning task. Consequently, if a conditional plan achieves
the goal with minimal probability for the transformed planning task and always stops in the goal states or
“death,” then it achieves the goal with maximal average utility for the original planning task. Achieving the
goal with minimal probability is the same as achieving “death” with maximal probability for conditional plans
that always stop in the goal states or “death.” Thus, the transformed planning task can be solved with any
planner that has preference model C3 and is able to consider only conditional plans that always stop in the
original goal states or “death” by making “death” the only goal state. The transformed planning task can also
be solved with any planner with preference model C4 by declaring “death” another goal state and making the
rewards for achieving “death” one and all other rewards zero.

If the exponential utility function is concave but not all rewards are positive, then the
�

� � are not
necessarily probabilities: they are still nonnegative, but their sum can exceed one. Again, many planners
might still be able to solve the transformed planning task because they can deal with parameters

�
� � whose

sum can be larger than one. Similarly, the value 1 4 (� � � � can become negative and then no longer be
interpreted as the probability of dying. In this case, we do not model the probabilities of dying explicitly,
which is no problem for finding a conditional plan that achieves the goal with minimal probability for the
transformed planning task and always stops in the goal states or “death,” since the probabilities of dying do
not enter the calculations explicitly, but it is no longer possible to find a conditional plan that achieves “death”
with maximal probability and always stops in the original goal states or “death” (because this required us to
model the probabilities of dying explicitly).

4.5.3 Suboptimal Planning with the Planning-Task Transformations

We have assumed so far that a planner is available that finds optimal plans for the transformed planning
tasks. However, both the additive and multiplicative planning-task transformation work equally well with
suboptimal planners, which can find only near-optimal (“satisficing”) plans for the transformed planning
tasks. These plans then solve the original planning tasks only approximately. The error incurred is the
difference in certainty equivalents for the original planning tasks between these plans and the plans that
achieve the goal with maximal average utility. In this section, we analyze the error for the additive and
multiplicative planning-task transformation. For the additive planning-task transformation, we show that a
suboptimal planner that has a certain absolute or relative error for the transformed planning task has the
same absolute or relative error, respectively, for the original planning task. The multiplicative planning-task
transformation, on the other hand, can magnify the error of a suboptimal planner.

4.5. Planning with Exponential Utility Functions 157

Consider the additive planning-task transformation. In this case, the reward of any plan for the transformed
planning task is the same as its certainty equivalent for the original planning task. Thus, the larger its
reward for the transformed planning task, the larger its certainty equivalent for the original planning task,
and a near-optimal plan for the transformed planning task is also near-optimal for the original planning task.
This means that the additive planning-task transformation can be used in conjunction with either optimal or
suboptimal planners to produce plans that either maximize or approximately maximize, respectively, average
utility. Furthermore, a suboptimal planner that has a certain absolute or relative error for the reward of the
transformed planning task has the same absolute or relative error, respectively, for the certainty equivalent of
the original planning task.

Now consider the multiplicative planning-task transformation and assume that the exponential utility function
is convex. In this case, the probability of not dying during the execution of any plan is the same as its average
utility for the original planning task. Thus, the larger the probability of not dying during the execution of the
transformed plan, the larger the average utilityof the original plan, and a near-optimal plan for the transformed
planning task is also near-optimal for the original planning task. This means that the multiplicative planning-
task transformation can be used in conjunction with either optimal or suboptimal planners to produce plans
that either maximize or approximately maximize, respectively, average utility. An analogous argument holds
for concave exponential utility functions. Both for convex and concave exponential utility functions, however,
it is not the case that a suboptimal planner with a certain absolute or relative error for the transformed planning
task has the same absolute or relative error for the original planning task. This is a disadvantage of the
multiplicative planning-task transformation. We explain this in the following.

Assume that the utility function is convex exponential. If the optimal plan for the transformed planning task
achieves the goal with probability

�
and stops in only the goal states or “death,” then the probability of not

dying during its execution is
�

. Consequently, the average utility of the optimal plan that achieves the goal
for the original planning task is

�
and its certainty equivalent is log �

�
. Now consider a suboptimal planner

with additive error � � 0. If this planner is used to solve the transformed planning task, it can potentially find
a plan that stops in only the goal states or “death” and whose probability of goal achievement is only

� 4 �
(but not worse). Thus, the corresponding plan for the original planning task achieves the goal but its average
utility is only

� 4 � and its certainty equivalent is only log � : � 4 � ; . To determine how close to optimal this
plan is for the original planning task, we need to consider how close its certainty equivalent is to the certainty
equivalent of the optimal plan, not how close their average utilities are (Section 4.1). The following table
summarizes this data.

probability of goal achievement certainty equivalent
for the transformed planning task for the original planning task

optimal plan � log � �
found plan (worst case) � %��

log �
 � %�� �

Thus, the resulting error for the original planning task, log �

� 4 log� : � 4 � ; � log �

�
� ��� , increases as

�
and �

decrease. It can get arbitrarily large. To summarize, the reason for this is that we have to compare certainty
equivalents for the original planning task and they correspond to the logarithms of the probability of goal
achievement for the transformed planning task, and taking the logarithm can amplify the error.

Now assume that the utility function is convex exponential and consider a suboptimal planner with relative
error � � 0.

probability of goal achievement certainty equivalent
for the transformed planning task for the original planning task

optimal plan � log � �
found plan (worst case)

�
1
%��!� � log�

 1 %�� � & log� �

Thus, the resulting error for the original planning task, log �

� 4 log� : 1 4 � ;24 log�

� � log�
1

1 ��� , is additive.
Figure 4.17 shows its graph.

158 Chapter 4. Acting with Nonlinear Utility Functions

0

5

10

15

20

25

30

35

40

45

50

0 0.2 0.4 0.6 0.8 1

ap
pr

ox
im

at
io

n
er

ro
r

epsilon

gamma = 1.1
gamma = 1.2
gamma = 1.3
gamma = 1.4
gamma = 1.5

Figure 4.17: Error for Convex Exponential Utility Functions

0

1

2

3

4

5

6

7

0 0.2 0.4 0.6 0.8 1

ap
pr

ox
im

at
io

n
er

ro
r

epsilon

gamma = 0.9
gamma = 0.8
gamma = 0.7
gamma = 0.6
gamma = 0.5

Figure 4.18: Error for Concave Exponential Utility Functions

Now assume that the utility function is concave exponential and consider a suboptimal planner with additive
error � � 0.

probability of goal achievement certainty equivalent
for the transformed planning task for the original planning task

optimal plan � log � �
found plan (worst case) ��& � log �

 ��& � �
Thus, the resulting error for the original planning task, log �

� 4 log� : � 5 � ; � log�

�
� 	 � , increases as

�
decreases and � increases. It can get arbitrarily large.

Finally, assume that the utility function is concave exponential and consider a suboptimal planner with relative
error � � 0.

probability of goal achievement certainty equivalent
for the transformed planning task for the original planning task

optimal plan � log � �
found plan (worst case)

�
1 & �!� � log�

 1 & � � & log� �

Thus, the resulting error for the original planning task, log �

� 4 log� : 1 5 � ;24 log�

� � log�
1

1 	 � , is additive.
Figure 4.18 shows its graph.

4.6 Extension: Cyclic Plans

4.6. Extension: Cyclic Plans 159

X Y
start state s0 goal state s1

reward -1.00

reward -1.00

p

1 - p

move X to Y

Figure 4.19: Plan for Stacking Two Blocks

So far, we studied planning tasks with plans that have the followingproperty: the rewards of all their chronicles
are finite. Now we drop this standard assumption in utility theory [Toulet, 1986] and consider planning tasks
with cyclic plans. A plan is cyclic if a state can be repeated with positive probability during its execution.
Consider, for example, a plan for stacking two blocks with a move action that takes one minute to execute
and fails with probability

� � 0 (Figure 4.19). If executing the move action more than once leads to results
that are probabilistically independent, then the execution of this plan leads with probability

� � � 1 4 � � to a
chronicle with reward 4 � 4 1 for all integers

� 0. Thus, the rewards of its chronicles are unbounded.
Furthermore, only cyclic plans are able to solve the stacking task if absolutely reliable move actions are not
available. In this section, we therefore show how to find plans that achieve the goal with maximal average
utility (preference model C5) if the utility function is exponential and the plans can be cyclic. We assume
that the exponential utility function is convex and all rewards are negative. This is, for example, the case
for planning with immediate soft deadlines and for risk-seeking planning with resource consumptions. We
discuss the other cases at the end of this section.

We first show how to use goal-directed Markov decision process models to model planning tasks with cyclic
plans. We then show how to apply the multiplicative planning-task transformation to them. The transformed
planning tasks can be solved with any planner that has preference model C3 and is able to consider only plans
that achieve the goal for the original planning task. Next, we show how this restriction can be removed. This
makes it possible to solve the transformed planning task with any planner with preference model C3. We then
demonstrate the multiplicative planning-task transformation on a simple probabilistic blocks-world planning
task. Finally, we present an interesting interpretation for discounting that the multiplicative planning-task
transformation provides for goal-directed Markov decision process models.

4.6.1 Modeling the Planning Task

Convenient models of planning tasks with cyclic plans are goal-directed Markov decision process models
(GDMDPs) [Koenig, 1991]. These are totally observable Markov decision process models (MDPs) for which
a given goal state has to be achieved. For example, we have already used GDMDPs in Section 2.5.5 to
express goal-directed reinforcement-learning tasks and goal-directed exploration tasks. GDMDPs are also
the kinds of models that the path-planning layer of the mobile-robot system from Chapter 3 uses. They have
also been used for robot navigation in [Dean et al., 1993]. Notice that we use GDMDPs only to describe the
planning tasks, not necessarily to represent or solve them. In fact, our statements hold for all planners that
solve GDMDPs independent of the representations or planning methods that they use.

GDMDPs consist of a finite set of states
�

; a start state ��� ���	� � � �
; and a set of goal states � �

. Each
state � � � $ has a finite set of actions

��� ��� �� � that can be executed in � . GDMDPs further consist of
a transition function

�
(a function from

�
�
�

to probability distributions over
�

), where
� � � 1 ' � �	! � denotes

the transition probability that the system transitions from state � to state � 1 when action ! is executed; and an
immediate reward function (a function from

� $ �
�

�
�

to the real numbers), where �
� �,�	! �"� 1 � denotes

the finite immediate reward received when the execution of action ! in state � leads to state � 1 .
A GDMDP process is a stream of state, action, immediate reward � triples: The process is always in
exactly one state and makes state transitions at discrete time steps. It starts in state � �����*� � . When it is

160 Chapter 4. Acting with Nonlinear Utility Functions

in a goal state, execution stops and the process does not generate any further rewards. When it is in a
nongoal state � , a decision maker chooses an action !$� ��� ��� for execution. The action execution leads with
probability

� � � 1 ' �,�	!#� to immediate reward �
� � �"! �	� 1 � and a transition to state � 1 . The decision maker knows

the specification of the GDMDP and observes the actions and states.

Notice a difference to the earlier sections. Here, all non-goal state have at least one action defined. Thus,
execution can stop only in goal states. This is sufficient to model planning tasks since preference model C5
requires one to find a plan that achieves the goal, and therefore stopping in non-goal states cannot be optimal.
In earlier sections, it was possible for non-goal states not to have any action defined, and execution had to
stop in these states. This assumption was necessary to satisfy our earlier requirement that all plans be acyclic.
Since we now discuss cyclic plans, it is no longer necessary.

We define plans to be mappings from states to actions (also known as “stationary, deterministic policies”). A
plan always selects the action for execution that it has assigned to the current state of the GDMDP process.
A plan achieves the goal if the probability that it terminates in a goal state within a given number of action
executions approaches one as the bound approaches infinity, otherwise it does not achieve the goal.

GDMDPs are special cases of totally observable Markov decision process models. Notice that, in Chapter 3,
we used immediate rewards of the form �

� � �"!#� to describe MDPs instead of immediate rewards of the form
�
� � �	!��	� 1 � . This is so because the immediate rewards �

� �,�	!#� can be interpreted as the average immediate
rewards obtained when executing action ! in state � :

��������� �
:=

�
 / �� �
� ��� � � ����� � ����������� � �	��� �

For planning with linear utility functions (that is, average reward) the immediate rewards �
� � �	! � summarize

the information that is contained in the immediate rewards �
� � �"! �	� 1 � . To see this, consider Bellman’s equation

(Section 3.2.2, Formula 3.3) with the immediate rewards �
� � �"! �	� 1 � instead of the immediate rewards �

� �,�	!#� .
In the following equations, � specifies the discount factor rather than the parameter of the exponential utility
function. (Section 4.6.4 explains why we use the same symbol for both entities.)

	 ��� �

max

� �*� ��
�� (
 / �� � � ��� � � ����� � ������������� � � � � � 	 ��� � ����� for all
� � �

	 ��� �

max

� �*� ��
�� � (
 / �� � � ��� � � ����� � ������������� � ��� � � (
 / �� � � ��� � � ����� � 	 ��� � ��� � for all
� � �

	 ��� �

max

� �*� ��
�� � ��������� � � � (
 / �� � � ��� � � ����� � 	 ��� � ��� � for all
� � �

.

A similar transformation cannot be performed for nonlinear utility functions. This is why we have to work
directly with the immediate rewards �

� � �"! �	� 1 � .

4.6.2 Applying the Multiplicative Planning-Task Transformation

If all actions of the GDMDP are “deterministic” in the sense that their execution always ends in the same state
(which can be different for different actions), then the optimal plan is not cyclic. Thus, we need to consider
only acyclic plans and can apply the additive planning-task transformation unchanged (Section 4.5.1). In the
following, we study the case where some actions of the GDMDP can end in more than one state. Thus, we
need to apply the multiplicative planning-task transformation. We show that the multiplicative planning-task
transformation applies unchanged to GDMDPs [Koenig and Simmons, 1994a]. The transformed planning
task can be solved with any planner that has preference model C3 and is able to consider only plans that
achieve the goal for the original planning task. The restriction is due to the fact that a plan with maximal
average utility for a convex exponential utility function does not necessarily achieve the goal even if the goal
can be achieved. This is different from maximizing average reward: a plan with maximal average reward

4.6. Extension: Cyclic Plans 161

always achieves the goal if the goal can be achieved since all immediate rewards are negative. However, we
show that the transformed planning task can be solved with any planner with preference model C3 if one first
deletes all states from the original planning task from which the goal cannot be achieved.

We use the multiplicative planning-task transformation from Section 4.5.2 unchanged on the GDMDP. It
transforms the GDMDP by modifying all of its actions (everything else remains the same): If the execution of
action ! � ��� ��� leads with probability

� � � 1 ' � �	! � to immediate reward �
� � �"! �	� 1 � and state � 1 (for all � 1 � �

),
then it is replaced with an action ! � �$� ��� whose execution leads with probability

� � � 1 ' �,�	!#� � ��7 � � � � � / 9 to
state � 1 (for all � 1 � �

) and with probability 1 4 (� /)�+ : � � � 1 ' �,�	!#� � ��7 � � � � � / 9 ; to a new nongoal state (“death”)
in which execution stops. The immediate rewards do not matter. The transformation is such that a plan that
maximizes the probability of goal achievement for the transformed planning task also maximizes the average
utility for the original planning task.

Notice the difference between plans for the original and transformed planning tasks: The execution of every
plan for the original planning task stops only in the goal states but can cycle forever with positive probability.
The execution of every plan for the transformed planning task stops either in the goal states or the nongoal state
“death” but cannot cycle forever with positive probability. This difference is only for convenience. It does
not change the nature of the planning tasks. Instead of stopping the execution of a plan for the transformed
planning task once it reaches “death,” we could also let it cycle forever in “death.”

In the following, we explain why the multiplicative planning-task transformation works for GDMDPs.

Consider any plan that maps state � to action ! � ��� . We first calculate the average utility of the plan for the
original planning task, then its probability of goal achievement for the transformed planning task, and finally
show that these two values are identical. Notice that the probability of goal achievement of a plan for the
transformed planning task is the same as the probability of not dying during its execution since its execution
never stops in nongoal states other than “death.”

We now calculate the average utility of the plan for the original planning task. Let � � � ��� be the average utility
of state � . This is the average utility that is obtained for the original planning task if the execution of the
plan starts in state � . Thus, the average utility of the plan is � � � ��� ���	�
� � . To calculate it, we derive Bellman’s
equation for the average utilities of all states. To calculate the average utility of a goal state � , notice that the
execution stops in the state and no further rewards are obtained. Thus,

� � ��� ��
 � � 0 �
 � 0

1
�

To calculate the average utility of a nongoal state � , notice that the execution of action ! � ��� leads with
probability

� � � 1 ' �,�	! � ��� � to immediate reward �
� � �"! � ��� �"� 1 � and a transition to state � 1 . In state � 1 , the agent

faces a lottery with certainty equivalent � � � � 1 � . For exponential utility functions, the certainty equivalent of first
receiving reward �

� � �	! � ��� �"� 1 � and then participating in a lottery with certainty equivalent � � � � 1 � is, according
to Formula 4.2, �

� � �	! � ��� �"� 1 � 5 � � � � 1 � . The corresponding average utility is � � � � �,�	! � �����	� 1 � 5 � � � � 1 � � . Thus,

� � ��� �
 �
 / �� �
� ��� � � ��������� ��� � ��������������� � ��� � � � � � ��� �	�����

 �
 / �� �
� ��� � � ��������� ���

�
�#��
�� ����
����
 / � � � � ��
 / � �

 �
 / �� �
� ��� � � ��������� ���

�
�#��
�� ����
����
 / �

�
� � ��
 / � �

 �
 / �� �
� ��� � � ��������� ���

�
�#��
�� ����
����
 / � � � � � ��� � �����

 �
 / �� �
� ��� � � ��������� ���

�
�#��
�� ����
����
 / � � � ��� � ���

162 Chapter 4. Acting with Nonlinear Utility Functions

 �
 / �� �
� ��� � � ��������� ��� � � ��� � ��� �

where the parameters
� � � 1 ' �,�	!#� are new values with

� � � 1 ' � �	! � :=
� � � 1 ' � �	! � � � 7 � � � � � / 9 . This result corresponds

to the plan-evaluation step in [Howard and Matheson, 1972] with the “certain equivalent gain” � � 0. The
values

� � � 1 ' �,�	!#� satisfy 0 � � � � 1 ' � �	! � � � � � 1 ' �,�	!#� according to our assumption that the exponential utility
function is convex (� � 1) and all immediate rewards are negative (�

� � �"! �	� 1 � 0).

To summarize, Bellman’s equation for the average utilities � � � ��� of the states is

� � ��� ��
 � 1 if
� � �

(
 / �� � � ��� � � ��������� ��� � � ��� � ��� otherwise
for all

� ���
. (4.6)

That this set of equations has a unique solution, which corresponds to the average utilitiesof the states, follows
directly from [Denardo and Rothblum, 1979], an application of [Howard and Matheson, 1972] to stopping
problems that also considers the case of mixed negative and positive immediate rewards.

Instead of calculating the average utility of the plan directly, we can first transform it: Its structure remains
unchanged but all of its actions are transformed (as described above): If the execution of action ! � ��� ���
leads with probability

� � � 1 ' � �"!#� to immediate reward �
� �,�	! �"� 1 � and state � 1 (for all � 1 � �

), then it is replaced
with an action ! � �$� ��� whose execution leads with probability

� � � 1 ' � �"!#� � � 7 ��� � � � / 9 � � � � 1 ' � �	! � to state � 1
(for all � 1 � �

) and with probability 1 4 (� /),+ : � � � 1 ' �,�	!#� � ��7 � � � � � / 9 ; � 1 4 (� /),+ � � � 1 ' � �"!#� to a new nongoal
state (“death”) in which execution stops. The immediate rewards do not matter.

We now calculate the probability of goal achievement of the plan for the transformed planning task. Let� � ! � ��� be the probability of goal achievement of state � (
� � ! = probability of goal achievement). This is

the probability of goal achievement for the transformed planning task if the execution of the plan starts in
state � . Thus, the probability of goal achievement of the plan is

� � ! � �,�����	�
� � . To calculate it, we derive
Bellman’s equation for the probabilities of goal achievement of all states. To calculate the probability of goal
achievement of a goal state � , notice that the execution stops in goal states. Thus,

� � ����� �

1
�

To calculate the probability of goal achievement of a nongoal state � , notice that the execution of action ! � ���
leads with probability

� � � 1 ' �,�	! � ��� � to state � 1 and with probability 1 4 (� /),+ � � � 1 ' �,�	! � ��� � to “death.” The
probability of goal achievement of state � 1 is

� � ! � � 1 � . The probability of goal achievement of “death” is zero
since execution stops but “death” is not a goal state. Thus,

� �#����� �
 �
 / �� �
� ��� � � ��� ����� ��� � �#����� � ��� � �

1
� �
 / ��

� ��� � � ��������� ����� � 0

 �
 / �� �
� ��� � � ��� ����� ��� � �#����� � ��� �

To summarize, Bellman’s equation for the probabilities of goal achievement
� � ! � ��� of the states is

� �#����� �
 � 1 if
� ���

(
 / �� � � ��� � � ����� � � �#����� � ��� otherwise
for all

� � �
. (4.7)

4.6. Extension: Cyclic Plans 163

reward -1.00
1

reward -1.00

reward -1.00

0.5

0.5

goal state

reward -3.00

goal state

1.0

start state

start state

Plan 1

Plan 2

Figure 4.20: Example of a Plan that Maximizes Average Utility but does not Achieve the Goal

That this set of equations has a unique solution, which corresponds to the probabilities of goal achievement
of the states, follows directly from [Mine and Osaki, 1970].

A comparison of Formulae 4.6 and 4.7 shows that � � � ��� � � � ! � ��� for all ��� �
. Consequently, the probability

of goal achievement
� � ! � � ��� �	� � � of a plan for the transformed planning task is the same as its average utility

� � � ��� ���	� � � for the original planning task.

The multiplicative planning-task transformation can be used to find a plan with maximal average utility for
the original planning task: We first transform all actions of the planning task. Then, a plan that maximizes
the probability of goal achievement for the transformed planning task also maximizes the average utility for
the original planning task. Preference model C5, however, requires one to find a plan that achieves the goal
with maximal average utility. This complicates matters but in the following we show that the multiplicative
planning-task transformation can be used for this purpose as well: one only has to remove all states from the
original planning task from which the goal cannot be achieved.

We first demonstrate that a plan that maximizes the average utility for the original planning task does not
necessarily achieve the goal. As an example, consider the two plans from Figure 4.20 and assume that the
utility function is � � � � � 2 � . Then, the average utility of Plan 1 is 0 � 50 � � 4 � � 5 0 � 50 � � 4 1 � � 0 � 25 and the
(average) utility of Plan 2 is 1 � 00 � � 4 3 � � 0 � 125. Thus, Plan 1 has a larger average utility than Plan 2, but
only Plan 2 achieves the goal.

To solve this problem, we have to make sure that the plan that maximizes the average utility for the original
planning task also achieves the goal. We say that a goal can be achieved from state � if a plan exists that
achieves the goal if its execution starts in state � . We then use the following property:

Theorem 24 A plan with maximal average utility for a GDMDP planning task always achieves the goal if
the exponential utility function is convex, all immediate rewards are negative, and the goal can be achieved
from all states.

Proof by contradiction: Suppose that there is a plan
� � with maximal average utility that does not achieve the

goal. Since the goal can be achieved from all states, there must be some state � that is reached with positive
probability during the execution of plan

� � such that plan
� � 1 differs from plan

� � in only the action assigned
to � , plan

� � 1 reaches a goal state with positive probability from state � , and plan
� � reaches a goal state

with probability zero from state � . To see this, consider the set of all states that are reached with positive
probability during the execution of plan

� � and from which plan
� � reaches a goal state with probability zero.

At least one such state exists and all of them are nongoal states. The statement then follows for one of these
states, which we called � , since a goal can be achieved from all of those states.

Now consider all chronicles of plan
� � that do not contain state � . Plan

� � 1 has the same chronicles with the
same probabilities and utilities. The rewards of all chronicles of plan

� � that contain state � are minus infinity
(since all immediate rewards are negative and the chronicles do not stop) and their utilities are zero (since
the exponential utility function is convex). On the other hand, at least one chronicle of plan

� � 1 that contains

164 Chapter 4. Acting with Nonlinear Utility Functions

start state goal

Figure 4.21: Blocks-World Planning Task

Figure 4.22: Goal States for the Blocks-World Planning Task

state � achieves the goal. Its reward is finite and its utility is positive. The utilities of the other chronicles of
plan

� � 1 that contain state � are nonnegative (since the exponential utility function is convex). Therefore, the
average utility of plan

� � 1 is strictly larger than that of plan
� � . This, however, is a contradiction.

To summarize, if the goal can be achieved from all states of the original planning task and a plan achieves the
goal with maximal probability for the transformed planning task, then it also maximizes the average utility
for the original planning task and thus also achieves the goal for the original planning task. Consequently,
the original planning task can be solved by applying the multiplicative planning-task transformation and then
solving the transformed planning task with any planner with preference model C3. The transformed planning
task can also be solved with any planner with preference model C4 by declaring “death” another goal state
and making the immediate rewards for stopping in goal states other than “death” one and all other immediate
rewards zero. This is so because no plan for the transformed planning task can cycle forever with positive
probability. Thus, it always achieves an original goal state or “death.” Notice that the planner with preference
model C4 has to be able to handle immediate rewards that are zero.

If the goal cannot be achieved from all states of the original planning task, one can remove all states from
which the goal cannot be achieved (and all actions whose execution can lead to these states) before applying
the multiplicative planning-task transformation. The states can be removed, for example, with the method
described in [Koenig, 1991]. Their removal does not eliminate plans that achieve the goal and it does not
change the average utility of any plan. It only eliminates some plans that do not achieve the goal. Thus,
the removal does not affect which plan achieves the goal with maximal average utility. It does, however,
guarantee that the plan with maximal average utility also achieves the goal (Theorem 24). This plan also
achieves the goal with maximal average utility before the removal of the states. This makes it possible to solve
the transformed planning task with methods that are able to maximize the probability of goal achievement,
but are not able to consider only plans that achieve the goal for the original planning task. An example is
value-iteration (Section 3.2.2).

4.6.3 Example: A Blocks-World Planning Task

In this section, we demonstrate the multiplicative planning-task transformation on a simple block-world
planning task with five blocks that are either black or white [Koenig and Simmons, 1994b]. The spatial
relationships among the stacks are unimportant, resulting in a state space that contains 162 states. In every
blocks-world state, one can paint a block white or black or move a block that has a clear top onto either the
table or a different block that has a clear top. The results of action executions are probabilistically independent.
Painting a block takes three minutes and is always successful. Moving a block takes only one minute, but it is

4.6. Extension: Cyclic Plans 165

very unreliable. With probability 0.10, the moved block ends up at its intended destination. With probability
0.90, however, the gripper loses the block and it ends up directly on the table. Moving a block to the table
always succeeds. Figure 4.21 shows the start state and the goal, which is to build a stack of three blocks that
contains a black block, a white block, and a black block, in this order. Consequently, there are seven goal
states that differ in the configuration and color of the two remaining blocks. All of them are equally preferable
(Figure 4.22).

Plans of the blocks-world planning task can have cycles. For example, the state remains unchanged if moving
a block from the table onto another block fails. This also shows that not all actions end in the same state. We
therefore represent the blocks-world planning task as a GDMDP and apply the multiplicative planning-task
transformation. Instead of explicitly enumerating all transition probabilities and immediate rewards, we make
use of the fact that the multiplicative planning-task transformation works on various representations and use
a more compact representation of GDMDPs, namely, probabilistic STRIPS rules.

The original STRIPS notation [Fikes and Nilsson, 1971] was designed to specify planning tasks in deterministic
domains. Probabilistic STRIPS rules [Koenig, 1991] augment them in a straightforward way to probabilistic
domains such as GDMDPs. For example, the move action of the blocks-world planning task can be modeled
with three probabilistic STRIPS rules, one for moving block X from block Y to block Z, one for moving block
X from the table to block Y, and one for moving block X from block Y to the table. As an example, the first
of these rules is:

RULE 1: move(X,Y,Z)
precond: on(X,Y), clear(X), clear(Z), notequal(X,Z)
outcome: /* the intended outcome */
prob: 0.10
reward: -1.00
delete: on(X,Y), clear(Z)
add: on(X,Z), clear(Y)

outcome: /* failure: block X falls onto the table */
prob: 0.90
reward: -1.00
delete: on(X,Y)
add: clear(Y), ontable(X)

Additional STRIPS rules describe the start state and the goal states.

The multiplicative planning-task transformation then converts the probabilistic STRIPS rules. Assume, for
example, that the utility function is � � � � � 2 � , where � is the negative plan execution time, measured in
minutes. Then, the transformation of the probabilistic STRIPS rule shown above is:

TRANSFORMED RULE 1: move(X,Y,Z)
precond: alive, on(X,Y), clear(X), clear(Z), notequal(X,Z)
outcome: /* the intended outcome */
prob: 0.05
delete: on(X,Y), clear(Z)
add: on(X,Z), clear(Y)

outcome: /* failure: block X falls onto the table */
prob: 0.45
delete: on(X,Y)
add: clear(Y), ontable(X)

outcome: /* death */
prob: 0.50
delete: alive
add: dead

The start and goal states remain unchanged.

Notice that the goal of the original blocks-world planning task can be achieved from every state: one can
first unstack every block, then build a stack of three blocks (repeating the move actions until they finally
succeed), and finally paint the blocks. Thus, a plan that maximizes the probability of goal achievement
for the transformed blocks-world planning task also achieves the goal with maximal average utility for the

166 Chapter 4. Acting with Nonlinear Utility Functions

color A

A

start

color B

B

move C to D

C

color E move F to G
FE

start

move H to I

H

move K to L

move M to N move O to P

move Q to R
Q

O

K

M

start

color J
J

move S to table

S

move T to U

move V to W move X to Y

move Z to A
Z

X

T

V

start

Plan 1

Plan 3

Plan 2

Plan 4

L

A

W
Y

G

D

R

N
P

I

U

average plan execution time
6.0 minutes

average plan execution time
13.0 minutes

average plan execution time
19.3 minutes

average plan execution time
21.0 minutes

stop

stop

stop

stop

stop

Figure 4.23: Some Plans for the Blocks-World Planning Task

original blocks-world planning task. In the following, we describe the results of planning for the blocks-world
planning task.

Figure 4.23 shows four plans that solve the blocks-world planning task. The purpose of the symbols
�

, � , � ,
and so on, is to enable the action commands to refer to specific blocks. Thus, the symbols do not necessarily
mark the same blocks in different states. Figure 4.24 illustrates how the certainty equivalents of the plans
vary with the natural logarithm of � for the convex exponential utility function � � � � � � � , where � � 1 and
� is the negative plan-execution time, measured in minutes.

Plan 1 is deterministic and takes six minutes to execute. Thus, its (average) reward is 4 6 � 00, and this is the
maximal average reward of all plans, not just the four plans shown in Figure 4.23. However, Plan 1 does not
necessarily maximize the certainty equivalent. Its certainty equivalent equals its reward for all values of �
since Plan 1 is deterministic. The other three plans are probabilistic. Thus, their certainty equivalents increase
as � increases, and different plans can be optimal for different � . Figure 4.24 shows that Plan 1 is optimal in
the interval ln � � �

0 � 00 � 0 � 93 ; . For ln � � : 0 � 94 � 4 � 58 ; , Plan 3 is optimal, and Plan 4 should be chosen for
ln � � : 4 � 59 ��� � . These statements hold for all plans, not just the four plans shown in the picture.

As � approaches one and ln � approaches zero, the certainty equivalent of each plan approaches its average
reward. The certainty equivalent of Plan 4, for example, approaches 4 21 � 00. Thus, Plan 1 is optimal for �
approaching one. In contrast, as � approaches infinity, the certainty equivalent of each plan approaches its
best-case reward. When executing Plan 4, for example, the agent can reach a goal state in only three minutes
if it is lucky. Thus, the certainty equivalent of Plan 4 approaches 4 3 � 00, and this is the best-case reward of all

4.6. Extension: Cyclic Plans 167

-6

-5.5

-5

-4.5

-4

-3.5

0 2 4 6 8 10

ce
rt

ai
nt

y
eq

ui
va

le
nt

 [-
m

in
ut

es
]

ln gamma

plan 1
plan 2
plan 3
plan 4

Figure 4.24: Certainty Equivalents of the Four Blocks-World Plans

plans. Thus, Plan 4 is optimal for � approaching infinity. The certainty equivalent of Plan 3 also approaches
4 3 � 00 and thus Plan 3 is also optimal for � approaching infinity. However, for ln � 4 � 59, the certainty
equivalent of Plan 4 is always larger than the certainty equivalent of Plan 3.

4.6.4 Discounting

The path-planning layer of the mobile-robot system from Chapter 3 maximizes the average discounted reward
for a given GDMDP planning task. Recall that the discount factor 0 � � 1 specifies the relative value of
an immediate reward after

�
action executions compared to the same immediate reward one action execution

earlier. In this section, we first review two standard interpretations of discounting, namely, that it models
agents that can save and borrow resources at a given interest rate and agents that die with a given probability
after every action execution. We then use the multiplicative planning-task transformation to provide a novel
interpretation of discounting, which is often more useful, namely, that, in certain situations, discounting
can be interpreted as a special case of calculating the average utility for nonlinear utility functions. In
particular, we show that maximizing the average discounted reward for GDMDP planning tasks with the
goal-reward representation is the same as maximizing the average utility for the same GDMDP planning
task with the action-penalty representation and a convex exponential utility function. (The first planning
task can be obtained by applying the multiplicative planning-task transformation to the second planning
task.) Consequently, maximizing average utility for exponential utility functions generalizes the concept of
discounting. This explains why we chose to use the symbol � for both the discount factor and the parameter
of exponential utility functions. Many researchers have formulated their planning tasks as GDMDPs with
the goal-reward representation and then maximized the average discounted reward to solve it. An example
in the context of robot navigation is [Lin, 1993]. Other examples include [Sutton, 1990, Whitehead, 1991a,
Peng and Williams, 1992, Thrun, 1992b]. Consequently, these researchers have already used a special case
of the multiplicative planning-task transformation without knowing it.

Discounting has nice mathematical properties (it ensures that the average total reward is always finite even for
cyclic plans that never terminate) and was originally motivated by collecting interest for money. If an agent
receives immediate reward � �� 0 at time

�
and the interest rate is

� � �
1 4 � � � � 0, then the immediate

reward is worth
�
1 5 � ��� � � � � at time

� 5 1. Thus, the discount factor is the relative value at time
� 5 1 of

an immediate reward � received at time
� 5 1 compared to the same immediate reward received at time

�
:

0 !
�
� � �

� � 1

�

Consequently, the discount factor � can be interpreted as modeling agents that can save or borrow resources
at interest rate

�
1 4 � � � � .

168 Chapter 4. Acting with Nonlinear Utility Functions

Robots usually cannot invest their resources and earn interest. Discount factors are then often interpreted as
taking the possibility of death of the agent into account. When an agent dies, it cannot collect any further
rewards. Thus, if it dies with probability 0 � 1 4 � 1 between time

�
and time

� 5 1, then it cannot collect
the immediate reward � �� 0 at time

� 5 1 and thus the average value of this immediate reward at time
�

is
� � 5 �

1 4 � � 0 � � � . Thus, the discount factor is the relative value at time
�

of an immediate reward � received
at time

� 5 1 compared to the same immediate reward received at time
�
:

0 ! �
�
�

� � 1

�

Consequently, the discount factor � can be interpreted as modeling agents that die with probability 1 4 � after
every action execution. The navigation example for outdoor rovers that we discussed in Section 4.2.1 can be
interpreted in this way.

In the following, we provide a novel interpretation for discounting. Recall from Section 2.5.6.1 that the
goal-reward representation rewards the agent for stopping in a goal state, but does not reward or penalize it for
executing actions. The action-penalty representation penalizes the agent for every action that it executes, but
does not reward or penalize it for stopping in a goal state. We consider any GDMDP planning task whose start
state is not a goal state. (The other GDMDP planning tasks are trivial.) We show that the average discounted
reward of any plan for the GDMDP planning task with the goal-reward representation and discount factor

� � 1 (with 0 � � 1 1) is proportional to its average utility for the same GDMDP planning task with the
action-penalty representation and exponential utility function � � � � � � � (with � � 1).

To see this, consider any plan and any chronicle of the plan. Assume that the chronicle contains
�

actions.
Since the start state is not a goal state and the execution stops only in goal states it must be that

� � 1 and, if�
is finite, the chronicle must end in a goal state.

Now consider the GDMDP planning task with the goal-reward representation and discount factor � � 1. The
goal-reward representation uses the following immediate rewards

������� ����� � �
 � 1 if
� � ���

0 otherwise
for all

� ����� �
,
� � � ��� �

, and
� � � � �

Then, the discounted reward of the chronicle is
�

� � 1 � � � 1 � � � � 	 1.

Now consider the same GDMDP planning task with the action-penalty representation and exponential utility
function � � � � � � � . The action-penalty representation uses the following immediate rewards

������� ��� � � �
 �
1 for all

� � ��� �
,
� � � ��� �

, and
� � ��� �

Then, the reward of the chronicle is 4 �
and its utility is � � � .

To summarize, the discounted reward of every chronicle for the GDMDP planning task with the goal-reward
representation is � times its utility for the same GDMDP planning task with the action-penalty representation.
Notice that this also holds if the chronicle contains an infinite number of actions. In this case, its discounted
reward is zero for the GDMDP planning task with the goal-reward representation, and its reward is minus
infinity and its utility is zero for the GDMDP planning task with the action-penalty representation.

This means that the average discounted reward of every plan for the GDMDP planning task with the goal-
reward representation is � times its average utility for the same GDMDP planning task with the action-penalty
representation. Consequently, a plan with maximal average discounted reward for the GDMDP planning task

4.6. Extension: Cyclic Plans 169

with the goal-reward representation is also a plan with maximal average utility for the same GDMDP planning
task with the action-penalty representation. Similarly, a plan that achieves the goal with maximal average
discounted reward for the GDMDP planning task with the goal-reward representation is also a plan that
achieves the goal with maximal average utility for the same GDMDP planning task with the action-penalty
representation.

Recall from Section 2.5.6.3 that, in deterministic domains, maximizing the discounted reward for any planning
task with the goal-reward representation leads to the same result as maximizing the undiscounted reward for
the same planning task with the action-penalty representation. This is no longer true in probabilistic domains.
We showed that maximizing the average discounted reward for any planning task with the goal-reward
representation in probabilistic domains leads to the same result as maximizing the average (undiscounted)
utility for the same planning task with the action-penalty representation and a convex exponential utility
function (as shown above). The discount factor used determines the shape of the utility function, for example,
the softness of an immediate soft deadline or the amount of risk-sensitivity. More generally, assume that we
want to maximize the average utility of a GDMDP planning task with the action-penalty representation and
a convex exponential utility function, but the immediate rewards are nonhomogeneous. The corresponding
planning task with the goal-reward representation then has nonhomogeneous discounting since the discount
factor � � 7 � � � � � / 9 depends on the state, the executed action, and the resulting successor state.

We feel that this interpretation of discounting applies to a larger class of agents than the other two interpretations
since agents often have nonlinear utility functions but usually cannot earn interest on unused resources or
have to be concerned about dying after every action execution.

4.6.5 Other Cases

We have shown how to find plans for GDMDPs that achieve the goal with maximal average utility if the
exponential utility function is convex and all immediate rewards are negative. We now discuss the problems
that the other cases pose for the multiplicative planning-task transformation – addressing these problems is
future work. Planning tasks with positive immediate rewards have the problem that it is optimal to cycle for an
arbitrarily long time before achieving the goal if a cycle with positive total reward exists that can be traversed
with probability one. We therefore do not discuss the cases where the immediate rewards can be positive.
The remaining case is the one where the exponential utility function is concave and all immediate rewards are
negative. In this case, Bellman’s equation for the average utilities � � � ��� of the states (Formula 4.6) is

� � ��� ��
 � �
1 if

� � �
(
 / �� � � ��� � � ��������� ��� � � ��� � ��� otherwise

for all
� ���

, (4.8)

where the parameters
� � � 1 ' �,�	!#� are new values with

� � � 1 ' � �"!#� :=
� � � 1 ' �,�	!#� � ��7 � � � � � / 9 . The values

� � � 1 ' �,�	!#�
satisfy

� � � 1 ' � �"!#� � � � � 1 ' �,�	!#� according to our assumption that the exponential utility function is concave
(0 � 1) and all immediate rewards are negative (�

� �,�	! �"� 1 � 0). The values are nonnegative but
their sum (� /),+ � � � 1 ' � �"!#� exceeds one – they are no longer probabilities. We commented on this already
in the context of acyclic plans (Section 4.5.2). However, cyclic plans pose additional problems, some of
which make utility theory break down and others make the multiplicative planning task transformation break
down. We next discuss these problems. It remains future work to address the problem of planning with
concave exponential utility functions when utility theory breaks down. When the multiplicative planning task
transformation breaks down but utility theory does not, operations research has studied methods that are still
able to find plans with maximal average utility. Thus, planning with exponential utility functions remains
possible but it is future work to investigate how one can apply search and planning methods from artificial
intelligence in this case.

We first describe a situation where utility theory breaks down.

170 Chapter 4. Acting with Nonlinear Utility Functions

-20

-15

-10

-5

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1

ex
pe

ct
ed

 u
til

ity

action failure probability p

gamma = 0.5

Figure 4.25: Average Utility of the Plan for Stacking Two Blocks

Scared Agents: For values of � that are sufficiently close to zero, the average utilities of plans can be
minus infinity even if the plans achieve the goal and therefore have a finite average reward. In this case, the
average utilities of two plans that achieve the goal can both be minus infinity even if one plan dominates the
other and thus should be preferred. (Therefore, for sufficiently risk-averse attitudes in high-stake one-shot
planning domains, agents can become so “scared” of the risk that they no longer differentiate among plans of
different goodness.) As an example, consider again the plan for stacking two blocks with a move action that
takes one minute to execute and fails with probability

�
(Figure 4.19). The execution of this plan leads with

probability
� � � 1 4 � � to a chronicle with reward 4 � 4 1 for all integers

� 0. The average utility of the plan
is

�
�
 �

0

� � � 1 � � � � � � � �
1
���
 �

�
 �

0

� � � 1 � � � � �
�
� �

1
���
 � 1

� �
�

�
�
 �

0

� �
���

 � � 1
� �

�
� � for 0

� � ! ����
for � � � �

1.

Figure 4.25 shows how the average utility of the plan depends on
�

for the concave exponential utility function
� � � � � 4 �

1 � 2 � � , where � is the negative plan-execution time, measured in minutes. The average utility of
the plan is minus infinity for � � � . If an agent can choose between a move action with failure probability

�
1

and a different move action with failure probability
�

2 where � � � 2
 �

1, it cannot decide which one to
prefer although it should clearly choose the latter one, since the probability distribution over the rewards of
the latter move action dominates the probability distribution over the rewards of the former move action. The
reason for this problem is that rewards can be unbounded for cyclic plans. We do not offer a solution for this
problem in this thesis.

We now describe a situation where the multiplicative planning-task transformation breaks down.

Inadmissible Fixed Points: It is no longer guaranteed that a solution of Bellman’s equation (Formula 4.8)
corresponds to the average utility of the plan, because a finite solution should not always be preferred over an
infinite solution. We give two examples:

First, consider a plan that achieves the goal with probability zero. Its reward is minus infinity (since all
immediate rewards are negative) and its utility is minus infinity (since the exponential utility function is
concave). However, the finite solution of Bellman’s equation is zero for � � � � ��� �	� � � of this plan.

Second, consider a plan that achieves the goal but has utility minus infinity (“scared agent”). As an example,
consider again the plan for stacking two blocks with a move action that takes one minute to execute and fails
with probability

�
. � 0 denotes the start state (both blocks on the table) and � 1 denotes the goal state (both

blocks stacked). Bellman’s equation for this plan is

4.7. Future Work 171

-20

-15

-10

-5

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1

ex
pe

ct
ed

 u
til

ity

action failure probability p

gamma = 0.5

Figure 4.26: Solution of Bellman’s Equation for the Plan for Stacking Two Blocks

� � ���
0

�
 �
�
�

1 � � ���
0

� � �
1

� � �
�
�

1 � � ���
1

�
� � ���

1

�
 �
1
�

Its solutions are

� � ���
0

�
 � 1
� �
�

� �
� � ���

1

�
 �
1
�

Figure 4.26 shows the solution � � � � 0 � of Bellman’s Equation for the average utilityof the plan, and Figure 4.25
showed its correct average utility. They differ for � �

, when the finite solution of Bellman’s Equation
becomes erroneously nonnegative. (The point on the graph at

� � 1 corresponds to the first example above.)
Thus, if a planner used the finite solutions of Bellman’s Equation unchanged to choose among several move
actions with different failure probabilities, then it would pick a move action with failure probability

� � 0 � 5
over a move action with failure probability

� � 0.

Thus, not all planners with preference model C3 can be used unchanged on the transformed planning task.
This does not mean that the planning task can no longer be solved. Operations research has investigated
properties of these planning tasks and possible solution methods in the context of “risk-sensitive Markov
decision process models” [Denardo and Rothblum, 1979, Hernandez-Hernandez and Marcus, 1997, Marcus
et al., 1997]. In this context, operations research has also investigated how to maximize the average utility
for partially observable Markov decision process models if the utility functions are exponential. Examples
include [Bensoussan and Schuppen, 1985, Whittle, 1990, Coraluppi and Marcus, 1996, Baras and James, 1997,
Fernandez-Gaucherand and Marcus, 1997]. This means that planning with exponential utility functions is
possible in these cases but it is future work to investigate how one can use search and planning methods from
artificial intelligence.

4.7 Future Work

In this chapter, we studied preference models for acting with incomplete information where the consumption
of only one limited resource needs to be considered. We studied exponential utility functions and described
how to find plans efficiently that achieve the goal with maximal average utility (preference model C5) for this

172 Chapter 4. Acting with Nonlinear Utility Functions

class of nonlinear utility functions. While exponential utility functions are expressive, they cannot be used to
solve all planning tasks since the number of their parameters, and thus their shapes, and the number of their
variables are restricted.

Shape: Exponential utility functions can model immediate soft deadlines. However, they cannot model hard
deadlines or deadlines in the future [Dean et al., 1988, Haddawy and Hanks, 1990]. As an example of a hard
deadline in the future is the delivery of a conference submission to a UPS stop. In this case, the utility of the
delivery is � 0 if the delivery is completed before the last UPS pickup that meets the submission deadline and
� 1 (with � 1

 � 0) afterwards. Similarly, exponential utility functions can model a continuum of risk attitudes
in high-stake one-shot planning domains but not all risk attitudes. For example, they can model only agents
that have pure risk attitudes but not agents who play the lottery and have insurance. Furthermore, they cannot
model agents whose decisions depend on their wealth (that is, where their choices depend on how wealthy
they are), such as agents who become less risk-averse as they become wealthier. The restricted shape of
exponential utility functions appears to be a larger problem for modeling deadlines than risk attitudes because
the range of relevant rewards often seems to be small enough so that only one risk attitude is present.

Number of Variables: Exponential utility functions depend on only one variable, namely, the consumption
of one limited resource. Often, however, if more than one resource is scarce, agents have to reason about the
trade-off between the consumption of these different resources. An outdoor delivery robot, for example, might
have to worry about the delivery time and the rate of energy consumption, which depends on the ruggedness
of the terrain and other factors.

These limitations of exponential utility functions demonstrate that it is important to integrate our planning
methods with planning methods for other nonlinear utility functions and multi-variable utility functions. This
would expand the applicability of our planning methods and, at the same time, increase the efficiency of
the other planning methods on the parts of the planning tasks that can be modeled with exponential utility
functions. This would also solve the problem that our planning methods only preserve the decomposability
of planning tasks but do not create decomposability. Thus, they do not apply to planning tasks that are not
decomposable (that is, do not satisfy the Markov assumption).

Another interesting problem for planning with nonlinear utility functions is how to schedule several tasks,
where each task has its own utility function. This problem is a special case of having one utility function with
more than one variable. It is relevant for delivery robots that have several delivery requests pending, each
with its own deadline function.

Another interesting problem is how to combine utility models other than the one studied here with search
and planning methods from artificial intelligence. One possible alternative is prospect theory [Kahneman
and Tversky, 1979], that is able to explain some empirical findings about human decision making that utility
theory cannot explain.

Another interesting problem is how to identify other opportunities for combining utility theory with search and
planning methods from artificial intelligence. One such area appears to be multi-attribute utility theory [Keeney
and Raiffa, 1976], which studies utility functions with more than one variable. PYRRHUS [Williamson and
Hanks, 1994, Williamson and Hanks, 1996] is a first step in this direction. This planner uses a subset of
the nonlinear, multi-attribute utility functions in [Haddawy and Hanks, 1992, Haddawy and Hanks, 1993]
for planning in deterministic domains. Other steps in this direction are [Wellman and Doyle, 1992], which
exploits the hierarchical structure of multi-attribute utility functions, and DRIPS [Haddawy et al., 1995], a
decision-theoretic refinement planner that exploits information provided in an abstraction hierarchy.

4.8 Conclusions

Many existing search and planning methods from artificial intelligence attempt to find plans with maximal
probability of goal achievement or plans that achieve the goal with minimal average execution cost, but often
one wants to find plans that achieve the goal with maximal average utility for nonlinear utility functions.

4.8. Conclusions 173

We have shown that planning tasks with nonlinear utility functions often are not decomposable, even if
the corresponding planning tasks with linear utility functions (that is, for minimizing average cost) are
decomposable. To maintain decomposability, and thus efficiency, we use exponential utility functions.
Our planning methods combine constructive approaches from artificial intelligence with more descriptive
approaches from utility theory. Planning is done via representation changes: The additive planning-task
transformation applies to planning tasks that can be solved with sequential plans (more precisely: planning
tasks whose actions have deterministic outcomes but whose rewards can be nondeterministic) and transforms
them to deterministic planning tasks that require the minimization of cost. The multiplicative planning task
transformation applies to planning tasks that can be solved with conditional plans and transforms them to
planning tasks that require the maximization of the probability of goal achievement or minimization of the
average cost. In both cases, the better the plan for the transformed planning tasks, the better it is for the
original planning tasks as well. Thus, optimal or near-optimal plans for the original planning tasks can
be found by solving the transformed planning tasks with standard deterministic or probabilistic planning
methods, including those that do not reason about costs at all.

To summarize the properties of our planning-task transformations, we describe their advantages and disadvan-
tages. Disadvantages are that the planning-task transformations are restricted to exponential utility functions.
Thus, they cannot handle nonlinear utility functions of arbitrary shape or with multiple variables. Also, special
cases of planning tasks cause problems for the multiplicative planning-task transformation: If the exponential
utility functions are convex and not all costs are positive, or the exponential utility functions are concave and
not all costs are negative, then the multiplicative planning-task transformation creates “probabilities” whose
sum can be larger than one. Furthermore, concave exponential utility functions can pose problems for the
multiplicative planning-task transformation in cyclic domains: not all planners can solve the transformed
planning tasks, and in some cases the average utility of a plan is not even well defined.

We classify the advantages of our planning-task transformations into three categories.

Advantages of exponential utility functions are that they maintain the delta property (Markov property)
and are expressive. For example, they can model immediate soft deadlines and model a continuum of risk
attitudes in high-stake one-shot planning domains. Side benefits of studying exponential utility functions
include that they help us to better understand the role of discounting and the relationship between minimizing
worst-case (minimax principle), average, and best-case costs.

Advantages of the planning-task transformations are that they are simple context-insensitive representation
changes of the planning tasks. They are fast and scale well since their running time is linear in the sizes of the
planning-task representations. They can be performed on a variety of planning-task representations without
changing their kind or size. Finally, the planning-task transformations can be used as black-box methods (that
is, they can be applied without an understanding of how or why they work).

Advantages of using traditionalplanners to solve the transformed planning tasks are that the functionality
of existing planners is extended to planning with exponential utility functions. This makes planning with
nonlinear utility functions as fast as planning for traditional preference models and enables one to participate
in performance improvements achieved by other researchers in the currently very active field of deterministic
and probabilistic planning. This also makes it possible to integrate the planning-task transformations easily
into existing agent architectures, such as robot architectures.

174 Chapter 4. Acting with Nonlinear Utility Functions

Chapter 5

Conclusions

20cm

In this thesis, we developed efficient general-purpose search and planning methods that solve one-shot (that is,
single-instance) planning tasks for goal-directed acting in the presence of incomplete information. We did this
by combining search and planning methods from artificial intelligence with methods from other disciplines,
namely, operations research and utility theory.

In Chapter 2, we studied Acting with Agent-Centered Search. Agent-centered search methods interleave
planning and plan execution to find suboptimal plans fast and plan only in the part of the domain around the
current states of the agents. This is the part of the domain that is immediately relevant for the agents in their
current situation. We developed real-time search methods, those agent-centered search methods that search
forward from the current states of the agents and associate information with the states to prevent cycling. We
assumed that probabilities were not available and developed methods that attempt to minimize the worst-case
plan-execution cost.

In Chapter 3, we studied Acting with POMDPs. Partially observable Markov decision process models
(POMDPs) from operations research represent uncertainty with probabilities and reason with them, including
planning and learning improved models. We assumed that probabilities were available or could be learned
and developed methods that attempt to minimize the average plan-execution cost.

In Chapter 4, we studied Acting with Nonlinear Utility Functions. Nonlinear utility functions from utility
theory can represent immediate soft deadlines and risk attitudes in high-stake one-shot planning domains. We
assumed that probabilities were available and developed methods that attempt to maximize the average utility
of the plan-execution cost, where the utility is an exponential function of the cost.

The ideas discussed in the three chapters apply to a variety of real-world agents and tasks. We illustrated
them using goal-directed robot-navigation tasks.

Results of Chapter 3 on Acting with POMDPs: Robots have to exhibit robust navigation behavior in the
presence of various kinds of uncertainty. This includes uncertainty in actuation, uncertainty in sensing and
sensor data interpretation, uncertainty in the initial pose of the robot, and uncertainty about their environment,
such as the lengths of corridors. POMDPs address this problem. We illustrated how they can be integrated
into robot architectures to provide a theoretically grounded framework for pose estimation, path planning,
control during navigation, and learning. The robot maintains a probability distribution over its current pose
instead of a single estimate of its current pose. Thus, the robot always has some belief as to what its true pose
is, and is never completely lost. Different from Kalman filters, POMDPs discretize the poses which allows
them to represent arbitrary probability distributions.

We developed efficient methods for POMDP planning and learning. Our application of these methods to
office-navigation tasks showed that they provide a robust alternative to metric-based and landmark-based
navigation methods, resulting in both in a new robot navigation architecture and a novel application area for
POMDPs. Our POMDP planning method neglects state uncertainty during planning and then accounts for it

175

176 Chapter 4. Acting with Nonlinear Utility Functions

greedily during navigation. Our POMDP learning method, the GROW-BW method, extends the Baum-Welch
method with a hill-climbing method that enables it to change the structure of the POMDP. It learns improved
POMDPs without requiring a teacher or control of the robot. It decreases the memory requirements of the
Baum-Welch method by using a sliding time window on the training data. It also decreases the training data
requirements of the Baum-Welch method by imposing equality constraints between probabilities and using
Bayesian estimates for the probabilities instead of maximum likelihood estimates.

It would be interesting to develop slightly more computationally intensive POMDP planning methods that
produce plans of better quality. They could use the restrictive structure of the POMDP to make planning more
efficient. It would also be interesting to develop POMDP learning methods that are able to detect and correct
inaccuracies in the given topological maps or learn them from scratch.

Results of Chapter 4 on Acting with Nonlinear Utility Functions: Given a probabilistic navigation
model, robots can solve goal-directed navigation tasks but still have to decide which one of all navigation
plans that reach the destination to prefer. The preference model should take into account that the utility
of navigation plans is often a nonlinear function of the plan-execution time. Exponential utility functions
address this problem. We illustrated how they can be integrated into robot architectures to plan for immediate
soft deadlines and a continuum of risk attitudes in high-stake one-shot planning domains, including risk-
seeking behavior (such as gambling) and risk-averse behavior (such as holding insurance). Exponential
utility functions preserve the modularity of planning tasks which allows for efficient planning. They can
also trade-off between minimizing the worst-case plan-execution cost (as done in Chapter 2) and the average
plan-execution cost (as done in Chapter 3).

We developed the additive and multiplicative planning-task transformations. They transform planning tasks
with exponential utility functions to planning tasks that standard search and planning methods from artificial
intelligence can solve, including those that do not reason about plan-execution costs at all. Thus, the
transformations extend the functionality of these planners to maximizing average utility and make planning
with exponential utility functions as fast as planning for traditional preference models. The transformations
are simple context-insensitive representation changes that can be performed locally on various representations
of planning tasks. The additive planning-task transformation applies to planning tasks that can be solved
with sequential plans (more precisely: planning tasks whose actions have deterministic outcomes but whose
rewards can be nondeterministic) and transforms them to deterministic planning tasks. The original planning
task can then be solved by minimizing the plan-execution cost for the transformed planning task. The
multiplicative planning-task transformation applies to planning tasks that can be solved with conditional
plans and transforms them to probabilistic planning tasks. The original planning task can then be solved by
either maximizing the probability of goal achievement or minimizing the average plan-execution cost for the
transformed planning task.

It would be interesting to integrate the planning-task transformations with planning methods for arbitrary
nonlinear or multi-variable utility functions, because exponential utility functions are single-variable utility
functions with a restricted shape. For example, they cannot handle planning tasks with hard deadlines or
deadlines in the future, risk-attitudes of decision makers whose choices depend on how wealthy they are, and
more than one scarce resource. Finally, concave exponential utility functions can pose problems for cyclic
plans.

Results of Chapter 2 on Acting with Agent-Centered Search: Given a probabilistic navigation model,
robots can solve goal-directed navigation tasks but still have to decide which one of all navigation plans that
reach the destination to prefer. The preference model should take the planning cost into account, especially
for one-shot planning tasks, since planning can be time-consuming in the presence of incomplete information.
Agent-centered search methods address this problem. We illustrated how they can be integrated into robot
architectures to gather information early and use it to resolve uncertainty caused by nondeterminism, which
can decrease the planning cost.

We developed the Min-Max LRTA* method, an efficient domain-independent real-time search method for
nondeterministic domains. Our application of Min-Max LRTA* to maze-navigation tasks showed that it

4.8. Conclusions 177

provides an efficient alternative to first planning and then executing the resulting plan. Min-Max LRTA*
allows for fine-grained control over how much planning to do between plan executions and uses heuristic
knowledge to guide planning. It produces initially suboptimal plans that keep the sum of planning and
plan-execution cost small and is able to improve the plans over time as it solves similar planning tasks.

It would be interesting to develop real-time search methods that can guarantee that their memory requirements
are smaller than the size of the state space and real-time search methods that are able to use their problem-
solving experience to improve their parameters, such as their look-ahead.

Other Results: The results of this thesis also led to a number of additional insights.

First, the results of this thesis provide a better understanding of why, when, and how well real-time search
methods work in deterministic domains. We analyzed, both theoretically and experimentally, how heuristic
knowledge and domain properties influence the performance of real-time search methods. Insights include
that better approximations of the goal distances can degrade the performance of real-time search methods,
that Eulerian domains can be searched efficiently even with inefficient real-time search methods, and that the
performance of uninformed real-time search methods is often proportional to the number of states (or actions)
of a domain times its maximal goal distance.

Second, the results of this thesis also provide guidelines for selecting test-beds for real-time search methods.
We explained why sliding-tile puzzles, grid-worlds, and other traditional test-beds from artificial intelligence
can be searched efficiently with a variety of real-time search methods, and introduced reset state spaces,
quicksand state spaces, and “complex state spaces” that cannot be searched as easily.

Third, the results of this thesis also provide guidelines for selecting representations of reinforcement-learning
tasks that allow them to be solved quickly by reinforcement-learning methods. We showed that representations
of reinforcement-learning tasks can have a large impact on the performance of reinforcement-learning methods,
and that the performance of reinforcement learning methods can be improved by making the reward structure
dense or initializing the reinforcement-learning values optimistically.

Finally, the results of this thesis also provide a novel interpretationof discounting. We showed that discounting
can be viewed as a special case of planning with convex exponential utility functions. This provides an
alternative to the common interpretation of discounting as accounting for either interest accumulated on
unused resources, an unrealistic interpretation for most agents, or the possibility of their death during each
action execution.

Future Work: This thesis developed component technologies for goal-directed acting with incomplete
information and illustrated their usefulness. We developed methods for acting with agent-centered search,
acting with POMDPs, and acting with nonlinear utility functions. In the following, we list possibilities for
future work.

First, it is future work to integrate our methods into a single agent architecture. The central ideas behind
the three main chapters are mostly orthogonal and could be combined into a single agent architecture that
uses POMDPs to reason with uncertainty, attempts to find plans that maximize average utility, and uses
agent-centered search methods to approximate these plans efficiently.

Second, it is also future work to investigate further properties of our methods, both formally and empirically,
and address their limitations by either extending them or developing alternative methods. The limitations of
our methods are discussed in detail in their respective chapters.

Third, it is also future work to study additional aspects of goal-directed acting in the presence of incomplete
information. For example, an agent can have incomplete information because there are other agents in the
environment that interfere with its actions. The agent then has to learn to predict their behavior, cooperate
with them, or compete with them.

Finally, it is also future work to investigate additional applications of goal-directed acting in the presence
of incomplete information (besides goal-directed robot navigation) since a multitude of other tasks fit this
framework as well. After all, all agents have to act in the world and they usually have to do so in a

178 Chapter 4. Acting with Nonlinear Utility Functions

goal-directed and efficient manner despite incomplete knowledge, imperfect actuation capabilities, limited or
noisy perception, and insufficient reasoning speed. Other possible applications include highway navigation,
package routing in computer networks, on-line scheduling, and web navigation.

To summarize, we developed efficient general-purpose search and planning methods that solve one-shot
planning tasks for goal-directed acting in the presence of incomplete information. We addressed three
problems that are important for real-world agents: how to act reliably despite a substantial amount of
uncertainty, which one of several plans that all achieve the goal to choose, and how to decrease the sum of
planning and plan execution cost. Our solutions to these problems combine search and planning methods
from artificial intelligence with methods from operations research and utility theory. We believe that the cross
fertilization among these and other decision-making disciplines is an important step towards building agents
for goal-directed acting with incomplete information.

Chapter 6

Appendices

20cm

6.1 Complexity of Edge Counting

In this appendix, we complete the proof of Theorem 17 from page 53. We analyze the complexity of the
variant of Edge Counting in Figure 6.1 [Koenig and Simmons, 1996c]. Different from the variant used in the
main text (Section 2.5.2.1), its q-values approximate the positive (not negative) number of times the actions
have been executed. The time superscript

�
refers to the values of the variables immediately before the

� � 5 1 � st
value-update step of Edge Counting (Line 4 in Figure 6.1).

Theorem 25 For all times
� � 0 � 1 � 2 � � � � (until termination), � � �

, and ! � ��� ��� , � � � � �"!#� �
min � /)�687 ��9 � � � �,�	! 1 � 5 1.

Thus, the q-values of any two actions leaving a state differ by at most one.

Proof by induction on
�
: The theorem holds at time

� � 0, since � 0 � �,�	!#� � 0 for all � � �
and ! � ��� ��� .

Assume that the theorem holds at an arbitrary time
�
, and consider arbitrary � � �

and !�� �$� ��� . The only
q-value that changes between

�
and

� 5 1 is �
� � � �"! � � . We distinguish two cases: First, � �� � � or ! �� ! � . Then,

� �
	 1 � � �	! � � � � � � �"!#� Assumption� min � /)*687 �#9 � � � � �"! 1 � 5 1
Monotonicity� min � /)�687 ��9 � �
	 1 � � �"! 1 � 5 1. Second, � � � � and

! � ! � . Then, � �
	 1 � � �"!#� � � � � �,�	!#�25 1
Action Selection� min � /)*687 ��9 � � � � �"! 1 �25 1

Monotonicity� min � /)*687 ��9 � �
	 1 � � �	! 1 �25 1.
Put together, � �
	 1 � � �"!#� � min � /)�687 ��9 � �
	 1 � � �"! 1 � 5 1 for all �$� �

and ! � ��� ��� , and the theorem holds at
time

� 5 1 as well.

Theorem 26 For all times
� � 0 � 1 � 2 � � � � (until termination), max �)�687 � � 9 � �
	 1 � � � �	! � � � �
	 1 � � � �"! � � .

Thus, the action executed last in a state has a largest q-value of all actions leaving the state (after the action
execution).

Proof: Consider an arbitrary time
�

and an arbitrary action ! � ��� � � � . We distinguish two cases: First,

! �� ! � . Then, � �
	 1 � � � �"!#� � � � � � � �"!#� Theorem 25� min � /)*687 � � 9 � � � � � �"! 1 � 5 1
Action Selection� � � � � � �	! � � 5 1 � � �
	 1 � � � �	! � � .

Second, ! � ! � . Then, � � 	 1 � � � �	!#� � � �
	 1 � � � �	! � � (trivially). Put together, � �
	 1 � � � �"!#� � � � 	 1 � � � �	! � � for all
!$� �$� � � � , but equality holds for at least one action (namely ! �), and the theorem follows.

In the following, we use sets that can contain duplicate elements (bags). To distinguish operators on bags
from operators on sets, we use an additional dot. We use the following operators: construction (description)

of bags
�. �3 , membership of an element in a bag

�� (or
��
), equality of bags �� , nonstrict inclusion of bags

��

179

180 Chapter 6. Appendices

Initially, �
�"��� � ��� 0 for all

�8� �
and � �	� �"�#�

.
1.

�
:=

��
�������
.

2. If
���	�

, then stop successfully.

3. � := one-of arg min
� / �*� ��
�� � ��� � � � � .

4. �
��� � � � := �

�"��� � � & 1.

5. Execute action � , that is, change the current state to
� ����� ��� � � � .

6.
�

:= the current state.

7. Go to 2.

Figure 6.1: Edge Counting

(or
��
), union of bags

�� , intersection of bags
�" , and difference of bags

�$
. The operators

�� ,
�" , and

�$
have

the same precedence and are left-associative. Furthermore, we always denote a bag with one element by the
element itself.

We define the bags � � 1 � � ��� , ��� � 1 � � ��� , � � 2 � � ��� , and
��� � 2 � � ��� inductively as follows for all times� � 0 � 1 � 2 � � � � (until termination) and ��� �

:

� �
10 ��� � :=

�� � 0 ��� � ��� � � :
� � � � ��� � � � ��� � � ��� ����� ��� � ��� � ��
 � �

��� � 10 ��� � :=
�� � 0 ����� � � :

� � � ��� � �

� �

2
� ��� �

:=
� �

1
� ��� �

��� � 2
� ��� �

:=
� ��� � 1

� ��� � �� � � ��� � ��� � � �� � � � 1 ��� � ��� � � for
�
 � �

��� � 1
� ��� �

otherwise

� �
1
���

1 ��� � :=
� � �

2
� ��� � �� � � ��� � � � � � �� � ��� 1 ��� � ��� � � for

�
 � ��� 1
� �

2
� ��� �

otherwise��� � 1
� �

1 ��� � :=
��� � 2

� ��� �

Theorem 27 For all times
� � 0 � 1 � 2 � � � � (until termination) and ��� �

,

� �
1
� ��� � �
 �� � � ��� � ��� � �

:
� � � � ��� � � � ��� � � ��� � ��� ��� � ��� � �
 � �

��� � 1
� ��� � �
 �� � � ������� �

:
� � � ��� � �

Thus, � � 1 � � ��� is the bag of q-values of all incoming actions into state � at time
�
, and

��� � 1 � � ��� is
the bag of q-values of all outgoing actions from state � at time

�
. Similarly, � � 2 � � ��� �� � � 1 � � ��� and��� � 2 � � ��� �� ��� � 1 �
	 1 � ��� for all times

� � 0 � 1 � 2 � � � � (until termination) and ��� �
.

Proof by induction on
�
: The theorem holds at time

� � 0 (by definition). Assume that it holds at an arbitrary
time

�
. Then, for all � � �

,

� �
1
���

1 ��� � �
 � � �
2
� ��� � �� � � ��� � ��� � � �� � ��� 1 ��� � � � � � for

�
 � ��� 1
� �

2
� ��� �

otherwise

�
 � � �
1
� ��� � �� � � ��� � ��� � � �� � ��� 1 ��� � � � � � for

�
 � ��� 1
� �

1
� ��� �

otherwise

6.1. Complexity of Edge Counting 181

�
 � �� � � ��� � ��� � �
:
� � � � ��� � � � ��� � � ��� ����� ��� � ��� � ��
 � �
 � ���

�� � � ��� � ��� � �
:
� � � � ��� � � � ��� � � ��� ����� ��� � ��� � ��
 � �
 � ���

��� � �� � � ��� � ��� � � �� � � � 1 ��� � ��� � � for
�
 � � � 1��� �

otherwise
�
 �� � ��� 1 ��� � ��� � � :

� � � � ��� � � � ��� � � ��� ����� ��� � � � � �
 � �

��� � 1

���
1 ��� � �
 ��� � 2

� ��� �
�
 � ��� � 1

� ��� � �� � � ��� � ��� � � �� � ��� 1 ��� � ��� � � for
�
 � �

��� � 1
� ��� �

otherwise

�
 � �� � � ����� � �
:
� � � ��� � �
 �� � � ��� � ��� � � �� � ��� 1 ��� � � � � � for

�
 � �
�� � � ����� � �

:
� � � ��� � �

otherwise

�
 �� � ��� 1 ������� � :
� � � ��� � �

Thus, the theorem holds at time
� 5 1 as well.

To keep our notation concise, we also define the bags � � �
1 � � ��� , ��� � �

1 � � ��� , � � �
2 � � ��� , and

��� � �
2 � � ���

for all times
� � 0 � 1 � 2 � � � � (until termination) and ��� �

:

� ���
1
� ��� �

:=
� �

1
� ��� � �� ��� � 1

� ��� �
��� � � 1

� ��� �
:=

��� � 1
� ��� � �� � �

1
� ��� �

� ���
2
� ��� �

:=
� �

2
� ��� � �� ��� � 2

� ��� �
��� � � 2

� ��� �
:=

��� � 2
� ��� � �� � �

2
� ��� �

Note that � � �
1 � � ��� �� ��� � �

1 � � ��� �� � if and only if � � 1 � � ��� �� ��� � 1 � � ��� , and � � �
2 � � ��� ��

��� � �
2 � � ��� �� � if and only if � � 2 � � ��� �� ��� � 2 � � ��� . We call a state � � �

balanced at time
�

if
� � �

1 � � ��� �� ��� � �
1 � � ��� �� � . This means that, for every state, the number of incoming actions with

q-value & equals the number of outgoing actions with q-value & for all & .

Theorem 28 For all times
� � 0 � 1 � 2 � � � � (until termination), (A) and (B) hold, where

(A) either

(a) � � � � �����*� � , and � � �
1 � � ��� �� ��� � �

1 � � ��� �� � for all ��� �
(that is, all states are balanced)

or

(b) there exist states � 1 �	� 2 � � � �	�"� � � �
and an integer � with � � 4 1 1, � 1

� ��� ���	� � , ��� � � � ,
� � �

1 � � � 1 � �� � 4 1 and
��� � �

1 � � � 1 � �� � , � � �
1 � � � � � �� �. �'4 � � �'4 � 5 2

�3 and
��� � �

1 � � � � � �� �.
� 4 � 5 1 � � 4 � 5 1

�3 for
� � 2 � 3 � � � � � � 4 1, � � �

1 � � � � � �� � 4 � 5 2 and
��� � �

1 � � � � � �� � 4 � 5 1, and
finally � � �

1 � � ��� �� ��� � �
1 � � ��� �� � for � ��0. � 1 �	� 2 � � � � �	� � 3 . (Note that case (b) implies that

� 2 and
� 1 �	� 2 � � � �
�"� � are pairwise different, for example, � � � � � �� � ��� �	� � .)
(B) there exist states �̄1 � �̄2 � � � �	� �̄¯� � �

and an integer �̄ with �̄ ¯� 1, � � � � � �"! � � � �̄ 4 ¯� , �̄1 � � �����*� � ,
� � �

2 � � �̄1 � �� �̄'4 1 and
��� � �

2� � �̄1 � �� �̄ , � � �
2� � �̄ � � �� �. �̄'4 � � �̄'4 � 5 2

�3 and
��� � �

2 � � �̄ � � �� �.
�̄ 4 � 5 1 � �̄ 4 � 5 1

�3 for
� � 2 � 3 � � � � � ¯� , and finally � � �

2 � � ��� �� ��� � �
2 � � ��� �� � for � �� . �̄1 � �̄2 � � � �"� �̄¯� 3 .

(Note that case (B) implies that �̄1 � �̄2 � � � �	� �̄ � are pairwise different.)

182 Chapter 6. Appendices

Proof by induction on
�
:

� (A) holds at time
� � 0: � 0 � ��� ���	� � , and � 0 � � �	! � � 0 for all �%� �

and !�� ��� ��� . Since the graph is
Eulerian, (a) holds.

� Assume that (A) holds at an arbitrary time
�
. We show that (B) holds at time

�
as well. Note that, if

� �� � � , then � � 2 � � ��� �� � � 1 � � ��� (this equality holds for all ��� �
) and

��� � 2 � � ��� �� ��� � 1 � � ���
and therefore � � �

2 � � ��� �� � � 2 � � ���
�$ ��� � 2 � � ��� �� � � 1 � � ���

�$ ��� � 1 � � ��� �� � � �
1 � � ��� and

��� � �
2 � � ��� �� ��� � 2 � � ���

�$ � � 2 � � ��� �� ��� � 1 � � ���
�$ � � 1 � � ��� �� ��� � �

1 � � ��� . We distinguish two
cases to determine � � �

2 � � ��� and
��� � �

2 � � ��� for � � � � :
– First, (a) holds at time

�
. We show that (B) holds at time

�
with ¯� � 1, �̄ � � � � � � �"! � �85 1, and

�̄1 � ����� �	� � � � � . Obviously, �̄ ¯� 1 and � � � � � �	! � � � �̄'4 ¯� . Define - := � � 1 � � � � � �"��� � 1 � � � � � . Then, � � 2 � � � � � �� � � 1 � � � � � �� - �� � � �
1 � � � � � �� - �� � �� - and

��� � 2 � � � � � �� ��� � 1 � � � � �
�$
� � � � � �"! � � �� � �
	 1 � � � �	! � � �� - �� ��� � �

1 � � � � �
�$
� � � � � �	! � � ��

� �
	 1 � � � �	! � � �� - �� � �$
� � � � � �	! � � �� � � 	 1 � � � �	! � � �� -

�$
� � � � � �	! � � �� � �
	 1 � � � �"! � � . Since

� � � � � �	! � � �� ��� � 1 � � � � � �� - �� ��� � �
1 � � � � � �� - �� � �� - and � �
	 1 � � � �	! � �%�� � � � � � �	! � � , it

follows that � � �
2 � � �̄1 � �� � � �

2 � � � � � �� � � 2 � � � � �
�$ ��� � 2 � � � � � �� -

�$ � -
�$
� � � � � �	! � � ��

� �
	 1 � � � �	! � � � �� � � � � � �	! � � �� �̄ 4 ¯� �� �̄ 4 1. Also,
��� � �

2� � �̄1 � �� ��� � �
2 � � � � � ��

��� � 2 � � � � �
�$ � � 2 � � � � � �� � -

�$
� � � � � �	! � � �� � �
	 1 � � � �	! � �
�

�$ - �� � � 	 1 � � � �	! � � ��
� � � � � �	! � � 5 1 �� �̄ 4 ¯� 5 1 �� �̄ . For ���� �̄1 (that is, ���� � �), � � �

2 � � ��� �� � � �
1 � � ��� �� � and��� � �

2 � � ��� �� ��� � �
1 � � ��� �� � .

– Second, (b) holds at time
�
. Then, there exists an action !�� �$� � � � with � � � � � �	!#� � � 4 � 5 1,

because
��� � 1 � � � � � �� ��� � 1 � � � � � �� ��� � �

1 � � ���#� �� � 4 � 5 1. Then, � 4 � � � � � � � �	!#�84
1

Theorem 25� min � /)�687 � � 9 � � � � � �	! 1 � Action Selection� � � � � � �	! � � Action Selection� min � /)*687 � � 9 � � � � � �"! 1 � � � � � � � �"!#� �
� 4 � 5 1. Thus, either � � � � � �"! � � � � 4 � or � � � � � �	! � � � � 4 � 5 1. Consequently, we distinguish
two sub-cases:

� First, � � � � � �	! � � � � 4 �
. We show that (B) holds at time

�
with ¯� � �

, �̄ � � , and
�̄ � � � � for 1 � � � ¯� � �

. Obviously, 0 � � � � � � �"! � � Assumption� � 4 � � �̄ 4 ¯� and thus
�̄ ¯� � � 2 1, which implies �̄ ¯� 1. Furthermore, �̄1 � � 1

� � � ���	� � . Define
- := � � 1 � � � � � �" ��� � 1 � � � � � . Then, � � 2 � � � � � �� � � 1 � � � � � �� - �� � � �

1 � � � � � �� - ��
� � �

1 � � � � � �� - �� � 4 � 5 2 and
��� � 2 � � � � � �� ��� � 1 � � � � �

�$
� � � � � �	! � � �

� � �
	 1 � � � �	! � � ��
- �� ��� � �

1 � � � � �
�$
� 4 � �� � 4 � 5 1 �� - �� ��� � �

1 � � � � �
�$
� 4 � �� � 4 � 5 1 �� - ��

� 4 � 5 1
�$
� 4 � �� � 4 � 5 1

�� -
�$
� 4 � ��

�.	� 4 � 5 1 � � 4 � 5 1
�3 . Note that � 4 � �� - ,

because � � � � � �"! � � Assumption� � 4 � and thus � 4 � �� ��� � 1 � � � � � �� - �� ��� � �
1 � � � � � �� - ����� � �

1 � � � � � �� - �� � 4 � 5 1. Consequently, � � �
2 � � � � � �� � � 2 � � � � �

�$ ��� � 2 � � � � � �� �.
�	4 � � � 4 � 5 2

�3 �� �. �̄ 4 ¯� � �̄ 4 ¯� 5 2
�3 and

��� � �
2 � � � � � �� ��� � 2 � � � � �

�$ � � 2 � � � � � �� �.
�	4 � 5 1 � � 4 � 5 1

�3 �� �. �̄ 4 ¯� 5 1 � �̄ 4 ¯� 5 1
�3 for � � � ��� � �̄¯� . It is easy to show that

(B) also holds for � �� � � , using � � �
2 � � ��� �� � � �

1 � � ��� and
��� � �

2 � � ��� �� ��� � �
1 � � ���

together with �̄ � � .
� Second, � � � � � �	! � � � � 4 � 5 1. We show that (B) holds at time

�
with ¯� � � 4 1, �̄ � � , and

�̄ � � � � for 1 � � � ¯� � � 4 1. Obviously, �̄ ¯� 1 (since �� � 4 1 1), � � � � � �"! � � Assumption�
� 4 � 5 1 � �̄ 4 ¯� , and �̄1 � � 1

� ��� ���	�
� . Define - := � � 1 � � � � � �" ��� � 1 � � � � � . Then,
� � 2 � � � � � �� � � 1 � � � � � �� - �� � � �

1 � � � � � �� - �� � � �
1 � � � � � �� - �� � 4 � 5 2 and

��� � 2 � � � � � �� ��� � 1 � � � � �
�$
� � � � � �	! � � �� � �
	 1 � � � �	! � � �� ��� � 1 � � � � �

�$
� 4 � 5 1

��
� 4 � 5 2 �� - �� ��� � �

1 � � ���#�
�$
� 4 � 5 1

�� � 4 � 5 2 �� - �� � 4 � 5 1
�$
�	4 � 5 1

��
� 4 � 5 2

�� - �� � 4 � 5 2. Consequently, � � �
2 � � � � � �� � � 2 � � � � �

�$ ��� � 2 � � � � � �� �
and

��� � �
2 � � � � � �� ��� � 2 � � � � �

�$ � � 2 � � � � � �� � for � � � ��� �� . � 1 � � � � �	��� � 1 3 �

6.1. Complexity of Edge Counting 183

. �̄1 � � � � � �̄¯� 3 . It is easy to show that (B) also holds for � �� � � , using � � �
2 � � ��� �� � � �

1 � � ���
and

��� � �
2 � � ��� �� ��� � �

1 � � ��� together with �̄ � � .

� Assume that (B) holds at an arbitrary time
�
. We show that (A) holds at time

� 5 1. Note that, if � �� � �
	 1,
then � � 1 �
	 1 � ��� �� � � 2 � � ��� and

��� � 1 �
	 1 � ��� �� ��� � 2 � � ��� (this equality holds for all � � �
)

and therefore � � �
1 �
	 1 � ��� �� � � 1 �
	 1 � ���

�$ ��� � 1 �
	 1 � ��� �� � � 2 � � ���
�$ ��� � 2 � � ��� �� � � �

2 � � ���
and

��� � �
1 �
	 1 � ��� �� ��� � 1 � 	 1 � ���

�$ � � 1 �
	 1 � ��� �� ��� � 2 � � ���
�$ � � 2 � � ��� �� ��� � �

2 � � ��� . We
distinguish two cases to determine � � �

1 � 	 1 � ��� and
��� � �

1 �
	 1 � ��� for � � � �
	 1:

– First, � � 	 1 �� . �̄1 � �̄2 � � � �	� �̄¯� 3 . We show that (b) holds at time
� 5 1 with

� � ¯� 5 1, � � �̄ ,
��� � �̄ � for 1 � � � � 4 1 � ¯� , and � � � � �
	 1. Obviously, � � 4 1 1 (since � � �̄
¯� � � 4 1 � ¯� 1) and � 1

� �̄1 � � �����	�
� . Define - := � � 2 � � � � 	 1 � �" ��� � 2 � � � �
	 1 � . Then,

� � 1 �
	 1 � � �
	 1 � �� � � 2 � � � �
	 1 �
�$
� � � � � �"! � � �� � �
	 1 � � � �"! � � �� � � 2 � � � � 	 1 �

�$
�̄	4 ¯� �� �̄	4 ¯� 5 1

��
- �� � � �

2 � � � �
	 1 �
�$
�̄ 4 ¯� �� �̄ 4 ¯� 5 1

�� - �� � �$
�̄ 4 ¯� �� �̄ 4 ¯� 5 1

�� -
�$
�̄ 4 ¯� �� �̄ 4 ¯� 5 1 and��� � 1 �
	 1 � � � 	 1 � �� ��� � 2 � � � �
	 1 � �� - �� ��� � �

2 � � � � 	 1 � �� - �� � �� - . Note that �̄�4 ¯� �� - ,
because � � � � � �"! � � � �̄ 4 ¯� and thus �̄�4 ¯� ���� � 1 � � � �
	 1 � �� � � 2 � � � �
	 1 � �� - �� � � �

2 � � � �
	 1 � ��
- �� � �� - . Consequently, � � �

1 � 	 1 � � � 	 1 � �� � � 1 �
	 1 � � �
	 1 �
�$ ��� � 1 �
	 1 � � �
	 1 � �� �̄ 4 ¯� 5 1 ��

� 4 � 5 2 and
��� � �

1 �
	 1 � � �
	 1 � �� ��� � 1 � 	 1 � � �
	 1 �
�$ � � 1 �
	 1 � � �
	 1 � �� �̄ 4 ¯� �� �	4 � 5 1 for

� �
	 1 � � � . It is easy to show that (b) also holds for � �� � � 	 1, using � � �
1 �
	 1 � ��� �� � � �

2 � � ���
and

��� � �
1 �
	 1 � ��� �� ��� � �

2 � � ��� together with � � �̄ .

– Second, � �
	 1 � . �̄1 � �̄2 � � � �	� �̄¯� 3 . We show that � �
	 1 � �̄¯� by contradiction. Suppose that
� �
	 1 � �̄ � for some

� ¯� and define - := � � 2 � � � � 	 1 � �" ��� � 2 � � � �
	 1 � . Then, there exists an
action ! � �$� � �
	 1 � with � � 	 1 � � �
	 1 �	!#� � �̄'4 ¯� , because � � � � � �	! � � � �̄'4 ¯� and thus �̄'4 ¯� ��
� � 1 � � � �
	 1 � �� � � 2 � � � � 	 1 � �� - �� � � �

2 � � � �
	 1 � ; it must be that �̄�4 ¯� �� - �� ��� � 2 � � � �
	 1 � ��
��� � 1 �
	 1 � � � 	 1 � , since �̄ 4 ¯� � �� � � �

2 � � �̄ � � � � � �
2 � � � �
	 1 � . There also exists an action

! 1 � �$� � �
	 1 � with � � 	 1 � � �
	 1 �	! 1 � � �̄ 4 � 5 1, because
��� � 1� 	 1 � � �
	 1 � �� ��� � 2 � � � �
	 1 � ��

��� � �
2 � � � �
	 1 � �� ��� � �

2 � � �̄ � � ��
�̄ 4 � 5 1. Put together, � �
	 1 � � �
	 1 �"! 1 � � �̄'4 � 5 1 �

�̄ 4 ¯� 5 1 � � �
	 1 � � �
	 1 �	! � 5 1 (since
� ¯�). This, however, is a contradiction to Theorem 25,

which asserts that � �
	 1 � � � 	 1 �"! 1 � � min � / /)�687 � ��� 1 9 � �
	 1 � � �
	 1 �"! 1 1 � 5 1 � � � 	 1 � � � 	 1 �	!#�85 1. It
follows that � � 	 1 � �̄¯� . We distinguish two sub-cases:

� First, ¯� � 1. We show that (a) holds at time
� 5 1. Obviously, � � 	 1 � �̄¯� � �̄1 �

�������*� � . Define - := � � 2 � � � �
	 1 � �" ��� � 2 � � � �
	 1 � . Then, � � 1 �
	 1 � � �
	 1 � �� � � 2 � � � �
	 1 �
�$

� � � � � �	! � � �� � �
	 1 � � � �"! � � �� � � 2 � � � �
	 1 �
�$

�̄ 4 ¯� �� �̄ 4 ¯� 5 1
�� - � � � �

2 � � � �
	 1 �
�$

�̄ 4 1
�� �̄ �� - � � � �

2 � � �̄1 �
�$

�̄ 4 1
�� �̄ �� - �� �̄ 4 1

�$
�̄ 4 1

�� �̄ �� - �� �̄
and

��� � 1 �
	 1 � � �
	 1 � �� ��� � 2 � � � �
	 1 � �� - �� ��� � �
2 � � � � 	 1 � �� - �� ��� � �

2 � � �̄1 � ��
- �� �̄ . Consequently, � � �

1�
	 1 � � �
	 1 � �� � � 1 �
	 1 � � �
	 1 �
�$ ��� � 1 �
	 1 � � �
	 1 � �� � and

��� � �
1 �
	 1 � � �
	 1 � �� ��� � 1 �
	 1 � � �
	 1 �

�$ � � 1 �
	 1 � � �
	 1 � �� � for � �
	 1 � �̄1. For � �� � �
	 1,
� � �

1 �
	 1 � ��� �� � � �
2 � � ��� �� � and

��� � �
1 � 	 1 � ��� �� ��� � �

2 � � ��� �� � .
� Second, ¯� � 1. We show that (b) holds at time

� 5 1 with
� � ¯� , � � �̄ , and � � � �̄ �

for 1 � � � � � ¯� . Obviously, � � 4 1 1 (since � � �̄ ¯� � � � ¯� � 1),
� 1

� �̄1 � ��� ���	� � , and ��� � �̄¯� � � �
	 1. Define - := � � 2 � � � � 	 1 � �" ��� � 2 � � � �
	 1 � .
Then, � � 1 �
	 1 � � �
	 1 � �� � � 2 � � � �
	 1 �

�$
� � � � � �	! � � �� � �
	 1 � � � �	! � � �� � � 2 � � � �
	 1 �

�$
�̄'4 ¯� ��

�̄ 4 ¯� 5 1 �� - �� � � �
2 � � � �
	 1 �

�$
�̄ 4 ¯� �� �̄ 4 ¯� 5 1 �� - �� � � �

2 � � �̄¯� �
�$
�̄ 4 ¯� �� �̄ 4 ¯� 5 1 ��

- ��
�. �̄ 4 ¯� � �̄ 4 ¯� 5 2

�3 �$
�̄ 4 ¯� �� �̄24 ¯� 5 1

�� - ��
�. �̄24 ¯� 5 1 � �̄ 4 ¯� 5 2

�3 and
��� � 1 � 	 1 � � �
	 1 � ��

��� � 2 � � � �
	 1 � �� - �� ��� � �
2 � � � � 	 1 � �� - �� ��� � �

2 � � �̄¯� � �� - ��
�. �̄ 4 ¯� 5 1 � �̄ 4 ¯� 5 1

�3 .

Consequently, � � �
1 �
	 1 � � �
	 1 � �� � � 1 �
	 1 � � �
	 1 �

�$ ��� � 1 � 	 1 � � �
	 1 � �� �̄ 4 ¯� 4 2
�� � 4 � 5 2

and
��� � �

1 � 	 1 � � � 	 1 � �� ��� � 1 �
	 1 � � �
	 1 �
�$ � � 1 � 	 1 � � � 	 1 � �� �̄ 4 ¯� 5 1 �� � 4 � 5 1 for

184 Chapter 6. Appendices

� �
	 1 � �̄¯� (note that � � 	 1 �� �̄1). It is easy to show that (b) also holds for � �� � �
	 1, using
� � �

1 �
	 1 � ��� �� � � �
2 � � ��� and

��� � �
1 �
	 1 � ��� �� ��� � �

2 � � ��� together with � � �̄ .

Theorem 29 For all times
� � 0 � 1 � 2 � � � � (until termination), � � �

, and ! � ��� ��� , � � � � �"!#� �
max � /)*687 � � ����� � 9 � � � � � ���	� � �	! 1 � .
Thus, there is always an action that leaves the start state and has a largest q-value of all actions.

Proof by induction on
�
: The theorem holds at time

� � 0, since � 0 � �,�	!#� � 0 for all ��� �
and !$� ��� ��� . As-

sume that the theorem holds at an arbitrary time
�
, and consider arbitrary ��� �

and ! � ��� ��� . We distinguish

two cases: First, � �� � � or ! �� ! � . Then, � � 	 1 � �,�	!#� � � � � �,�	!#� Assumption� max � /)*687 � � ��� � � 9 � � � ��� ���	� ���	! 1 � Monotonicity�
max � /)*687 � � ����� � 9 � �
	 1 � ��� ���	� ���	! 1 � . Second, � � � � and ! � ! � . We distinguish two sub-cases: First, � � � �����*� � .
Then, � �
	 1 � � �"!#� � � �
	 1 � ��� ���	� ���	!#� � max � /)*687 � � ��� � � 9 � � 	 1 � ����� �	� ���	! 1 � (trivially). Second, � �� � �����*� � .
Then, consider the variables from Theorem 28(B) at time

�
. There exists an action ! 1 � �$� �������*� � � with

� �
	 1 � � ��� �	� � �"! 1 � � �̄ , because
��� � 1�
	 1 � � �����	�
� � �� ��� � 2 � � � �����	�
� � �� ��� � 2 � � �̄1 �

�� ��� � �
2 � � �̄1 � �� �̄ .

Then, � �
	 1 � �,�	!#� � � �
	 1 � � � �	! � � � � � � � � �	! � � 5 1 � �
�̄ 4 ¯� � 5 1

¯��� 1� �̄ � � �
	 1 � � � ���	�
� �"! 1 � �
max � / /)*687 � � ��� � � 9 � �
	 1 � � � ���	� � �	! 1 1 � , and the theorem holds at time

� 5 1 as well.

Theorem 30 The complexity of Edge Counting is at most � � � � � ��� ���	�
� �24 � � � �������*� ��� 2 action executions over
safely explorable, Eulerian domains.

The proof of Theorem 17 shows that this bound is tight.

Proof: If ��� ���	�
� � , then � � � �������*� ��� � 0 and the theorem holds since the goal state is reached without any
action executions. Assume that � �����	�
� �� . Edge Counting reaches a goal state eventually (Theorem 10). In
the following, we analyze how many action executions it needs at most.

Consider the latest time
�

with � � � � � ���	�
� . All states, including � �����	�
� , are balanced at time
�

(Theorem 28(a)).
Now consider a shortest path from � �����	�
� to a closest goal state. The last action on that path has never been
executed and thus has q-value 0 at time

�
. Consequently, the largest q-value of any action that leaves the last

nongoal state � on the path is 0 if no other action leaves � , otherwise the largest q-value of any action leaving �
is at most 1 (Theorem 25). Since � is balanced at time

�
, the largest q-value of any action entering � is 0 in the

former case and at most 1 in the latter case. Thus, the q-value of the action that precedes the last action on the
path is 0 or at most 1, etc. Finally, the q-value � � � ��� ���	� �	�	! � of the first action ! on the path is at most

-
where-

is the number of intermediate states on the path (that is, not including the start and goal state) that have
two or more outgoing actions. � � � � ��� �	� � �	!#� � - �� � � � ��� �	� � ��4 1, because the path has length � � � � � ���	�
� �
and therefore � � � � �����*� � � 4 1 intermediate states. � � � � � ���	� � �	!#� � - � � 4 � � � � � ���	�
� � 4 1, because each of the� � � � � ���	� � � 5 1 states on the path (including the start and goal state) has at least one outgoing action (all states
on the path but the goal state have at least one outgoing action to the next state on the path; the goal state
has at least one incoming action from the previous state on the path and, since the domain is Eulerian, also at
least one outgoing action). Each state with two or more outgoing actions needs at least one more action of
the remaining � 4!� � � � ��� �	� � ��4 1 actions. Put together, min � /)�687 � � ����� � 9 � � � �������*� �	�"! 1 � � � � � ����� �	� �	�"!#� � - �
min

� � � � �������	�
� ��4 1 � � 4!� � � ��� ���	�
� ��4 1 � .
Now consider the time

� 1 � �
when Edge Counting reaches a goal state for the first time. There exist integers

�� � 4 1 1 and pairwise different states � 1 �	� 2 � � � �	�"� �$� �
with � 1

� ��� ���	�
� , ��� � � � / , ��� � �
1 � / � � 1 � �� � ,

��� � �
1 � / � ����� �� �. � 4 � 5 1 � � 4 � 5 1

�3 for
� � 2 � 3 � � � �
� � 4 1, and

��� � �
1 � / � � � � �� � 4 � 5 1

(Theorem 28(b)). The values
�

(with
� � 1) and � are calculated as follows: At time

� 1
, all actions

entering and leaving the goal state � � / have q-value 0, with the exception of the action with which it was
entered, which has q-value 1. Thus, 0 �� ��� � �

1 � / � � � / � �� ��� � �
1 � / � ��� � �� � 4 � 5 1 and consequently

� � � 5 1. Similarly, � �� ��� � �
1 � / � � 1 � �� ��� � �

1 � / � ����� �	� � � �� ��� � �
1 �
	 1 � ��� ���	�
� � �� � � 	 1 � ��� ���	�
���"! � �

6.2. Dirichlet Distributions 185

and consequently � � � �
	 1 � ��� ���	� ���	! � � , since ��� ���	� � was balanced at time
�

and Edge Counting never entered
� �����	�
� again after time

�
. � � � �
	 1 � � �����*� � �	! � � � � �
	 1 � � � �	! � � � � � � � � �"! � � 5 1 � � � � � �����*� � �	! � � 5 1

Action Selection�
min � /)�687 � � ����� � 9 � � � � �����*� � �"! 1 � 5 1

Previous Paragraph� min
� � � � � ��� �	� � � 4 1 � � 4 � � � � �����*� � �*4 1 � 5 1 � min

� � � � � � ���	� � ��� � 4� � � � � ���	� � �
� .
To summarize, at time

� 1
, there is at least one action (in state � 1) with q-value � , there are at least two

actions (in state � �) with q-value � 4 � 5 1 for
� � 2 � 3 � � � �
� � 4 1 � � , and there is at least one action (in

state � � � ��� 	 1) with q-value y-k+1=0. Since the states � 1 �"� 2 � � � �	�	��� are pairwise different, this accounts
for 2

�
� 4 1 � 5 2 � 2 � actions. The q-values of the remaining � 4 2 � actions can be at most (Theo-

rem 29) max � /)�687 � � ����� � 9 � � / � � � ���	� � �	! 1 � � max � /)*687 � � ��� � � 9 � � 	 1 � � � ���	�
� �"! 1 � � max � /)*687 � � 9 � �
	 1 � � � �	! 1 � Theorem 26�
� �
	 1 � � � �	! � � � � � 	 1 � � � ���	�
� �"! � � � � at time

� 1
, since Edge Counting never entered � � ���	�
� again after time

�
. It

follows that the sum of the q-values of all actions at time
� 1

is at most

� � 2 (
� �

2

��� � ��� 1
� � 0 � � � �

2
� � �
 � � � � 2

This expression is maximized for � � � � 2. However, there is the restriction on � that � � min
� � � � � � ���	�
� ��� � 4� � � ��� ���	� � �
� . If � � � ����� �	� ��� � � � 2, then � � � ��� ���	� � � � � � 2 � � 4 � � � �������	�
� � and � � � � � ����� �	� � � is optimal.

If � � � �������	�
� �� � � 2, then � 4 � � � ��� ���	�
� � � � � 2 � � � � ����� �	� ��� and � � � 4 � � � ����� �	� � � is optimal. In both
cases, the sum of the q-values of all actions at time

� 1
is at most � � 4 � 2 � � � � � � ����� �	� � � 4 � � � ����� �	� � � 2. The

theorem follows because the total number of action executions corresponds to the sum of the q-values of all
actions at time

� 1
.

6.2 Dirichlet Distributions

In this appendix, we explain how we use Dirichlet distributions to change the re-estimation formulas to use
Bayes rule instead of maximum likelihood estimates, as outlined in Section 3.3.4.2.2 on page 119.

Overview of Dirichlet Distributions: Assume a finite sequence of independent events, where an event of
type � � is generated with probability

� � � 0 and (� � � � 1. Let � denote the event that the sequence
contains & � events of type � � . Then, � is distributed according to a multinomial distribution (the multivariate
counterpart to the binomial distribution) with parameter

� � ��� � � . Its distribution + � � ' � � is

� � � � � ��
 � (� � !� � !
�

� � �

Thus, + � � ' � � is proportional to � � � � �� if everything but
�

is given.

Assume that an observer observes � but does not know
�

. To obtain a Bayesian estimate for
�

, we maintain
a probability distribution over all values of this random variable under the assumption that it is distributed
according to a Dirichlet distribution (the multivariate counterpart to the beta distribution) with parameter
! � � ! ��� where ! � � 0. Then, the density + ��� � of

�
is

� ��� �
 Γ
� (� �

� Γ
� � � �

� � � � 1 �

where the gamma function Γ
�!- � is the continuous counterpart to the factorial (that is,

-
!). Thus, + ��� � is

proportional to � � � ����� 1� if everything but
�

is given.

186 Chapter 6. Appendices

Ultimately, we are interested in the probabilities
� � . We need to estimate them from the Dirichlet distribution.

In general, it is standard to minimize the mean squared difference between the estimate and the true parameter
value (mean squared error). The Bayesian estimate

�� � for
� � for this criterion (loss function) is

� � ��� � �� � 2 �
 � � ��� � 2 � � 2
� ��� � �� � � �� � 2 � (6.1)

This quantity is minimized by
�� � � � ��� � � . Thus, the Bayesian estimate for

� � is its mean � ��� � � . For Dirichlet
distributions with parameter ! � � ! � � , it holds that � ��� � � � ! � � (� ! � .
We now use � to update

�
. According to Bayes rule,

� ��� � � ��
 � � � � � � � ��� �
� � � � �

which is proportional to � � � � �� � � � � � � 1� and thus also to � � � � � 	 � � � 1� . Consequently, the distribution of�
after observing � (short:

� ' �) is again a Dirichlet distribution, this time with parameter ! 1 � � ! 1� � where
! 1� � & � 5 ! � . It follows that the Dirichlet distribution is a conjugate family for samples from a multinomial
distribution. This is the reason for our assumption that

�
is distributed according to a Dirichlet distribution.

The estimate for
� ��' � is

�� � �
 � ��� � � ��
 � �
(� �

 � � �
(� � � � � �

A longer introduction to Dirichlet distributions in the context of part manipulation with grippers is given in
[Goldberg, 1990].

Using Dirichlet Distributions: We utilize the above properties of Dirichlet distributions as follows: Given
an initial estimate

� 1
for
�

, we use ! � � � � 1� for some constant
� � 0. Then, the estimate for

� � (the prior
estimate) is, as expected,

��
 �
(�

 �
� �

(� � � � �

 � � �

The estimate for
� ��' � (the posterior estimate) is

�� � �
 � � �
(� � � � �
 � � � � �

(� � ��� � � �
 � ��� � �
(� � � ��� �

The larger
�

, the more evidence is needed to change the prior estimate significantly.

In the POMDP-based navigation architecture, for example, the re-estimation formula A9 (from page 91) for
the transition probabilities becomes (probability classes are not shown):

A9’. Set
�̄ ��� � � ��� � �

:=
� (� �

1 � � � � � 1
� � � �2� � �

������� � � � � � ��� � � ����� ��� � � (� �
1 � � � � � 1

� � � �2� � �
��� � � � � for all

����� � ���
and� � � ��� �

.

In this case, � is not really distributed according to a multinomial distribution, but the modified re-estimation
formulas seem to work well in practice.

6.3. Plans with Large Approximation Errors 187

6.3 Plans with Large Approximation Errors

In this appendix, we show that approximating exponential utility functions with linear utility functions can
result in large approximation errors, as stated in Section 4.3 on page 142. We first present two theorems that
are needed for the subsequent example.

Assume that the interval : � � � � � � � � (; contains all possible rewards for a given planning task, where � � � �
and � � � (are finite with � � � � �� � � � (. For example, for navigation tasks, if the length of the shortest (and
longest) path from the start location to the goal location is �

� � � (and �
� � (, respectively) then all rewards are

contained in : 4 �
� � (� � ��4 �

� � � � ��; , where � is the travel speed of the robot.

Theorem 31 There exists a plan
� � that maximizes � ���

��� ��� := � � ��� ��� 4 � �
��� ��� for � � � � � � � with � � 1

and is of the following form: it leads with probability
� � � 0 to a chronicle with reward � � , where � � � � � � �

or ��� � � � � (for all
�
.

Proof by contradiction: Consider a plan
� � that leads with probability

� ��� 0 to a chronicle with reward ��� ,
where � ���� � � � � and �	� �� � � � (. Note that

� 2� � � �
�

2
� � � ��� � � � � ����� � ���
 � 2� � � �

�
2
� log �

�
 � � � � � � � �

 � � � � �
 ln �
� � �

�
� (��� � � � � � � �� (� � � � � � � 2 	

0
�

Consequently, the function is convex or linear and at least one of its global maxima is at either � � � � � � � or
� � � � � � (. Thus, changing � � from its present value to either � � � � or � � � (does not decrease � ���

��� ��� .

Theorem 32 The following plan maximizes � ���
��� ��� := � � ��� ��� 4 � �

��� ��� for � � � � � � � with � � 1: plan� � � � � leads with probability
�
� � � to a chronicle with reward � � � � and with probability 1 4 � � � � to a chronicle

with reward � � � (, where

��� � � :=
� 1

ln �
1� � ��� ��� �

� �
�
� ��� �2� � ���

1
�
�
�
� � � �2� � ��� �

Proof: According to Theorem 31, there exists a plan
� � � � � that maximizes � ���

��� ��� and is of the following
form: it leads with probability

�
� � � to a chronicle with reward � � � � and with probability 1 4 � � � � to reward

� � � (. We have to determine only the probability
�
� � � that maximizes � ���

��� ��� . Note that

���� � � � � � ����� ��� � � �
 ���� � � � � � � ��� ��� � � � � � ����� ��� � � ���

 ������ � � � log � � ��� � � � � � ��� � �

1
� ��� � � � � � � ��� � � ��� � � � � � �

1
� ��� � � � � � ��� �
 1

ln �
�
�
� ��� �

�
�
� ������ � � � � � � � � �

1
� ��� � � � � � � � � ��� � � � � ��� �

Thus,

������ � � � � ����� ��� � � �

0

��� � �
 � 1
ln �

1� � ��� ��� �
� �

�
� ��� � � � � �

1
�
�
�
� ��� �2� � ��� �

188 Chapter 6. Appendices

This is indeed a maximum since

� 2� ����� � � � 2 � � ����� � � � � ��
 � 1
ln �

�
�
�
� � � �

�
�
� � � � 2����� � � � � � ��� � �

1
� ��� � � � � � � � � � 2 ! 0

�

Now consider again the navigation task in Figure 4.2, this time in the presence of an immediate soft deadline
that can be modeled with the utility function � � � � � � � for � � 1, where � is the negative travel time of the
robot, measured in seconds. To determine the possible approximation error, let

� � 	 � denote the plan with
maximal average utility and

� � 	 � the plan with maximal average reward. The approximation error � ��� of
choosing

� � 	 � over
� � 	 � is the difference in certainty equivalents between the two plans. Since the utility

function is convex, � � ��� ���" � �
��� ��� for all plans

� � (Section 4.2.2). Thus,

� � �
 � � ��� � � � � � � � ��� � � � �
� � � ��� � � � � � � ����� � � � �
� � � ��� � � � � � � ����� � � � �
�

max�
 � � � ��� � � � � ����� � ��� �

Theorem 32 shows that the following plan maximizes � ��� : Plan
� � � � � leads with probability

�
� � � (not

necessarily equal to 0.50) to a chronicle with reward � � � � and with probability 1 4 � � � � to a chronicle with
reward � � � (, where

��� � � :=
� 1

ln �
1� � ��� ��� �

� �
�
� ��� �2� � ���

1
�
�
�
� � � �2� � ��� �

For
� � � � � , it holds that

� � � �
max�
 � � � ��� � � � � ����� � ���
 � � ��� ��� � � � � � ����� ��� � � �
 � � ��� ��� �
�
�
� ��� �2� � ��� �

1
�

log �

�
ln �

�
� � � �2� � ���

�
�
� ��� �2� � ��� �

1

�

That this error bound can be tight can be seen as follows: Assume that a planner that maximizes average
reward has to choose between plan

� � � � � and a plan
� � � � �	� 	 that leads with probability one to a chronicle

with reward � �
��� � � � � � . Since both plans have the same average reward, the planner can choose

� � � � �"� 	 .
Then, � � ��� � � � � � � �

��� � � � � � � � �
��� � � � �	� 	�� � � � ��� � � � �"� 	�� and the approximation error is

� � �
 � � ��� ��� � � � � � � ��� � � � �#
 � �
 � � ��� ��� � � � � � ����� � � � �#
 � �
 � � ��� � � � � � � � ����� � � � � ���

6.4. Continuum of Risk Attitudes 189

To construct an example of the worst case, assume that �
� � � � 20 meters, �

� � (� 200 meters, and
� � 0 � 25 meters per second. Furthermore, the utility function is � � � � � �

21 � 300 � � (Figure 4.3 (right)).
Then, similarly to Example 1 from Figure 4.2,

� � � � � leads with probability 0.37 to a travel time of 80.00
seconds and with the complementary probability to a travel time of 800.00 seconds. The average utility of� � � � � is � � � � � � ��� � 0 � 41, its certainty equivalent is � � � � � � � � � 4 391 � 20 seconds, and its average reward is
� �
�
� � � ��� � 4 535 � 49 seconds.

� ��� � �	� 	 leads with probability 1 � 00 to a travel time of 535.49 seconds. The
average utility of

� ��� � �"� 	 is � � � � � � �	� 	�� � 0 � 29, its certainty equivalent is � � � � � � �	� 	�� � 4 535 � 49 seconds,
and its average reward is � �

�
��� � �"� 	�� � 4 535 � 49 seconds as well. The approximation error of choosing� � � � �	� 	 over

� � � � � calculates to roughly 2 1/2 minutes (144 � 30 seconds) for this delivery task whose average
travel time is only about 9 minutes (535.49 seconds) in both cases.

6.4 Continuum of Risk Attitudes

Proposition 1 from page 144 showed that exponential utility functions cover a continuum of risk attitudes
in high-stake one-shot planning domains, ranging from being strongly risk-averse over being risk-neutral to
being strongly risk-seeking. In this appendix, we prove the four cases of Proposition 1 separately.

Theorem 33 shows that the certainty equivalent of any plan approaches its best-case reward as � approaches
infinity for a risk-seeking agent.

Theorem 33 If the execution of plan
� � leads with probability

� � � 0 to a chronicle with reward � � , then
lim� � � � � ��� ��� � max � � � for any utility function � � � � � � � with � � 1.

Proof: It holds that

max ��

lim

���
� max ��

lim
���

� log � � max � � �

lim
���

� log �
�
 � � � max � � � �

	
lim

���
� log �

�
 � � � � � �

	
lim

���
� max log � � � � � � �

lim
���

� max � log�

� � �� �

max � �

and thus

lim
���

� � � ��� � �

lim

���
� �

�
1 � � � � � ���� ��� �

lim

���
� log�

�
 � � � � � �

see above

max �� �

Theorem 34 shows that the certainty equivalent of any plan approaches its average reward as � approaches
one for a risk-seeking agent.

190 Chapter 6. Appendices

Theorem 34 If the execution of plan
� � leads with probability

� � to a chronicle with reward � � , then
lim� � 1 � � ��� ��� � � �

��� ��� for any utility function � � � � � � � with � � 1.

Proof: It holds that

lim
��� 1

� � ��� � �

lim

��� 1

�
�

1 � � � � � ��� ��� �

lim
��� 1

log �
�
 � � � � � �

lim

��� 1

ln (� � � � � �
ln �

� /�� ��� ��� �

lim

��� 1

(� � �� � � � � 1
� � (� � � � � �

1 � �

lim

��� 1

(� � �� � � � �
(� � � � � �
 lim ��� 1 (� � �� � � � �

lim ��� 1 (� � � � � �
 (� � � �
1
 � ����� � ���

Similar theorems also hold for risk-averse agents. They can be proved by transforming the task to one for
risk-seeking agents. Theorem 35 shows that the certainty equivalent of any plan approaches its average reward
as � approaches one for a risk-averse agent.

Theorem 35 If the execution of plan
� � leads with probability

� � to a chronicle with reward � � , then
lim� � 1 � � ��� ��� � � �

��� ��� for any utility function � � � � � 4 � � with 0 � 1.

Proof: It holds that

lim
��� 1

� � ��� � �

lim

��� 1

�
�

1 � � � � � ��� ��� �

lim
��� 1

log � � � �
 � � �� � � � � ��� �

 �
lim

��� 1
� � log �

�
 � � � � � � �

 �
lim

��� 1
log1 � �

�
 � � � 1 � � � � � � �

��� � � � � � 34
 � �
 � � � � � ���

 �
 � � �� �
 � ����� � ���

Finally, Theorem 36 shows that the certainty equivalent of any plan approaches its worst-case reward as �
approaches zero for a risk-averse agent.

6.4. Continuum of Risk Attitudes 191

Theorem 36 If the execution of plan
� � leads with probability

� � � 0 to a chronicle with reward � � , then
lim� � 0 � � ��� ��� � min � � � for any utility function � � � � � 4 � � with 0 � 1.

Proof: It holds that

lim
��� 0

� � ��� � �

lim

��� 0

�
�

1 � � � � � ��� ��� �

lim
��� 0

log � � � �
 � � �� � � � � ��� �

 �
lim

��� 0
� � log �

�
 � � � � � � �

 �
lim

��� 0
log1 � �

�
 � � � 1 � � � � � � �

��� � � � � � 33
 �
max � � � �

min �� �

192 Chapter 6. Appendices

Bibliography

[Aleliunas et al., 1979] R. Aleliunas, R. Karp, R. Lipton, L. Lovasz, and C. Rackoff. Random walks,
universal traversal sequences, and the complexity of maze problems. In Proceedings of the Symposium on
Foundations of Computer Science, pages 218–223, 1979.

[Amarel, 1968] S. Amarel. On representations of problems of reasoning about actions. In D. Michie, editor,
Machine Intelligence, volume 3, pages 131–171. Elsevier, 1968.

[Ambros-Ingerson and Steel, 1988] J. Ambros-Ingerson and S. Steel. Integrating planning, execution and
monitoring. In Proceedings of the National Conference on Artificial Intelligence, pages 83–88, 1988.

[Baeza-Yates et al., 1993] R. Baeza-Yates, J. Culberson, and G. Rawlins. Searching in the plane. Information
and Computation, 106:234–252, 1993.

[Balch and Arkin, 1993] T. Balch and R. Arkin. Avoiding the past: A simple, but effective strategy for
reactive navigation. In International Conference on Robotics and Automation, pages 678–685, 1993.

[Baras and James, 1997] J. Baras and M. James. Robust and risk-sensitive output feedback control for finite
state machines and hidden Markov models. Journal of Mathematical Systems, Estimation, and Control, in
press, 1997.

[Barto et al., 1989] A. Barto, R. Sutton, and C. Watkins. Learning and sequential decision making. Tech-
nical Report 89–95, Department of Computer Science, University of Massachusetts at Amherst, Amherst
(Massachusetts), 1989.

[Barto et al., 1995] A. Barto, S. Bradtke, and S. Singh. Learning to act using real-time dynamic programming.
Artificial Intelligence, 73(1):81–138, 1995.

[Basye et al., 1989] K. Basye, T. Dean, and J. Vitter. Coping with uncertainty in map learning. In Proceedings
of the International Joint Conference on Artificial Intelligence, pages 663–668, 1989.

[Bellman, 1957] R. Bellman. Dynamic Programming. Princeton University Press, 1957.

[Benson and Prieditis, 1992] G. Benson and A. Prieditis. Learning continuous-space navigation heuristics
in real-time. In Proceedings of the International Conference on Simulation of Adaptive Behavior: From
Animals to Animats, 1992.

[Bensoussan and Schuppen, 1985] A. Bensoussan and J. Van Schuppen. Optimal control of partially observ-
able stochastic systems with an exponential-of-integral performance index. SIAM Journal on Control and
Optimization, 23(4):599–613, 1985.

[Bernoulli, 1738] D. Bernoulli. Specimen theoriae novae de mensura sortis. Commentarii Academiae
Scientiarum Imperialis Petropolitanae, 5, 1738. Translated by L. Sommer, Econometrica, 22; 23–36,
1954.

[Bertsekas, 1987] D. Bertsekas. Dynamic Programming, Deterministic and Stochastic Models. Prentice Hall,
1987.

193

194 BIBLIOGRAPHY

[Betke et al., 1995] M. Betke, R. Rivest, and M. Singh. Piecemeal learning of an unknown environment.
Machine Learning, 18(2/3), 1995.

[Blum et al., 1991] A. Blum, P. Raghavan, and B. Schieber. Navigation in unfamiliar terrain. In Proceedings
of the Symposium on Theory of Computing, pages 494–504, 1991.

[Blythe, 1994] J. Blythe. Planning with external events. In Proceedings of the Conference on Uncertainty in
Artificial Intelligence, pages 94–101, 1994.

[Blythe, 1996] J. Blythe. Event-based decompositions for reasoning about external change in planners. In
Proceedings of the International Conference on Artificial Intelligence Planning Systems, pages 27–34,
1996.

[Boddy and Dean, 1989] M. Boddy and T. Dean. Solving time-dependent planning problems. In Proceedings
of the International Joint Conference on Artificial Intelligence, pages 979–984, 1989.

[Bonet et al., 1997] B. Bonet, G. Loerincs, and H. Geffner. A robust and fast action selection mechanism. In
Proceedings of the National Conference on Artificial Intelligence, 1997.

[Borenstein et al., 1996] J. Borenstein, B. Everett, and L. Feng. Navigating Mobile Robots: Systems and
Techniques. Peters, 1996.

[Boutilier and Dearden, 1994] C. Boutilier and R. Dearden. Using abstractions for decision-theoretic plan-
ning with time constraints. In Proceedings of the National Conference on Artificial Intelligence, pages
1016–1022, 1994.

[Boutilier and Poole, 1996] C. Boutilier and D. Poole. Computing optimal policies for partially observable
decision processes using compact representations. In Proceedings of the National Conference on Artificial
Intelligence, pages 1168–1175, 1996.

[Boutilier et al., 1995a] C. Boutilier, T. Dean, and S. Hanks. Decision-theoretic planning: Structural as-
sumptions and computational leverage. In Proceedings of the European Workshop on Planning, 1995.

[Boutilier et al., 1995b] C. Boutilier, R. Dearden, and M. Goldszmidt. Exploiting structure in policy con-
struction. In Proceedings of the InternationalJoint Conference on Artificial Intelligence, pages 1104–1111,
1995.

[Bresina and Drummond, 1990] J. Bresina and M. Drummond. Anytime synthetic projection: Maximizing
the probability of goal satisfaction. In Proceedings of the National Conference on Artificial Intelligence,
pages 138–144, 1990.

[Brost and Christiansen, 1993] R. Brost and A. Christiansen. Probabilistic analysis of manipulation tasks:
A research agenda. In Proceedings of the International Conference on Robotics and Automation, pages
549–556, 1993.

[Bunke et al., 1995] H. Bunke, M. Roth, and E. Schukat-Talamazzini. Off-line cursive handwriting recogni-
tion using hidden Markov models. Pattern Recognition, 28(9):1399–1413, 1995.

[Burgard et al., 1996] W. Burgard, D. Fox, D. Hennig, and T. Schmidt. Estimating the absolute position of
a mobile robot using position probability grids. In Proceedings of the National Conference on Artificial
Intelligence, pages 896–901, 1996.

[Cassandra et al., 1994] A. Cassandra, L. Kaelbling, and M. Littman. Acting optimally in partiallyobservable
stochastic domains. In Proceedings of the NationalConference on Artificial Intelligence, pages 1023–1028,
1994.

[Cassandra et al., 1996] A. Cassandra, L. Kaelbling, and J. Kurien. Acting under uncertainty: Discrete
Bayesian models for mobile robot navigation. In Proceedings of the InternationalConference on Intelligent
Robots and Systems, pages 963–972, 1996.

BIBLIOGRAPHY 195

[Cassandra, 1997] A. Cassandra. Exact and Approximate Algorithms for Partially Observable Markov De-
cision Processes. PhD thesis, Department of Computer Science, Brown University, Providence (Rhode
Island), 1997.

[Chartrand and Lesniak, 1986] G. Chartrand and L. Lesniak. Graphs and Digraphs. Wadsworth and
Brooks/Cole, second edition, 1986.

[Choset and Burdick, 1994] H. Choset and J. Burdick. Sensor based planning and nonsmooth analysis. In
Proceedings of the International Conference on Robotics and Automation, pages 3034–3041, 1994.

[Chrisman, 1992] L. Chrisman. Reinforcement learning with perceptual aliasing: The perceptual distinctions
approach. In Proceedings of the National Conference on Artificial Intelligence, pages 183–188, 1992.

[Christiansen and Goldberg, 1990] A. Christiansen and K. Goldberg. Robotic manipulation planning with
stochastic actions. In Proceedings of the DARPA Workshop on Innovative Approaches to Planning,
Scheduling, and Control, 1990.

[Coraluppi and Marcus, 1996] S. Coraluppi and S. Marcus. Risk-sensitive control of Markov decision pro-
cesses. In Proceedings of the Conference on Information Science and Systems, pages 934–939, 1996.

[Cox, 1994] I. Cox. Modeling a dynamic environment using a Bayesian multiple hypothesis approach.
Artificial Intelligence, 66:311–344, 1994.

[Dasgupta et al., 1994] P. Dasgupta, P. Chakrabarti, and S. DeSarkar. Agent searching in a tree and the
optimality of iterative deepening. Artificial Intelligence, 71:195–208, 1994.

[Dean et al., 1988] T. Dean, J. Firby, and D. Miller. Hierarchical planning involving deadlines, travel times,
and resources. Computational Intelligence, 4(4):381–398, 1988.

[Dean et al., 1990] T. Dean, K. Basye, R. Chekaluk, S. Hyun, M. Lejter, and M. Randazza. Coping with
uncertainty in a control system for navigation and exploration. In Proceedings of the National Conference
on Artificial Intelligence, pages 1010–1015, 1990.

[Dean et al., 1992] T. Dean, D. Angluin, K. Basye, S. Engelson, L. Kaelbling, E. Kokkevis, and O. Maron.
Inferring finite automata with stochastic output functions and an application to map learning. In Proceedings
of the National Conference on Artificial Intelligence, pages 208–214, 1992.

[Dean et al., 1993] T. Dean, L. Kaelbling, J. Kirman, and A. Nicholson. Planning with deadlines in stochastic
domains. In Proceedings of the National Conference on Artificial Intelligence, pages 574–579, 1993.

[Dean et al., 1995] T. Dean, L. Kaelbling, J. Kirman, and A. Nicholson. Planning under time constraints in
stochastic domains. Artificial Intelligence, 76(1–2):35–74, 1995.

[Dearden and Boutilier, 1994] R. Dearden and C. Boutilier. Integrating planning and execution in stochastic
domains. In Proceedings of the Conference on Uncertainty in Artificial Intelligence, 1994.

[Denardo and Rothblum, 1979] E. Denardo and U. Rothblum. Optimal stopping, exponential utility, and
linear programming. Mathematical Programming, 16:228–244, 1979.

[Deng and Papadimitriou, 1990] X. Deng and C. Papadimitriou. Exploring an unknown graph. In Proceed-
ings of the Symposium on Foundations of Computer Science, pages 355–361, 1990.

[Devijver, 1985] P. Devijver. Baum’s forward backward algorithm revisited. Pattern Recognition Letters,
3:369–373, 1985.

[Dickson, 1978] P. Dickson. The Official Rules. Dell, 1978.

[Draper et al., 1994] D. Draper, S. Hanks, and D. Weld. Probabilistic planning with information gathering.
In Proceedings of the International Conference on Artificial Intelligence Planning Systems, pages 31–37,
1994.

196 BIBLIOGRAPHY

[Elfes, 1989] A. Elfes. Using occupancy grids for mobile robot perception and navigation. IEEE Computer,
pages 46–57, 6 1989.

[Engelson and McDermott, 1992] S. Engelson and D. McDermott. Error correction in mobile robot map
learning. In Proceedings of the International Conference on Robotics and Automation, pages 2555–2560,
1992.

[Erdmann, 1984] M. Erdmann. On motion planning with uncertainty. Master’s thesis, Department of
Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge (Mas-
sachusetts), 1984.

[Erdmann, 1989] M. Erdmann. On Probabilistic Strategies for Robot Tasks. PhD thesis, Department of
Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge (Mas-
sachusetts), 1989.

[Erdmann, 1992] M. Erdmann. Randomization in robot tasks. The International Journal of Robotics Re-
search, 11(5):399–436, 1992.

[Etzioni, 1991] O. Etzioni. Embedding decision-analytic control in a learning architecture. Artificial Intelli-
gence, 49(1-3):129–159, 1991.

[Farquhar and Nakamura, 1988] P. Farquhar and Y. Nakamura. Utility assessment procedures for polynomial-
exponential functions. Naval Research Logistics, 35:597–613, 1988.

[Farquhar, 1984] P. Farquhar. Utility assessment methods. Management Science, 30(11):1283–1300, 1984.

[Feldman and Sproull, 1977] J. Feldman and R. Sproull. Decision theory and Artificial Intelligence II: The
hungry monkey. Cognitive Science, 1:158–192, 1977.

[Feller, 1966] W. Feller. An Introduction to Probability Theory and Its Applications. Wiley, second edition,
1966.

[Fernandez-Gaucherand and Marcus, 1997] E. Fernandez-Gaucherand and S. Marcus. Risk-sensitiveoptimal
control of hidden Markov models: Structural results. IEEE Transactions on Automatic Control, in press,
1997.

[Fikes and Nilsson, 1971] R. Fikes and N. Nilsson. STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2:189–208, 1971.

[Filar et al., 1989] J. Filar, L. Kallenberg, and H.-M. Lee. Variance-penalized Markov decision processes.
Mathematics of Operations Research, 14(1):147–161, 1989.

[Fink, 1995] E. Fink. Design of representation-changing algorithms. Technical Report CMU–CS–95–120,
School of Computer Science, Carnegie Mellon University, Pittsburgh (Pennsylvania), 1995.

[Foux et al., 1993] G. Foux, M. Heymann, and A. Bruckstein. Two-dimensional robot navigation among
unknown stationary polygonal obstacles. IEEE Transactions on Robotics and Automation, 9(1):96–102,
1993.

[Gardner, 1973] M. Gardner. Mathematical games. Scientific American, 228(1):108–115, 1 1973.

[Genesereth and Nilsson, 1986] M. Genesereth and N. Nilsson. Logical Foundations of Artificial Intelligence.
Morgan Kaufmann, 1986.

[Genesereth and Nourbakhsh, 1993] M. Genesereth and I. Nourbakhsh. Time-saving tips for problem solving
with incomplete information. In Proceedings of the National Conference on Artificial Intelligence, pages
724–730, 1993.

BIBLIOGRAPHY 197

[Goldberg, 1990] K. Goldberg. Stochastic Plans for Robotic Manipulation. PhD thesis, School of Computer
Science, Carnegie Mellon University, Pittsburgh (Pennsylvania), 1990. Available as Technical Report
CMU-CS-90-161.

[Goldman and Boddy, 1994] R. Goldman and M. Boddy. Epsilon-safe planning. In Proceedings of the
Conference on Uncertainty in Artificial Intelligence, pages 253–261, 1994.

[Good, 1971] I. Good. Twenty-seven principles of rationality. In V. Godambe and D. Sprott, editors,
Foundations of Statistical Inference. Holt, Rinehart, Winston, 1971.

[Goodwin and Simmons, 1992] R. Goodwin and R.G. Simmons. Rational handling of multiple goals for
mobile robots. In Proceedings of the International Conference on Artificial Intelligence Planning Systems,
pages 70–77, 1992.

[Goodwin, 1994] R. Goodwin. Reasoning about when to start acting. In Proceedings of the International
Conference on Artificial Intelligence Planning Systems, pages 86–91, 1994.

[Goodwin, 1997] R. Goodwin. Meta-Level Control for Decision-Theoretic Planners. PhD thesis, School of
Computer Science, Carnegie Mellon University, Pittsburgh (Pennsylvania), 1997. Available as Technical
Report CS-96-186.

[Haddawy and Hanks, 1990] P. Haddawy and S. Hanks. Issues in decision-theoretic planning: Symbolic
goals and numeric utilities. In Proceedings of the DARPA Workshop on Innovative Approaches to Planning,
Scheduling, and Control, 1990.

[Haddawy and Hanks, 1992] P. Haddawy and S. Hanks. Representation for decision-theoretic planning:
Utility functions for deadline goals. In Proceedings of the International Conference on Principles of
Knowledge Representation and Reasoning, 1992.

[Haddawy and Hanks, 1993] P. Haddawy and S. Hanks. Utility models for goal-directed decision-theoretic
planners. Technical Report 93–06–04, Department of Computer Science and Engineering, University of
Washington, Washington (Seattle), 1993.

[Haddawy et al., 1995] P. Haddawy, A. Doan, and R. Goodwin. Efficient decision-theoretic planning: Tech-
niques and empirical analysis. In Proceedings of the Annual Conference on Uncertainty in Artificial
Intelligence, pages 229–236, 1995.

[Haigh and Veloso, 1996] K. Haigh and M. Veloso. Interleaving planning and robot execution for asyn-
chronous user requests. In Proceedings of the International Conference on Intelligent Robots and Systems,
pages 148–155, 1996.

[Haigh, 1995] K. Haigh. Using planning and execution experience for high-level robot learning. Phd thesis
proposal, School of Computer Science, Carnegie Mellon University, Pittsburgh (Pennsylvania), 1995.

[Hamidzadeh and Shekhar, 1991] B. Hamidzadeh and S. Shekhar. Dynora: A real-time planning algorithm to
meet response-time constraints in dynamic environments. In Proceedings of the International Conference
on Tools for Artificial Intelligence, pages 228–235, 1991.

[Hamidzadeh and Shekhar, 1993] B. Hamidzadeh and S. Shekhar. Specification and analysis of real-time
problem solvers. IEEE Transactions on Software Engineering, 19(8):788–803, 1993.

[Hamidzadeh, 1992] B. Hamidzadeh. Can real-time search algorithms meet deadlines? In Proceedings of
the National Conference on Artificial Intelligence, pages 486–491, 1992.

[Hanks, 1990] S. Hanks. Projecting Plans for Uncertain Worlds. PhD thesis, Department of Computer Sci-
ence, Yale University, New Haven (Connecticut), 1990. Available as Technical Report YALE/DCS/TR756.

[Hannaford and Lee, 1991] B. Hannaford and P. Lee. Hidden Markov model analysis of force/torque infor-
mation in telemanipulation. The International Journal of Robotics Research, 10(5):528–539, 1991.

198 BIBLIOGRAPHY

[Hansson et al., 1990] O. Hansson, A. Mayer, and S. Russell. Decision-theoretic planning in BPS. In
Proceedings of the AAAI Spring Symposium on Planning in Uncertain Environments, 1990.

[Hauskrecht, 1997] M. Hauskrecht. Planning and Control in Stochasic Domains with Imperfect Information.
PhD thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, Boston (Massachusetts), 1997.

[Hayes and Simon, 1976] J. Hayes and H. Simon. The understandingprocess: Problem isomorphs. Cognitive
Psychology, 8:165–190, 1976.

[Heger, 1994] M. Heger. Consideration of risk in reinforcement learning. In Proceedings of the International
Conference on Machine Learning, pages 105–111, 1994.

[Heger, 1996] M. Heger. The loss from imperfect value functions in expectation-based and minimax-based
tasks. Machine Learning, 22(1–3):197–225, 1996.

[Hernandez-Hernandez and Marcus, 1997] D. Hernandez-Hernandez and S. Marcus. Risk-sensitive control
of Markov processes in countable state space. Systems and Control Letters, in press, 1997.

[Hierholzer, 1873] C. Hierholzer. Über die Möglichkeit, einen Linienzug ohne Wiederholung und ohne
Unterbrechung zu umfahren. Mathematische Annalen, 6:30–32, 1873.

[Horvitz et al., 1989] E. Horvitz, G. Cooper, and D. Heckerman. Reflection and action under scarce resources:
Theoretical principles and empirical study. In Proceedings of the International Joint Conference on
Artificial Intelligence, pages 1121–1127, 1989.

[Howard and Matheson, 1972] R. Howard and J. Matheson. Risk-sensitive Markov decision processes. Man-
agement Science, 18(7):356–369, 1972.

[Howard, 1964] R. Howard. Dynamic Programming and Markov Processes. MIT Press, third edition, 1964.

[Huang et al., 1990] X. Huang, Y. Ariki, and M. Jack. Hidden Markov Models for Speech Recognition.
Edinburgh University Press, 1990.

[Ishida and Korf, 1991] T. Ishida and R. Korf. Moving target search. In Proceedings of the International
Joint Conference on Artificial Intelligence, pages 204–210, 1991.

[Ishida and Shimbo, 1996] T. Ishida and M. Shimbo. Improving the learning efficiencies of real-time search.
In Proceedings of the International Joint Conference on Artificial Intelligence, pages 305–310, 1996.

[Ishida, 1992] T. Ishida. Moving target search with intelligence. In Proceedings of the National Conference
on Artificial Intelligence, pages 525–532, 1992.

[Ishida, 1995] T. Ishida. Two is not always better than one: Experiences in real-time bidirectional search. In
Proceedings of the International Conference on Multi-Agent Systems, pages 185–192, 1995.

[Ishida, 1997] T. Ishida. Real-Time Search for Learning Autonomous Agents. Kluwer Academic Publishers,
1997.

[Iyengar et al., 1986] S. Iyengar, C. Jorgensen, S. Rao, and C. Weisbin. Robot navigation algorithms using
learned spatial graphs. Robotica, 4:93–100, 1986.

[Jacobson, 1973] D. Jacobson. Optimal stochastic linear systems with exponential performance criteria and
their relation to deterministic differential games. IEEE Transactions on Automatic Control, 18:124–131,
1973.

[Kaelbling et al., 1986] L. Kaelbling, M. Littman, and A. Moore. Reinforcement learning: A survey. Journal
of Artificial Intelligence Research, 4:237–285, 1986.

BIBLIOGRAPHY 199

[Kaelbling, 1990] L. Kaelbling. Learning in Embedded Systems. MIT Press, 1990.

[Kahneman and Tversky, 1979] D. Kahneman and A. Tversky. Prospect theory: An analysis of decision
under risk. Econometrica, 47:263–291, 1979.

[Kalman, 1960] R. Kalman. A new approach to linear filtering and prediction problems. Transactions of the
American Society of Mechanical Engineers: Journal of Basic Engineering, 82:35–45, 1960.

[Kanazawa and Dean, 1989] K. Kanazawa and T. Dean. A model for projection and action. In Proceedings
of the International Joint Conference on Artificial Intelligence, pages 985–990, 1989.

[Kaplan and Simon, 1990] C. Kaplan and H. Simon. In search of insight. Cognitive Psychology, 22:374–419,
1990.

[Karakoulas, 1993] G. Karakoulas. A machine learning approach to planning for economic systems. In
Proceedings of the Third International Workshop on Artificial Intelligence in Economics and Management,
1993.

[Keeney and Raiffa, 1976] R. Keeney and H. Raiffa. Decisions with Multiple Objectives : Preferences and
Value Tradeoffs. Wiley, 1976.

[Knight, 1993] K. Knight. Are many reactive agents better than a few deliberative ones? In Proceedings of
the International Joint Conference on Artificial Intelligence, pages 432–437, 1993.

[Koenig and Simmons, 1992] S. Koenig and R.G. Simmons. Complexity analysis of real-time reinforcement
learning applied to finding shortest paths in deterministic domains. Technical Report CMU–CS–93–106,
School of Computer Science, Carnegie Mellon University, Pittsburgh (Pennsylvania), 1992.

[Koenig and Simmons, 1993a] S. Koenig and R.G. Simmons. Complexityanalysis of real-time reinforcement
learning. In Proceedings of the National Conference on Artificial Intelligence, pages 99–105, 1993.

[Koenig and Simmons, 1993b] S. Koenig and R.G. Simmons. Exploration with and without a map. In
Proceedings of the AAAI Spring Symposium on Learning Action Models, pages 28–32, 1993. Available as
AAAI Technical Report WS-93-06.

[Koenig and Simmons, 1994a] S. Koenig and R.G. Simmons. How to make reactive planners risk-sensitive.
In Proceedings of the InternationalConference on Artificial Intelligence PlanningSystems, pages 293–298,
1994.

[Koenig and Simmons, 1994b] S. Koenig and R.G. Simmons. Risk-sensitive planning with probabilistic
decision graphs. In Proceedings of the International Conference on Principles of Knowledge Representation
and Reasoning, pages 2301–2308, 1994.

[Koenig and Simmons, 1995a] S. Koenig and R.G. Simmons. The effect of representation and knowledge on
goal-directed exploration with reinforcement learning algorithms: The proofs. Technical Report CMU–
CS–95–177, School of Computer Science, Carnegie Mellon University, Pittsburgh (Pennsylvania), 1995.

[Koenig and Simmons, 1995b] S. Koenig and R.G. Simmons. Real-time search in non-deterministic domains.
In Proceedings of the International Joint Conference on Artificial Intelligence, pages 1660–1667, 1995.

[Koenig and Simmons, 1996a] S. Koenig and R.G. Simmons. Easy and hard testbeds for real-time search
algorithms. In Proceedings of the National Conference on Artificial Intelligence, pages 279–285, 1996.

[Koenig and Simmons, 1996b] S. Koenig and R.G. Simmons. The effect of representation and knowledge on
goal-directed exploration with reinforcement-learning algorithms. Machine Learning, 22(1/3):227–250,
1996.

200 BIBLIOGRAPHY

[Koenig and Simmons, 1996c] S. Koenig and R.G. Simmons. The influence of domain properties on the
performance of real-time search algorithms. Technical Report CMU–CS–96–115, School of Computer
Science, Carnegie Mellon University, Pittsburgh (Pennsylvania), 1996.

[Koenig and Simmons, 1996d] S. Koenig and R.G. Simmons. Modeling risk and soft deadlines for robot
navigation. In Proceedings of the AAAI Spring Symposium Series, Symposium on Planning with Incomplete
Information for Robot Problems, pages 57–61, 1996. Available as AAAI Technical Report SS-96-04.

[Koenig and Simmons, 1996e] S. Koenig and R.G. Simmons. Passive distance learning for robot navigation.
In Proceedings of the International Conference on Machine Learning, pages 266–274, 1996.

[Koenig and Simmons, 1996f] S. Koenig and R.G. Simmons. Unsupervised learning of probabilistic models
for robot navigation. In Proceedings of the International Conference on Robotics and Automation, pages
2301–2308, 1996.

[Koenig and Simmons, 1997] S. Koenig and R.G. Simmons. A robot navigation architecture based on par-
tially observable Markov decision process models. In D. Kortenkamp, R. Bonasso, and R. Murphy, editors,
Artificial Intelligence Based Mobile Robotics: Case Studies of Successful Robot Systems. MIT Press, 1997.

[Koenig and Smirnov, 1996] S. Koenig and Y. Smirnov. Graph learning with a nearest neighbor approach.
In Proceedings of the Conference on Computational Learning Theory, pages 19–28, 1996.

[Koenig et al., 1996] S. Koenig, R. Goodwin, and R.G. Simmons. Robot navigation with Markov models:
A framework for path planning and learning with limited computational resources. In L. Dorst, M. van
Lambalgen, and R. Voorbraak, editors, Reasoning with Uncertainty in Robotics, volume 1093 of Lecture
Notes in Artificial Intelligence, pages 322–337. Springer, 1996.

[Koenig, 1991] S. Koenig. Optimal probabilistic and decision-theoretic planning using Markovian decision
theory. Master’s thesis, Computer Science Department, University of California at Berkeley, Berkeley
(California), 1991. Available as Technical Report UCB/CSD 92/685.

[Koenig, 1992] S. Koenig. The complexity of real-time search. Technical Report CMU–CS–92–145, School
of Computer Science, Carnegie Mellon University, Pittsburgh (Pennsylvania), 1992.

[Koenig, 1995] S. Koenig. Agent-centered search: Situated search with small look-ahead. Phd thesis
proposal, School of Computer Science, Carnegie Mellon University, Pittsburgh (Pennsylvania), 1995.

[Koenig, 1996] S. Koenig. Agent-centered search: Situated search with small look-ahead. In Proceedings of
the National Conference on Artificial Intelligence, page 1365, 1996.

[Kohavi, 1978] Z. Kohavi. Switching and Finite Automata Theory. McGraw-Hill, second edition, 1978.

[Korach et al., 1990] E. Korach, S. Kutten, and S. Moran. A modular technique for the design of effi-
cient distributed leader finding algorithms. ACM Transactions on Programming Languages and Systems,
12(1):84–101, 1990.

[Korf, 1987] R. Korf. Real-time heuristic search: First results. In Proceedings of the National Conference
on Artificial Intelligence, pages 133–138, 1987.

[Korf, 1988] R. Korf. Real-time heuristic search: New results. In Proceedings of the National Conference
on Artificial Intelligence, pages 139–144, 1988.

[Korf, 1990] R. Korf. Real-time heuristic search. Artificial Intelligence, 42(2-3):189–211, 1990.

[Korf, 1993] R. Korf. Linear-space best-first search. Artificial Intelligence, 62(1):41–78, 1993.

[Kortenkamp and Weymouth, 1994] D. Kortenkamp and T. Weymouth. Topological mapping for mobile
robots using a combination of sonar and vision sensing. In Proceedings of the National Conference on
Artificial Intelligence, pages 979–984, 1994.

BIBLIOGRAPHY 201

[Kosaka and Kak, 1992] A. Kosaka and A. Kak. Fast vision-guided mobile robot navigation using model-
based reasoning and prediction of uncertainties. In Proceedings of the International Conference on
Intelligent Robots and Systems, pages 2177–2186, 1992.

[Kuipers and Byun, 1988] B. Kuipers and Y. Byun. A robust, qualitative method for robot spatial learning.
In Proceedings of the National Conference on Artificial Intelligence, pages 774–779, 1988.

[Kuipers and Levitt, 1988] B. Kuipers and T. Levitt. Navigation and mapping in large-scale space. AI
Magazine, 9(2):25–43, 1988.

[Kushmerick et al., 1995] N. Kushmerick, S. Hanks, and D. Weld. An algorithm for probabilistic planning.
Artificial Intelligence, 76(1–2):239–286, 1995.

[Landay, 1995] J. Landay. Interactive sketching for user interface design. In Proceedings of the CHI
(Computer-Human Interaction), pages 63–64, 1995.

[Latombe et al., 1991] J.-C. Latombe, A. Lazanas, and S. Shekhar. Robot motion planning with uncertainty
in control and sensing. Artificial Intelligence, 52:1–47, 1991.

[Latombe, 1991] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, 1991.

[LaValle and Hutchinson, 1994] S. LaValle and S. Hutchinson. An objective-based stochastic framework
for manipulation planning. In Proceedings of the International Conference on Robotics and Automation,
pages 1772–1779, 1994.

[Leonard et al., 1992] J. Leonard, H. Durrant-Whyte, and I. Cox. Dynamic map building for an autonomous
mobile robot. International Journal of Robotics Research, 11(4):286–298, 1992.

[Lin, 1992] L.-J. Lin. Self-improving reactive agents based on reinforcement learning,planning, and teaching.
Machine Learning, 8(3/4):293–321, 1992.

[Lin, 1993] L.-J. Lin. Reinforcement Learning for Robots using Neural Networks. PhD thesis, School of
Computer Science, Carnegie Mellon University, Pittsburgh (Pennsylvania), 1993. Available as Technical
Report CMU-CS-93-103.

[Littman and Boyan, 1993] M. Littman and J. Boyan. A distributed reinforcement learning scheme for
network routing. In Proceedings of the International Workshop on Applications of Neural Networks to
Telecommunications, pages 45–51, 1993.

[Littman et al., 1995a] M. Littman, A. Cassandra, and L. Kaelbling. Learning policies for partiallyobservable
environments: Scaling up. In Proceedings of the International Conference on Machine Learning, pages
362–370, 1995.

[Littman et al., 1995b] M. Littman, T. Dean, and L. Kaelbling. On the complexity of solving Markov
decision problems. In Proceedings of the Annual Conference on Uncertainty in Artificial Intelligence,
pages 394–402, 1995.

[Littman, 1996] M. Littman. Algorithms for Sequential Decision Making. PhD thesis, Department of
Computer Science, Brown University, Providence (Rhode Island), 1996. Available as Technical Report
CS-96-09.

[Loui, 1983] R. Loui. Optimal paths in graphs with stochastic or multidimensionalweights. Communications
of the ACM, 26:670–676, 1983.

[Lovejoy, 1991] W. Lovejoy. A survey of algorithmic methods for partially observed Markov decision
processes. Annals of Operations Research, 28(1):47–65, 1991.

[Lozano-Perez et al., 1984] T. Lozano-Perez, M. Mason, and R. Taylor. Automatic synthesis of fine-motion
strategies for robots. International Journal of Robotics Research, 3(1):3–24, 1984.

202 BIBLIOGRAPHY

[Lumelsky et al., 1990] V. Lumelsky, S. Mukhopadhyay, and K. Sun. Dynamic path planning in sensor-based
terrain acquisition. IEEE Transactions on Robotics and Automation, 6(4):462–472, 1990.

[Lumelsky, 1987] V. Lumelsky. Algorithmic and complexity issues of robot motion in an uncertain environ-
ment. Journal of Complexity, 3:146–182, 1987.

[Marcus et al., 1997] S. Marcus, E. Fernàndez-Gaucherand, D. Hernàndez-Hernàndez, S. Colaruppi, and
P. Fard. Risk-sensitive Markov decision processes. In C. Byrnes et. al., editor, Systems and Control in the
Twenty-First Century, pages 263–279. Birkhauser, 1997.

[Mataric, 1990] M. Mataric. Environment learning using a distributed representation. In Proceedings of the
International Conference on Robotics and Automation, pages 402–406, 1990.

[Matsubara and Ishida, 1994] S. Matsubara and T. Ishida. Real-time planning by interleaving real-time
search with subgoaling. In Proceedings of the International Conference on Artificial Intelligence Planning
Systems, pages 122–127, 1994.

[McCallum, 1995a] A. McCallum. Instance-based state identification for reinforcement learning. In Advances
in Neural Information Processing Systems, pages 377–384, 1995.

[McCallum, 1995b] R. McCallum. Instance-based utile distinctions for reinforcement learning with hidden
state. In Proceedings of the International Conference on Machine Learning, pages 387–395, 1995.

[Mine and Osaki, 1970] H. Mine and S. Osaki. Markovian Decision Processes. Elsevier, 1970.

[Monahan, 1982] G. Monahan. A survey of partially observable Markov decision processes: Theory, models,
and algorithms. Management Science, 28(1):1–16, 1982.

[Moore and Atkeson, 1993] A. Moore and C. Atkeson. Prioritized sweeping: Reinforcement learning with
less data and less time. Machine Learning, 13:103–130, 1993.

[Moore and Atkeson, 1995] A. Moore and C. Atkeson. The parti-game algorithm for variable resolution
reinforcement learning in multidimensional state-spaces. Machine Learning, 21(3):199–233, 1995.

[Morgenstern, 1987] L. Morgenstern. Knowledge preconditions for actions and plans. In Proceedings of the
International Joint Conference on Artificial Intelligence, pages 83–88, 1987.

[Motwani and Raghavan, 1995] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge Univer-
sity Press, 1995.

[Newell, 1965] A. Newell. Limitations of the current stock of ideas about problem solving. In A. Kent and
O. Tualbee, editors, Electronic Information Handling. Spartan, 1965.

[Newell, 1966] A. Newell. On the representations of problems. In Computer Science Research Reviews.
Carnegie Institute of Technology, 1966.

[Newman, 1953] J. Newman. Leonhard Euler and the Königsberg bridges. Scientific American, 188(6):66–
70, 1953.

[Nilsson, 1971] N. Nilsson. Problem-Solving Methods in Artificial Intelligence. McGraw-Hill, 1971.

[Nourbakhsh and Genesereth, 1996] I. Nourbakhsh and M. Genesereth. Assumptive planning and execution:
a simple, working robot architecture. Autonomous Robots Journal, 3(1):49–67, 1996.

[Nourbakhsh and Genesereth, 1997] I. Nourbakhsh and M. Genesereth. Teaching AI with robots. In D. Ko-
rtenkamp, R. Bonasso, and R. Murphy, editors, Artificial Intelligence Based Mobile Robotics: Case Studies
of Successful Robot Systems. MIT Press, 1997.

[Nourbakhsh et al., 1995] I. Nourbakhsh, R. Powers, and S. Birchfield. Dervish: An office-navigating robot.
AI Magazine, 16(2):53–60, 1995.

BIBLIOGRAPHY 203

[Nourbakhsh, 1996] I. Nourbakhsh. Interleaving Planning and Execution. PhD thesis, Department of
Computer Science, Stanford University, Stanford (California), 1996.

[Nourbakhsh, 1997] I. Nourbakhsh. Interleaving Planning and Execution for Autonomous Robots. Kluwer
Academic Publishers, 1997.

[Olawsky et al., 1993] D. Olawsky, K. Krebsbach, and M. Gini. An analysis of sensor-based task plan-
ning. Technical Report 93-94, Computer Science Department, University of Minnesota, Minneapolis
(Minnesota), 1993.

[Oommen et al., 1987] J. Oommen, S. Iyengar, N. Rao, and R. Kashyap. Robot navigation in unknown
terrains using learned visibility graphs. Part I: The disjoint convex obstacle case. IEEE Journal of Robotics
and Automation, 3:672–681, 1987.

[Papadimitriou and Tsitsiklis, 1987] C. Papadimitriou and J. Tsitsiklis. The complexity of Markov decision
processes. Mathematics of Operations Research, 12(3):441–450, 1987.

[Papadimitriou and Yannakakis, 1991] C. Papadimitriou and M. Yannakakis. Shortest paths without a map.
Theoretical Computer Science, 84:127–150, 1991.

[Parr and Russell, 1995] R. Parr and S. Russell. Approximating optimal policies for partially observable
stochastic domains. In Proceedings of the International Joint Conference on Artificial Intelligence, pages
1088–1094, 1995.

[Pearl, 1985] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-
Wesley, 1985.

[Pemberton and Korf, 1992] J. Pemberton and R. Korf. Incremental path planning on graphs with cycles. In
Proceedings of the International Conference on Artificial Intelligence Planning Systems, pages 179–188,
1992.

[Pemberton and Korf, 1994] J. Pemberton and R. Korf. Incremental search algorithms for real-time decision
making. In Proceedings of the International Conference on Artificial Intelligence Planning Systems, pages
140–145, 1994.

[Pemberton, 1995] J. Pemberton. Incremental Search Methods for Real-Time Decision Making. PhD thesis,
Computer Science Department, University of California at Los Angeles, Los Angeles (California), 1995.

[Peng and Williams, 1992] J. Peng and R. Williams. Efficient learning and planning within the DYNA
framework. In Proceedings of the International Conference on Simulation of Adaptive Behavior: From
Animals to Animats, pages 281–290, 1992.

[Pirzadeh and Snyder, 1990] A. Pirzadeh and W. Snyder. A unified solution to coverage and search in
explored and unexplored terrains using indirect control. In Proceedings of the International Conference
on Robotics and Automation, pages 2113–2119, 1990.

[Pratt, 1964] J. Pratt. Risk aversion in the small and in the large. Econometrica, 32(1-2):122–136, 1964.

[Rabiner, 1986] L. Rabiner. An introduction to hidden Markov models. IEEE ASSP Magazine, pages 4–16,
1 1986.

[Rao et al., 1991] N. Rao, N. Stoltzfus, and S. Iyengar. A “retraction” method for learned navigation in
unknown terrains for a circular robot. IEEE Transactions on Robotics and Automation, 7(5):699–707,
1991.

[Reinefeld, 1993] A. Reinefeld. Complete solution of the eight-puzzle and the benefit of node ordering in
IDA*. In Proceedings of the International Joint Conference on Artificial Intelligence, pages 248–253,
1993.

204 BIBLIOGRAPHY

[Rencken, 1995] W. Rencken. Autonomous sonar navigation in indoor, unknown, and unstructured environ-
ments. In V. Graefe, editor, Intelligent Robots and Systems. Elsevier, 1995.

[Ring, 1992] M. Ring. Two methods for hierarchy learning in reinforcement environments. In Proceedings
of the International Conference on Simulation of Adaptive Behavior, pages 148–155, 1992.

[Russell and Wefald, 1991] S. Russell and E. Wefald. Do the Right Thing – Studies in Limited Rationality.
MIT Press, 1991.

[Russell and Zilberstein, 1991] S. Russell and S. Zilberstein. Composing real-time systems. In Proceedings
of the International Joint Conference on Artificial Intelligence, pages 212–217, 1991.

[Sanborn and Hendler, 1988] J. Sanborn and J. Hendler. Near-term event projection through dynamic simu-
lation. In Proceedings of the SCS Multiconference on Artificial Intelligence and Simulation: The Diversity
of Applications, pages 194–198, 1988.

[Schapire, 1992] R. Schapire. The Design and Analysis of Efficient Learning Algorithms. MIT Press, 1992.

[Schoppers, 1987] M. Schoppers. Universal plans for reactive robots in unpredictable environments. In
Proceedings of the International Joint Conference on Artificial Intelligence, pages 1039–1046, 1987.

[Shakhar and Hamidzadeh, 1993] S. Shakhar and B. Hamidzadeh. Evaluation of real-time problem solvers
in dynamic environments. InternationalJournal on Artificial Intelligence Tools (Architectures, Languages,
Algorithms), 2(4):459–484, 1993.

[Shatkay and Kaelbling, 1997] H. Shatkay and L. Kaelbling. Learning topological maps with weak local
odometric information. In Proceedings of the International Joint Conference on Artificial Intelligence,
1997.

[Shekhar and Dutta, 1989] S. Shekhar and S. Dutta. Minimizing response times in real-time planning and
search. In Proceedings of the International Joint Conference on Artificial Intelligence, pages 238–242,
1989.

[Shekhar and Hamidzadeh, 1992] S. Shekhar and B. Hamidzadeh. Evaluation of real-time search algorithms
in dynamic worlds (summary of results). In Proceedings of the International Conference on Tools for
Artificial Intelligence, pages 6–13, 1992.

[Simmons and Koenig, 1995] R. Simmons and S. Koenig. Probabilistic robot navigation in partially observ-
able environments. In Proceedings of the International Joint Conference on Artificial Intelligence, pages
1080–1087, 1995.

[Simmons et al., 1995] R. Simmons, E. Krotkov, L. Chrisman, F. Cozman, R. Goodwin, M. Hebert, L. Ka-
tragadda, S. Koenig, G. Krishnaswamy, Y. Shinoda, W. Whittaker, and P. Klarer. Experience with rover
navigation for lunar-like terrains. In Proceedings of the International Conference on Intelligent Robots
and Systems, pages 441–446, 1995.

[Simmons et al., 1996] R. Simmons, S. Thrun, G. Armstrong, R. Goodwin, K. Haigh, S. Koenig, S. Ma-
hamud, D. Nikovski, and J. O’Sullivan. Amelia. In Proceedings of the National Conference on Artificial
Intelligence, page 1358, 1996.

[Simmons et al., 1997] R.G. Simmons, R. Goodwin, K. Haigh, S. Koenig, and J. O’Sullivan. A layered
architecture for office delivery robots. In Proceedings of the International Conference on Autonomous
Agents, 1997.

[Simmons, 1994a] R. Simmons. Becoming increasingly reliable. In Proceedings of the International Con-
ference on Artificial Intelligence Planning Systems, pages 152–157, 1994.

[Simmons, 1994b] R. Simmons. Structured control for autonomous robots. IEEE Transactions on Robotics
and Automation, 10(1):34–43, 1994.

BIBLIOGRAPHY 205

[Simmons, 1995] R. Simmons. The 1994 AAAI robotcompetition and exhibition. AI Magazine, 16(2):19–30,
1995.

[Simmons, 1996] R. Simmons. The curvature-velocity method for local obstacle avoidance. In Proceedings
of the International Conference on Robotics and Automation, pages 3375–3382, 1996.

[Singh, 1992] S. Singh. Reinforcement learning with a hierarchy of abstract models. In Proceedings of the
National Conference on Artificial Intelligence, pages 202–207, 1992.

[Smirnov and Veloso, 1997] Y. Smirnov and M. Veloso. Gensat: A navigational approach. In Proceedings
of the Portuguese Conference on Artificial Intelligence, 1997.

[Smirnov, 1997] Y. Smirnov. Improving Search Efficiency through Cross-Fertilization among Artificial In-
telligence, Theoretical Computer Science and Operations Research. PhD thesis, School of Computer
Science, Carnegie Mellon University, Pittsburgh (Pennsylvania), 1997. Available as Technical Report
CMU-CS-97-171.

[Smith and Cheeseman, 1986] R. Smith and P. Cheeseman. On the representation and estimation of spatial
uncertainty. The International Journal of Robotics Research, 5:56–68, 1986.

[Smith et al., 1990] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial relationships in
robotics. In I. Cox and G. Wilfong, editors, Autonomous Robot Vehicles, pages 167–193. Springer, 1990.

[Smith, 1988] D. Smith. A decision-theoretic approach to the control of planning search. Technical Report
LOGIC-87-11, Department of Computer Science, Stanford University, Stanford (California), 1988.

[Sondik, 1978] E. Sondik. The optimal control of partially observable Markov processes over the infinite
horizon: Discounted costs. Operations Research, 26(2):282–304, 1978.

[Stentz and Hebert, 1995] A. Stentz and M. Hebert. A complete navigation system for goal acquisition in
unknown environments. Autonomous Robots, 2(2):127–145, 1995.

[Stentz, 1995] A. Stentz. The focussed D* algorithm for real-time replanning. In Proceedings of the
International Joint Conference on Artificial Intelligence, pages 1652–1659, 1995.

[Stolcke and Omohundro, 1993] A. Stolcke and S. Omohundro. Hidden Markov model induction by Bayesian
model merging. In Advances in Neural Information Processing Systems, pages 11–18, 1993.

[Stone and Veloso, 1996] P. Stone and M. Veloso. User-guided interleaving of planning and execution. In
M. Ghallab and A. Milani, editors, New Directions in AI Planning: Proceedings of the European Workshop
on Planning, pages 103–112. IOS-Press, 1996.

[Sutherland, 1969] I. Sutherland. A method for solving arbitrary-wallmazes by computer. IEEE Transactions
on Computers, C–18(12):1092–1097, 1969.

[Sutton, 1990] R. Sutton. Integrated architectures for learning, planning, and reacting based on approximating
dynamic programming. In Proceedings of the International Conference on Machine Learning, pages 216–
224, 1990.

[Sutton, 1991] R. Sutton. DYNA, an integrated architecture for learning, planning, and reacting. SIGART
Bulletin, 2(4):160–163, 1991.

[Tash and Russell, 1994] J. Tash and S. Russell. Control strategies for a stochastic planner. In Proceedings
of the National Conference on Artificial Intelligence, pages 1079–1085, 1994.

[Tenenberg et al., 1992] J. Tenenberg, J. Karlsson, and S. Whitehead. Learning via task decomposition. In
Proceedings of the Conference on “From Animals to Animats”, pages 337–343, 1992.

206 BIBLIOGRAPHY

[Thrun, 1992a] S. Thrun. Efficient exploration in reinforcement learning. Technical Report CMU-CS-92-102,
School of Computer Science, Carnegie Mellon University, Pittsburgh (Pennsylvania), 1992.

[Thrun, 1992b] S. Thrun. The role of exploration in learning control with neural networks. In D. White
and D. Sofge, editors, Handbook of Intelligent Control: Neural, Fuzzy and Adaptive Approaches, pages
527–559. Van Nostrand Reinhold, 1992.

[Thrun, 1993] S. Thrun. Exploration and model building in mobile robot domains. In Proceedings of the
International Conference on Neural Networks, pages 175–80, 1993.

[Thrun, 1996] S. Thrun. A Bayesian approach to landmark discovery in mobile robot navigation. Technical
Report CMU-CS-96-122, School of Computer Science, Carnegie Mellon University, Pittsburgh (Pennsyl-
vania), 1996.

[Toulet, 1986] C. Toulet. An axiomatic model of unbounded utility functions. Mathematics of Operations
Research, 11(1):81–94, 1986.

[Veloso et al., 1995] M. Veloso, J. Carbonell, A. Perez, D. Borrajo, E. Fink, and J. Blythe. Integrating
planning and learning: The PRODIGY architecture. Journal of Theoretical and Experimental Artificial
Intelligence, 7(1):81–120, 1995.

[Viterbi, 1967] A. Viterbi. Error bounds for convolutional codes and an asymptotically optimum decoding
algorithm. IEEE Transactions on Information Theory, IT-13(2):260–269, 1967.

[von Neumann and Morgenstern, 1947] J. von Neumann and O. Morgenstern. Theory of games and economic
behavior. Princeton University Press, second edition, 1947.

[Wagner et al., 1997] I. Wagner, M. Lindenbaum, and A. Bruckstein. On-line graph searching by a smell-
oriented vertex process. In Proceedings of the AAAI Workshop on On-Line Search, 1997.

[Watkins and Dayan, 1992] C. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3-4):279–292, 1992.

[Watkins, 1989] C. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College, Cambridge
University, Cambridge (Great Britain), 1989.

[Watson and Buede, 1987] S. Watson and D. Buede. Decision Synthesis. Cambridge University Press, 1987.

[Wellman and Doyle, 1991] M. Wellman and J. Doyle. Preferential semantics for goals. In Proceedings of
the National Conference on Artificial Intelligence, pages 698–703, 1991.

[Wellman and Doyle, 1992] M. Wellman and J. Doyle. Modular utility representation for decision theoretic
planning. In Proceedings of the International Conference on Artificial Intelligence Planning Systems,
pages 236–242, 1992.

[Wellman et al., 1995] M. Wellman, M. Ford, and K. Larson. Path planning under time-dependent uncertainty.
In Proceedings of the Conference on Uncertainty in Artificial Intelligence, pages 523–539, 1995.

[Wellman, 1990] M. Wellman. Formulation of Tradeoffs in Planning under Uncertainty. Pitman, 1990.

[White, 1991] C. White. Partially observed Markov decision processes: A survey. Annals of Operations
Research, 1991.

[Whitehead, 1991a] S. Whitehead. A complexity analysis of cooperative mechanisms in reinforcement
learning. In Proceedings of the National Conference on Artificial Intelligence, pages 607–613, 1991.

[Whitehead, 1991b] S. Whitehead. A study of cooperative mechanisms for faster reinforcement learning.
Technical Report 365, Department of Computer Science, University of Rochester, Rochester (New York),
1991.

BIBLIOGRAPHY 207

[Whitehead, 1992] S. Whitehead. Reinforcement Learning for the Adaptive Control of Perception and Action.
PhD thesis, Department of Computer Science, University of Rochester, Rochester (New York), 1992.

[Whittle, 1990] P. Whittle. Risk-Sensitive Optimal Control. Wiley, 1990.

[Wiering and Schmidhuber, 1996] M. Wiering and J. Schmidhuber. Solving POMDPs with levin search and
EIRA. In Proceedings of the International Conference on Machine Learning, pages 534–542, 1996.

[Williamson and Hanks, 1994] M. Williamson and S. Hanks. Optimal planning with a goal-directed utility
model. In Proceedings of the International Conference on Artificial Intelligence Planning Systems, pages
176–181, 1994.

[Williamson and Hanks, 1996] M. Williamson and S. Hanks. Flaw selection strategies for value-directed
planning. In Proceedings of the International Conference on Artificial Intelligence Planning Systems,
1996.

[Yang et al., 1994] J. Yang, Y. Xu, and C. Chen. Hidden Markov model approach to skill learning and its
application to telerobotics. IEEE Transactions on Robotics and Automation, 10(5):621–631, 1994.

[Young, 1994] S. Young. The HTK hidden Markov model toolkit: Design and philosophy. Technical Report
CUED/F–INFENG/TR.152, Engineering Department, Cambridge University, Cambridge (Great Britain),
1994.

[Zelinsky, 1992] A. Zelinsky. A mobile robot exploration algorithm. IEEE Transactions on Robotics and
Automation, 8(6):707–717, 1992.

[Zilberstein, 1993] S. Zilberstein. Operational Rationality through Compilationof Anytime Algorithms. PhD
thesis, Computer Science Department, University of California at Berkeley, Berkeley (California), 1993.

*** THE END ***

There are bound to be mistakes in a document of this size.
I will maintain a list of errata. Just ask for it.

