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Abstract

We study pursuit-evasion problems where pursuers have to
clear a given graph of fast-moving evaders despite poor visi-
bility, for example, where police search a cave system to en-
sure that no terrorists are hiding in it. If the vertex connectiv-
ity of some part of the graph exceeds the number of pursuers,
the evaders can always avoid capture. We therefore focus
on graphs whose subgraphs can always be cut at a limited
number of vertices, that is, graphs of low treewidth. How-
ever, solving pursuit-evasion problems optimally is NP-hard
even for the simplest of these graph classes. In this paper,
we therefore develop a heuristic approach, called ESP, that
solves large pursuit-evasion problems on series-parallel (that
is, treewidth-two) graphs quickly and with small costs. It ex-
ploits their topology by performing dynamic programming on
their decomposition graphs. We apply ESP to different kinds
of series-parallel graphs and show that it scales up to larger
graphs than a strawman approach based on previous results
from the literature.

Introduction
Pursuit evasionis an important problem in artificial intelli-
gence (Gordon, Thrun, and Gerkey 2004), agents (Pellier
and Fiorino 2005), robotics (Simov, Slutzki, and LaValle
2000) and theoretical computer science (Parsons 1976).
Consider, for example, a scenario where police search a
known but twisty cave system to ensure that no terrorists
are hiding in it. The police are the pursuers, and the terror-
ists are the evaders. The cave system can be modeled as a
graph with edges that have lengths. The pursuers (which we
call robots) and evaders move on this graph. The evaders
can hide anywhere on the vertices or edges. They cannot
be seen by the robots and can move much faster than them.
They get caught only if they collide with a robot on a vertex
or edge. The robots move at unit speed. Their travel times
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or distances are thus equal to the lengths of their paths. A
solution of the pursuit-evasion problem is a movement strat-
egy for a given number of robots with given start vertices on
a given graph that enables them to clear the graph, that is,
either ensure that no evaders are present or catch them all.
An optimal solution minimizes the cost, such as the sum of
travel distances or the task-completion time, depending on
the desired cost objective. This is a common and very gen-
eral model of pursuit-evasion problems on graphs (Parsons
1976). For example, a solution remains a solution even if
the evaders can be seen by the robots over longer distances
or can move only slowly.

If the vertex connectivity of some part of the graph ex-
ceeds the number of robots, the evaders can always avoid
capture. For instance, suppose that the graph contains aK7

subgraph. Between any two vertices in that subgraph there
are six vertex-disjoint connecting paths, so five robots can
not catch an evader. We therefore focus on graphs whose
subgraphs can always be cut at a limited number of vertices,
that is, graphs of low treewidth. However, solving pursuit-
evasion problems optimally is NP-hard even for the simplest
of these graph classes (Megiddo et al. 1988; LaPaugh 1993;
Borie, Tovey, and Koenig 2009). Yet, large pursuit-evasion
problems need to be solved quickly to be of practical help. In
this paper, we therefore develop a heuristic approach, called
ESP, that solves large pursuit-Evasion problems on Series-
Parallel graphs quickly and with small costs, by exploiting
their topology in the form of their decomposition graphs. We
use series-parallel graphs because their topology is realistic
for some applications and their pursuit-evasion approaches
might be generalizable to even more realistic graph topolo-
gies, by generalizing them from the treewidth two of series-
parallel graphs to larger treewidths. Indeed, ESP is couched
in terms of the decomposition and intended to generalize to
graphs of larger treewidths.

In the remainder of the paper, we first define series-
parallel graphs, then give a conceptual overview of ESP and
finally describe ESP in detail, including how it assigns states
to terminal vertices and how it clears subgraphs based on
both the states of their terminal vertices and the number of
robots that start and end at them. We then apply ESP to dif-
ferent kinds of series-parallel graphs and show that it scales
up to larger graphs than does a strawman approach based on
previous results from the literature.
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Figure 1: Series and parallel compositions
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Figure 2: Series-parallel graph and its decomposition tree

Series-Parallel Graphs
Series-parallel graphs(Duffin 1965) are defined recursively
by starting with single edges asbase graphsand succes-
sively building larger graphs using series (s) and parallel (p)
compositions. Each composition joins two smaller graphs
by fusing at most two designated vertices calledterminal
vertices. The structure of a series-parallel graph can be rep-
resented by adecomposition tree, whose nodes correspond
to subgraphs. A decomposition tree for a series-parallel
graph can be constructed in linear time (Valdes, Tarjan, and
Lawler 1982). Figure 1 illustrates the series and parallel
compositions. The terminal vertices of each graph are dou-
bly circled. Figure 2 shows the decomposition tree of a
series-parallel graph that is constructed using several series
and parallel operations. As an example of pursuit evasion,
consider the following movement strategy for clearing this
graph with three robots that all start at vertex 1: Each of the
three robots departs vertex 1 along a different incident edge,
arriving at vertices 2, 3 and 6, respectively. The robot at ver-
tex 2 proceeds to vertex 3. Next, the two robots at vertex 3
both travel to vertex 4. Finally, one of the robots at vertex 4
proceeds to vertex 6, and the other robot travels from vertex

guard in out status

false true false keeping

false false true lookout

false true true needy

true any any safe

false false false unattached

Figure 3: Five possible statuses for terminal vertices

4 to vertex 5 and then to vertex 6.

Conceptual Overview of ESP
ESP is a recursive approach for clearing a graph with a given
decomposition tree that is given the distribution of the robots
at the terminal vertices of a graph before and after clear-
ing the graph. The movement strategy of ESP clears all
edges without giving evaders the opportunity to recontam-
inate edges that have already been cleared. ESP uses divide
and conquer to determine such a movement strategy since it
is NP-hard to optimize over all possible movement strategies
to find one that clears the graph with minimum cost. ESP de-
composes the graph into subgraphs and then computes and
combines movement strategies on the subgraphs to clear the
graph with small cost. This results in ESP optimizing over
a subset of possible movement strategies, namely those that
are consistentwith the given decomposition of a graphG
into subgraphsG1 and G2. Informally, by consistentwe
mean that either the robots first clear all of one subgraph and
then all of the other subgraph or split into two groups that
clear both subgraphs separately but simultaneously. For-
mally, we mean the following: 1) Each robot begins at a
terminal vertex ofG. 2) Each robot ends at a terminal vertex
of G. 3) Once a robot enters the interior of a subgraphGi no
robot inGi may leaveGi until Gi has been cleared. 4) No
robot may enter the interior of a subgraph after it has been
cleared (except for deployment purposes).

Terminal Status
We exploit the structure of the pursuit-evasion problem by
labeling each terminal vertex with a status that represents
the state of the vertex. LetG denote the subgraph of a
series-parallel graph corresponding to the node of the de-
composition tree that is currently being cleared. Lett1 and
t2 denote the terminal vertices ofG. Any portion of the en-
tire graph that is not inG is calledexterior area. Vertexti
might be incident upon a cleared exterior area, an uncleared
exterior area, both or neither. We use two boolean variables
in andout to denote whetherti is incident upon a cleared
or uncleared exterior area, respectively (because we must
keep evaders “in” to prevent their escape to cleared exterior
areas or “out” to prevent their entry from uncleared exteri-
ors areas). We use a third boolean variableguard to denote
whether a robot has been stationed atti. Different combina-
tions of these three variables yield five statuses, see Figure 3.

• Keeping: The term “keeping” derives from the phrase
“keep in G”. Sinceti is incident upon a cleared exte-
rior area, we must prevent evaders from leavingG via ti.



Hence, at least one robot must guardti and remain there
until all interior areas incident toti are cleared.

• Lookout: Sinceti is incident upon an uncleared exterior
area, we must prevent any potential evaders from entering
G via ti. Hence, at least one robot must guardti by the
time any interior area incident toti is cleared and remain
there untilG is cleared.

• Needy: ti is incident upon both cleared and uncleared ex-
terior areas but no robot guards it to prevent evaders from
leaving or enteringG via ti or from entering a cleared ex-
terior area from an uncleared one viati. Hence,ti must
be converted to “safe” status, described next.

• Safe: ti is guarded by a robot to prevent evaders from
leaving or enteringG via ti or from entering a cleared
exterior area from an uncleared one viati.

• Unattached: ti is a terminal vertex of the entire graph
and not incident upon any external areas yet. Hence, we
do not have to worry about evaders yet.ti continues to
have “unattached” status until the entire graph subdivides
via a parallel decomposition.

ESP
Figure 4 shows the pseudo code of ESP, and Fig-
ure 5 shows the pseudo code of its helper functions.
ESP(G, r1, r2, r

′

1, r
′

2, s1, s2) computes a cost sufficient for
clearingG for the given values:si is the status ofti and
ri is the number of robots atti at the time we start clear-
ing G. r′i is the number of robots atti at the time we finish
clearingG. We always require these values to be nonnega-
tive andr1 + r2 = r′1 + r′2. We do not count a robot that
guards a terminal vertex towards these values since such a
robot does not actively participate in the clearing (except
in maintaining the status of the terminal vertex). The cost
can be the sum of travel distances (“minimize distance”)
or the task-completion time (“minimize time”). ESP uses
the helper functionselectto select the cost depending on
the desired cost objective. A cost of infinity means that the
graph cannot be cleared. The cost must admit two opera-
tions. ESP(G1,. . . ) ⊕ ESP(G2, . . . ) is the cost of the se-
quential movement strategies “clearG1, then clearG2”, and
ESP(G1,. . . ) ⊙ ESP(G2,. . . ) is the cost of the simultaneous
movement strategies “clearG1 andG2 separately but simul-
taneously.” For example, both⊕ and⊙ are+ for minimiz-
ing distance and⊕ is + and⊙ is max for minimizing time.
ESP is initially called asESP(G, r1, r2, r

′

1, r
′

2, unattached,
unattached), whereG is the entire graph. If one does not
care about the distribution of the robots at the terminal ver-
tices before or after clearing the graph, then one can mini-
mize the cost over all such distributions, which is what we
do in the experiments.

For ease of presentation, functionESP includes several
nondeterministic choices of values. A deterministic imple-
mentation should consider all valid combinations for the
nondeterministic choices of values. All nondeterministi-
cally chosen numbers must be non-negative integers. Func-
tion ESPis expressed recursively (top-down), following the
structure of the decomposition tree for the given graph.

ESP(G, r1, r2, r
′

1, r
′

2, s1, s2) =
if s1 = needy then return ESP(G, r1 − 1, r2, r

′

1 − 1, r′2, safe, s2)
if s2 = needy then return ESP(G, r1, r2 − 1, r′1, r

′

2 − 1, s1, safe)
if infeasible(r1, r2, r

′

1, r
′

2, s1, s2) then
return∞

if G := e then // base graph
choose minimum of

case 1: // clear with one team
choosex1, x2, y1, y2 such thatr1 + r2 = x1 + x2 = y1 + y2

if NOT infeasible(x1, x2, y1, y2, s1, s2) AND
|x1 − y1| ≥ width(e) then

return deploy(G, r1 − x1) ⊕ deploy(G, x1 − y1) ⊕ deploy(G, y1 − r′1)
case 2: // clear with two teams

choosex such thatx := width(e), r1 − r′1 + width(e)
y := r′1 − r1 + x
if x ≤ r1 AND y ≤ r2 AND x ≥ 0 AND y ≥ 0 AND

NOT (s1 = keeping ANDr1 − x ≤ 0 AND x < width(e)) AND
NOT (s2 = keeping ANDr2 − y ≤ 0 AND y < width(e)) AND
NOT (s1 = lookout AND r1 − x ≤ 0 AND y < width(e)) AND
NOT (s2 = lookout AND r2 − y ≤ 0 AND x < width(e)) then
return deploy(G, x) ⊙ deploy(G,−y)

else ifG := p(G1, G2) then // parallel composition
choose minimum of

case 1: // clearG1 then clearG2

for i := 1, 2 do
for j := 1, 2 do

sij := si

for i := 1, 2 do
if si1 = unattached thensi1 = lookout
else ifsi1 = keeping thensi1 := needy
if si2 = unattached thensi2 := keeping
else ifsi2 = lookout thensi2 := needy

chooser′′1 , r′′2 such thatr1 + r2 = r′′1 + r′′2
return ESP(G1, r1, r2, r

′′

1 , r′′2 , s11, s21) ⊕ ESP(G2, r
′′

1 , r′′2 , r′1, r
′

2, s12, s22)
case 2: // clearG2 then clearG1

// symmetric to case 1
case 3: // clearG1 andG2 simultaneously

for i := 1, 2 do
if si = safe thenpi := 0
else choosepi := 0 or pi := 1
if pi = 1 thensi := safe
else ifsi = unattached then

choosesi := keeping orsi := lookout
chooser11, r21, r

′

11, r
′

21, r12, r22, r
′

12, r
′

22 such that
r11 + r21 = r′11 + r′21, r12 + r22 = r′12 + r′22,
r11 + r12 = r1 − p1, r′11 + r′12 = r′1 − p1,
r21 + r22 = r2 − p2 andr′21 + r′22 = r′2 − p2

return ESP(G1, r11, r21, r
′

11, r
′

21, s1, s2) ⊙ ESP(G2, r12, r22, r
′

12, r
′

22, s1, s2)
else ifG = s(G1, G2) then // series composition

choosex1, x2, x3 such thatr1 + r2 = x1 + x2 + x3

if NOT infeasible(x1, x2, y1, y2, s1, s2)
choose minimum of

case 1: // clearG1 then clearG2

x′

3 := x3 + x1 − r′1
return series-deploy(G, r1, r2, x1, x2, x3) ⊕ ESP(G1, x1, x3, r

′

1, x
′

3, s1, lookout)
⊕ ESP(G2, x

′

3, x2, 0, r′2, keeping,s2)
case 2: // clearG2 then clearG1

// symmetric to case 1
case 3: // clearG1 andG2 simultaneously

choosep3 := 0 or p3 := 1
if p3 = 1 thens3 := safe
else chooses3 := keeping ors3 := lookout
choosex′

1 ≤ r′1 andx′

2 ≤ r′2
choosex31, x32 such thatx3 = p3 + x31 + x32

x′

31 := x31 + x1 − x′

1

x′

32 := x32 + x2 − x′

2

return series-deploy(G, r1, r2, x1, x2, x3) ⊕ [ESP(G1, x1, x31, x
′

1, x
′

31, s1, s3)
⊙ ESP(G2, x32, x2, x

′

32, x
′

2, s3, s2)] ⊕ deploy(G, r′1 − x′

1, r
′

2 − x′

2)

Figure 4: ESP

It should be implemented via dynamic programming (ei-
ther bottom-up or top-down), using a dynamic program-
ming table to store computed values and thereby avoid-
ing repeated calculations of the values. Conventional dy-
namic programming techniques can then use the informa-
tion stored in the dynamic programming table to build the
movement strategy for clearing the graph. Helper func-
tion dist should also be implemented via dynamic program-
ming. We now explain the steps of ESP when called as
ESP(G, r1, r2, r

′

1, r
′

2, s1, s2), closely following the pseudo
code in Figure 4.

Preparatory Steps

If any terminal vertexti has “needy” status, then a robot
needs to guard it since it is incident upon both cleared and
uncleared exterior areas. Therefore, ESP changes the status



infeasible(r1, r2, r
′

1, r
′

2, s1, s2)
for i := 1, 2 do

if (ri < 0) or (r′i < 0) then return true
else if (si = keeping) andri = 0 then return true
else if (si = lookout) andr′i = 0 then return true
else return false

deploy(G,n) = Sendn robots fromt1 to t2
if G = e then // base graph

return[n]
else ifG = p(G1, G2) then // parallel composition

if dist(G1) < dist(G2) then return deploy(G1, n)
else return deploy(G2, n)

else ifG = s(G1, G2) then // series composition
return deploy(G1, n) ⊕ deploy(G2, n)

series-deploy(G, r1, r2, x1, x2, x3) =
if x1 > r1 then

return deploy(G, r1 − x1) ⊙ deploy(G2,−x3)
else ifx2 > r2 then return deploy(G, x2 − r2)) ⊙ deploy(G1, x3)
else return deploy(G1, r1 − x1)) ⊙ deploy(G2,−x3)

dist(G) =
if G = e then // base graph

returnlength(e)
else ifG = p(G1, G2) then // parallel composition

returnmin(dist(G1), dist(G2))
else ifG = s(G1, G2) then // series composition

returndist(G1) + dist(G2)

[n] = Sendn robots fromt1 to t2 (send−n robots fromt2 to t1 if negative)
a ⊕ b = a followed byb sequentially
a ⊙ b = a andb simultaneously

Figure 5: Helper functions for ESP

of ti to “safe” and decrements the numberri andr′i of robots
at ti before and after, respectively, clearing the graph, which
can result in a negative number of robots, indicating that the
graph cannot be cleared. ESP returns a cost of infinity if
the combination of parameter values indicates immediately
that the graph cannot be cleared. Helper functioninfeasible
returns true iff any of the following conditions is violated:
the number of robots at each terminal vertex must be non-
negative; a terminal vertex with “keeping” status must start
with at least one robot; a terminal vertex with “lookout” sta-
tus must finish with at least one robot; and the number of
robots must be positive. We now separately consider what
ESP does if the graph is a base graph and if it is formed by
a parallel or series composition.

Base Graph
SupposeG consists of one edge(t1, t2) of lengthL.

• If r1 > r′1, ESP sendsr1 − r′1 robots fromt1 to t2.

• If r1 < r′1, ESP sendsr′1 − r1 robots fromt2 to t1.

• If r1 = r′1 (and hence alsor2 = r′2):

– If r2 = 0, ESP sends one robot fromt1 to t2 and return.
– If r1 = 0, ESP sends one robot fromt2 to t1 and return.
– If r1 > 0 andr2 > 0, ESP sends one robot fromt1

towardst2 and one robot fromt2 towardst1. When the
two robots meet, each robot returns to where it started.

Parallel Composition
SupposeG is the parallel composition of subgraphsG1 and
G2. ESP then returns the smallest cost of three subcases,
namely “clearG1, then clearG2,” “clear G2, then clearG1”
and “clearG1 andG2 separately but simultaneously.”

Clear G1, then clearG2 The terminal vertices ofG pass
on their status to the corresponding terminal vertices of both
subgraphs. ESP then changes each terminal vertex with

“unattached” status to “lookout” status and each one with
“keeping” status to “needy” status when clearingG1 (result-
ing in statussi1 of ti) since it is incident upon an uncleared
exterior area, namelyG2. Similarly, ESP changes each ter-
minal vertex ofG2 with “unattached” status to “keeping”
status and each one with “lookout” status to “needy” sta-
tus when clearingG2 (resulting in statussi2 of ti) since it
is then incident upon a cleared exterior area, namelyG1.
ESP then nondeterministically chooses the numberr′′i of
robots at each terminal vertexti of G after clearingG1 but
before clearingG2 such thatr1 + r2 = r′′1 + r′′2 , result-
ing in two subproblemsESP(G1, r1, r2, r

′′

1 , r′′2 , s11, s21) and
ESP(G2, r

′′

1 , r′′2 , r′1, r
′

2, s12, s22), that can be solved recur-
sively. ESP combines the costs of clearing both subgraphs
with the⊕ operator, which is used for combining the costs
of sequential movement strategies.

Clear G2, then clearG1 This subcase is symmetric to the
previous subcase, exchanging the roles ofG1 andG2.

Clear G1 and G2 separately but simultaneously ESP
first nondeterministically chooses for each terminal vertex
ti whether to change it to “safe” status (in which case it
changes the value ofpi from zero to one), except if it already
has “safe” status (in which case guarding it again would be
wasteful) or “needy” status (in which case guarding it is re-
quired). If it afterwards still has “unattached” status, ESP
nondeterministically chooses to assign it either “keeping” or
“lookout” status. The terminal vertices ofG pass on their
updated status to the corresponding terminal vertices of both
subgraphs. ESP then nondeterministically chooses the num-
ber of robotsrij andr′ij at ti before and after, respectively,
clearingGj among those that clearGj such thatr1j + r2j =
r′1j +r′2j , ri1+ri2 = ri−pi andr′i1+r′i2 = r′i−pi, resulting
in two subproblemsESP(G1, r11, r21, r

′

11, r
′

21, s1, s2) and
ESP(G2, r12, r22, r

′

12, r
′

22, s1, s2), that can be solved recur-
sively. ESP combines the costs of clearing both subgraphs
with the⊙ operator, which is used for combining the costs
of simultaneous movement strategies.

Series Composition

SupposeG is the series composition of subgraphsG1 and
G2. Different from a parallel composition, there is now
a middle vertext3 whose number of robots is zero before
clearingG. Let s3 denote the status oft3. ESP can move
robots tot3 to aid in clearingG. It nondeterministically de-
ploys the robots from the terminal verticest1 andt2 to t1,
t2 andt3 so that these vertices receivex1, x2 andx3 robots,
respectively. Thus,r1 + r2 = x1 + x2 + x3. The helper
function deploy(G, r1, r2, x1, x2, x3) computes the cost of
this deployment step. ESP then returns the smallest cost of
three subcases, namely “clearG1, then clearG2,” “clear G2,
then clearG1” and “clearG1 andG2 separately but simul-
taneously.”

Clear G1, then clear G2 The terminal vertices ofG
pass on their status to the corresponding terminal vertices
of both subgraphs. ESP assignst3 “lookout” status when
clearing G1 since it is incident upon an uncleared exte-
rior area, namelyG2. Similarly, ESP assigns it “keeping”



status when clearingG2 since it is then incident upon a
cleared exterior area. The number of robotsx′

3 at t3 af-
ter clearingG1 but before clearingG2 is determined by
the previous choices to bex′

3 = x3 + x1 − r′1, resulting
in two subproblemsESP(G1, x1, x3, r

′

1, x
′

3, s1, lookout) and
ESP(G2, x

′

3, x2, 0, r′2, keeping,s2), that can be solved recur-
sively. ESP combines the costs of the deployment step and
the costs of clearing both subgraphs with the⊕ operator,
which is used for combining the costs of sequential move-
ment strategies.

Clear G2, then clearG1 This subcase is symmetric to the
previous subcase, exchanging the roles ofG1 andG2.

Clear G1 andG2 separately but simultaneously The ter-
minal vertices ofG pass on their status to the corresponding
terminal vertices of both subgraphs. ESP nondeterministi-
cally chooses fort3 whether to assign it “safe” status (in
which case it changes the value ofp3 from zero to one).
If it afterwards does not have “safe” status, ESP nondeter-
ministically assigns it either “keeping” or “lookout” status.
ESP then nondeterministically chooses the number of robots
x′

i at ti after clearingGi, restricted tox′

i ≤ r′i to sim-
plify the cleanup step described below, and nondeterminis-
tically partitions the robots att3 into x31 robots that help
to clearG1 and x32 robots that help to clearG2. Thus,
x3 = p3 + x31 + x32. The number of robotsx′

3i at t3
after clearingGi among those that clearGi is determined
by the previous choices to bex′

3i = x3i + xi − x′

i, re-
sulting in two subproblemsESP(G1, x1, x31, x

′

1, x
′

31, s1, s3)
andESP(G2, x32, x2, x

′

32, x
′

2, s3, s2), that can be solved re-
cursively. Finally, ESP deploysr′i − x′

i robots fromt3 to ti
to make the number of robots atti equal tor′i. The helper
functioncleanup(G, r′1 − x′

1, r
′

2 − x′

2) computes the cost of
this cleanup step. ESP combines the costs of clearing both
subgraphs with the⊙ operator, which is used for combining
the costs of simultaneous movement strategies. It then com-
bines the resulting costs with the costs of the deployment
step and the cleanup step with the⊕ operator, which is used
for combining the costs of sequential movement strategies.

Runtime of ESP

ESP, like many algorithms on series-parallel graphs (Borie,
Parker, and Tovey 1992), runs in time linear in the size of
the graph. In particular, the implementation in Figure 4 runs
in timeO(nr8) when graphG hasn edges andr = r1 + r2

is the number of robots. Its most costly part is to clear the
subgraphs of a series composition separately but simultane-
ously, so we justify the runtime bound for this case. There
areO(n) nodes in the decomposition tree. For each node,
there areO(r) possible values forr1, r2 andr′1 each, which
then force the value ofr′2. There are a constant number of
values fors1 ands2 each. There areO(r) choices forx1 and
x2 each, which force the value ofx3. There are two choices
for p3. There areO(r) choices forx31, which then forces the
value ofx32. Finally, there areO(r) choices forx′

1 andx′

2

each. Thus, there areO(nr8) combinations. Helper function
dist runs in timeO(n) if it is implemented via dynamic pro-
gramming because each traversal doesO(1) work per node

t1 t2

t1

t2

Figure 6: Ladder graphL4 (l) and BTL graphB4 (r)
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Figure 7: Runtime on ladder graphs (l) and BTL graphs (r)

of the decomposition tree. However, by more careful anal-
ysis, ESP runs in time onlyO(nr6). The key observation
is that the subexpressions can be stored in a dynamic pro-
gramming table to avoid recomputations. For eachG, there
are O(r3) distinct calls to ESP on each subgraphG1 and
G2, which yieldsO(r6) calls to operator⊙, of which only
theO(r3) minimum values for each combination ofx1, x′

1,
x2 andx′

2 must be remembered. These results can then be
combined similarly with the results from helper functions
deployandcleanup, such that onlyO(r6) calculations are
performed at each of theO(n) nodes of the decomposition
tree.

Experimental Results
We do not know of any publicly available implementation of
pursuit-evasion approaches on graphs. We therefore created
a strawman approach to compare against ESP. The straw-
man approach determines the minimum number of robots
required to clear arbitrary graphs but does not determine
movement strategies, neither for minimizing distance nor
time. It is based on the idea that “recontamination does not
help to clear a graph” (LaPaugh 1993), meaning that, if there
is a movement strategy that clears a graph, then there must
also be a movement strategy that clears a graph such that
no cleared vertex becomes recontaminated. We then im-
proved the runtime of the strawman approach by noticing
that, if a robot is at a vertex that has only one uncleared ad-
jacent vertex, it might as well move to that vertex right away
(“forced move”) and thereby reduce the branching factor of
the search.

The strawman approach assumes that the evaders hide
only on the vertices (node searching), while ESP assumes
that the evaders hide on the vertices or edges (edge search-
ing). However, it is simple to reduce edge searching on
graphs to node searching (Bienstock and Seymour 1991).
The reduction takes a series-parallel graphG as input and
then constructs the dual graphG′ by creating one vertex in
G′ for each edge inG. Two vertices inG′ are adjacent iff the
corresponding edges share a common vertex inG. The dual
graphG′ is then used as input to the strawman approach.



Ladder Graphs
The first class of graphs we used in our experiments are lad-
der graphs with edges of length one, see Figure 6 (l). These
graphs resemble a physical ladder in that there are two sides
connected by rungs. We useLi to denote the ladder graph
with i rungs. We can construct them as series-parallel graphs
with the following recurrence, wheree refers to a single
edge:

L1 = e

Li+1 = p(e, s(e, s(Li, e)))

The number of vertices and edges of the graphsLi are linear
in the number of iterationsi since each iteration increases
the number of edges by 3 and the number of vertices by 2.
At most 3 robots are required to clear any graph.

We compare ESP and the strawman approach on ladder
graphs with all robots starting att1. At most 3 robots are
required to clear ladder graphs of any size. Both ESP and
the strawman approach correctly minimized the number of
robots required to clear ladder graphs. For ladder graphsLi

for i > 2, ESP clearedLi with distancedESP ≤ 7i − 11,
which is about a factor of7/3 worse than the lower bound
dOPT ≥ 3i − 2 given by the number of edges. ESP cleared
Li in time tESP = 4i − 6, which is about a factor of 2
worse than the lower boundtOPT ≥ 2i given by twice the
distance from the start to the farthest vertex. The runtimes
of ESP and the strawman approach are compared in Fig-
ure 7 (l). Ladder graphs are well suited for the strawman
approach since almost all moves are forced. Yet, the straw-
man approach could solve graphs only up toL68 within 10
seconds whereas ESP could solve graphs up toL295 (where
it hit memory limitations).

BTL Graphs
The second class of graphs we used in our experiments are
what we call BTL (binary tree-like) graphs with edges of
length one, see Figure 6 (r). These graphs are complete bi-
nary trees with one edge added from the root to the first ter-
minal vertex and two parallel edges added from each leaf
vertex to the second terminal vertex. We useBi to denote
the BTL graph constructed from a complete binary tree of
depthi− 2. We can construct them as series-parallel graphs
with the following recurrence:

B1 = e

Bi+1 = s(e, p(Bi, Bi))

The number of vertices and edges of the graphsBi are expo-
nential in the number of iterationsi since, if the number of
vertices in graphBi is Vi, thenVi+1 = 2×Vi −1 and, if the
number of edges in graphBi is Ei, thenEi+1 = 2×Ei +1.
The number of robots required to clearBi is i.

Both ESP and the strawman approach correctly mini-
mized the number of robots required to clear BTL graphs.
The runtimes of ESP and the strawman approach are com-
pared in Figure 7 (r). Due to the exponential growth of the

graphs, the strawman approach could solve graphs only up
to B4 within 10 seconds but ESP could solve graphs up to
B10. Note that the runtime scale in Figure 7 (r) is loga-
rithmic, implying that the runtime of ESP is approximately
O(n) but the runtime of the strawman approach is approx-
imately O(n4/3), wheren is the number of vertices of the
graphs.

Conclusion
We presented ESP, a heuristic approach to pursuit and eva-
sion on series parallel graphs, and demonstrated that it scales
up to larger graphs than a strawman approach based on pre-
vious results from the literature. ESP has the advantage that
it allows for edges of different lengths and for different cost
objectives, such as minimizing the sum of travel distances or
the task-completion time. It is future work to investigate im-
proved deployment steps and to extend ESP to more general
graph classes.

References
Bienstock, D., and Seymour, P. 1991. Monotonicity in
graph searching.Journal of Algorithms12(2):239–245.
Borie, R.; Parker, R.; and Tovey, C. 1992. Automatic gen-
eration of linear-time algorithms from predicate calculus
descriptions of problems on recursively constructed graph
families. Algorithmica7(1–6):555–581.
Borie, R.; Tovey, C.; and Koenig, S. 2009. Algorithms and
complexity results for pursuit-evasion problems. InPro-
ceedings of the International Joint Conference on Artificial
Intelligence.
Duffin, R. 1965. Topology of series-parallel net-
works.Journal of Mathematical Analysis and Applications
10:303–318.
Gordon, G.; Thrun, S.; and Gerkey, B. 2004. Visibility-
based pursuit-evasion with limited field of view. InPro-
ceedings of the AAAI Conference on Artificial Intelligence,
20–27.
LaPaugh, A. 1993. Recontamination does not help to
search a graph.Journal of the ACM40(2):224–245.
Megiddo, N.; Hakimi, S.; Garey, M.; Johnson, D.; and Pa-
padimitriou, C. 1988. The complexity of searching a graph.
Journal of the ACM35(1):18–44.
Parsons, T. 1976. Pursuit-evasion in a graph. InTheory
and Applications of Graphs. Springer Verlag. 426–441.
Pellier, D., and Fiorino, H. 2005. Coordinated explo-
ration of unknown labyrinthine environments applied to the
pursuit evasion problem.Proceedings of the International
Joint Conference on Autonomous Agents and Multiagent
Systems895–902.
Simov, B.; Slutzki, G.; and LaValle, S. 2000. Pursuit-
evasion using beam detection. InProceedings of the
IEEE International Conference on Robotics and Automa-
tion, 1657–1662.
Valdes, J.; Tarjan, R.; and Lawler, E. 1982. The recognition
of series parallel digraphs.SIAM Journal on Computing
11(2):298–313.


