
Speeding up the
Convergence of Real-Time Search:

Empirical Setup and Proofs

David Furcy and Sven Koenig
{dfurcy,skoenig}@cc.gatech.edu

March 2000
GIT-COGSCI-2000/01

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332-0280



Abstract

This technical report contains the formal proofs for all of our theoretical results, as well as a description
of our experimental setup for all of the results given in our AAAI-2000 paper entitled Speeding up the
Convergence of Real-Time Search. In that paper, we propose to speed up the convergence of real-time
search methods such as LRTA*. We show that LRTA* often converges significantly faster when it breaks
ties towards successors with smallest f-values (à la A*) and even faster when it moves to successors with
smallest f-values instead of only breaking ties in favor of them. FALCONS, our novel real-time search
method, uses a sophisticated implementation of this successor-selection rule and thus selects successors
very differently from LRTA*, which always minimizes the estimated cost to go. Our approach opens up
new avenues of research for the design of novel successor-selection rules that speed up the convergence
of both real-time search methods and reinforcement-learning methods. Indeed, our AAAI-2000 paper
presents experiments in which FALCONS finds a shortest path up to sixty percent faster than LRTA*
in terms of action executions and up to seventy percent faster in terms of trials. In this report, we first
describe our experimental setup and then prove that FALCONS terminates and converges to a shortest
path.

1



1. s := sstart.

2. s′ := arg mins′′∈succ(s) f(s′′),
where f(s′′) := max(g(s′′) + h(s′′), h(sstart)). [F-CALC]
Break ties in favor of a successor s′ with the smallest value of c(s, s′) + h(s′). [TB]
Break remaining ties arbitrarily (but systematically1). [TB2]

3. g(s) := if s = sstart then g(s)
else max(g(s),

mins′′∈pred(s)(g(s′′) + c(s′′, s)),
maxs′′∈succ(s)(g(s′′)− c(s, s′′))).

[G-UPDATE]

h(s) := if s = sgoal then h(s)
else max(h(s),

mins′′∈succ(s)(c(s, s′′) + h(s′′)),
maxs′′∈pred(s)(h(s′′) − c(s′′, s))).

[H-UPDATE]

4. If s = sgoal, then stop successfully.

5. s := s′.

6. Go to 2.
Figure 1: FALCONS

1 Introduction
This technical report contains two parts. In the first one, we describe our experimental setup used to

obtain all of the results listed in (Furcy & Koenig 2000), as well as the domains and heuristics we tested
FALCONS on. In the second part, we provide formal proofs for all of the theoretical results stated in the
paper.

Let us briefly describe our new algorithm. FALCONS (see Figure 1), like LRTA*, is a real-time search
algorithm that maintains heuristic values for all visited states and interleaves planning (via local searches)
and plan execution. One iteration of FALCONS (Steps 2 to 6) consists of selecting the best successor state
based on the heuristic values (Step 2), updating the heuristic values of the current state (Step 3), and moving
to the selected successor (Step 5). These iterations are executed until FALCONS reaches the goal state. The
last iteration ends at Step 4.

2 Experimental Setup

2.1 Domains and Heuristics

This section describes the domains and heuristic values we used for the experiments reported in (Furcy
& Koenig 2000). In addition to the following domain-dependent heuristic values, we also experimented
in all domains with the constant function Zero (Z). Note that all of our domains share the following two
properties: (1) they are undirected, which means that for every action leading from state s to state s′ with
cost c, there is a reverse action from s′ to s with cost c, and (2) they have uniform costs, which means that
all action costs are one.

The 8-Puzzle domain (Korf 1990) consists of eight tiles (numbered one through eight) in a 3x3 grid,
leaving one position blank. A move is performed by sliding one of the tiles adjacent to the blank into
the blank position. Since tiles are not allowed to move diagonally, the number of possible moves in each
configuration is at most four: up, right, down or left. The goal state is the configuration with the blank
in the center and the tiles positioned in increasing order, starting at the upper left corner and proceeding
in a clockwise fashion. We used 1000 randomly selected start states among those from which the goal is
reachable. In this domain, we experimented with the Manhattan distance (the sum, for all tiles, of their
horizontal and vertical distances from their respective goal positions), abbreviated M, and the “Tiles Out
Of Order” heuristic (the number of misplaced tiles), abbreviated T.

1Systematic tie-breaking is defined in Section 2.2.

2



For the Gridworld domain (Ishida 1997), we used a set of 20x20 grids in which 35 percent of the 202

grid cells were randomly selected as untraversable obstacles. For each grid, the start and goal positions were
chosen randomly, while making sure that the goal was reachable from the start. Since we allowed moves
to any of the traversable neighboring locations (including diagonal moves), we modified the Manhattan
distance heuristic to be the sum, over all tiles, of the maximum of the tile’s horizontal and vertical distances
to its goal position. This heuristic was abbreviated N.

In the Permute-7 domain (Holte et al. 1994), a state is a permutation of the integers 1 through 7.
Therefore, the state space has 7! = 5040 states. There are 6 operators. Each operator Opk (k = 2, . . . , 7)
is applicable in all states and reverses the order of the first k integers in the state it is executed in. For
example, the execution of Op4 in state 7654321 leads to state 4567321. The goal state is 1234567. The
adjacency heuristic (abbreviated A) computes for each state s the number of pairs of adjacent digits in the
goal state that are not adjacent in s. For instance, A(7321645) = 3 since exactly three pairs are adjacent in
the goal but not in s, namely (3, 4), (5, 6) and (6, 7). We experimented with all 5040 states as start state.

We also used a version of the Tower of Hanoi domain (Holte et al. 1994) with 7 disks and 3
pegs. In the goal state, all disks are on the same peg, say peg number three. We experimented with 1000
randomly chosen start states. The D heuristic simply counts the number of disks that are not on the goal peg.

The Words domain (Holte et al. 1996) is a connected graph whose 4493 nodes are 5-letter English
words that are pairwise connected if they differ in exactly one letter. The goal state is the word “goals”.
We experimented with 1000 randomly chosen start states. The L heuristic computes the number of po-
sitions (between 1 and 5) for which the letter is different from the letter at the same position in the goal state.

In the Arrow domain (Korf 1980), a state is an ordered list of 12 arrows. Each arrow can either point
up or down. There are 11 operators that can each invert a pair of adjacent arrows. The goal state has all
arrows pointing up. We experimented with 1000 randomly chosen start states among those from which the
goal is reachable. The F heuristic returns the largest integer that is not larger than the number of arrows
that need to be flipped divided by two.

2.2 Setup

A trial is a sequence of iterations during which FALCONS starts in sstart and reaches sgoal for the first
time. Theorem 1 proves that each trial of FALCONS is guaranteed to terminate (see Section 3.4). At
the end of each trial, FALCONS is reset into sstart and a new trial is executed using the heuristic values
resulting from the previous trial. A sequence of trials from the first one, that uses the initial heuristic
values, to the first one during which no heuristic value is modified, is called a run. Lemma 7 proves that
each run of FALCONS is guaranteed to converge, i.e. to always follow the same path from some time on
(see Section 3.4). Furthermore, Theorem 3 proves that, at the end of each run, FALCONS has converged to
a shortest path (see Section 3.4).

In order for FALCONS to converge to a unique path, the secondary tie-breaking criterion (TB2) must be
systematic. A tie-breaking criterion is systematic if, whenever a tie exists among a given set of successors
of the current state, the same successor state is chosen as next state. We enforced systematicity of TB2 by
(1) choosing an arbitrary ordering for the successors of each state and (2) breaking remaining ties (after
TB had been applied) according to that ordering. The ordering was selected randomly at the beginning of
a run and did not change during the run.

Since our main evaluation criterion is the travel cost to convergence, and since all actions have cost
one, we are mainly interested in the number of actions to convergence or, in other words, the duration of
a run. An experiment refers to a sequence of n runs of an algorithm in one domain with a given set of
heuristic values. To attain statistical significance, we averaged our results over n = 1000 runs, except in the
Permute-7 domain for which each experiment consisted of 7! = 5040 runs, one for each possible start state.
In general, the n runs of an experiment only differed from the other runs in the same experiment in two
respects: (1) the start state, and (2) the random ordering selected at the beginning of each run to be used
for systematic tie-breaking in TB2. In addition, in the Gridworld domain, each run used a different grid
and goal state.

3



There are two advantages to using systematic tie-breaking. First, it ensures that FALCONS will converge
to a unique path. If tie-breaking is not systematic, then FALCONS may not converge to a unique path.
Instead, it may converge to a set of shortest paths and randomly switch between them after the heuristic
values have converged, just like LRTA* in (Korf 1990). Systematic tie-breaking thus facilitated the detection
of convergence, which happens when no heuristic value changes in the course of a run.

Second, systematic tie-breaking allowed us to carefully control our experimental conditions. In particular,
we compared pairs of experiments that only differed in the algorithm tested (for example, FALCONS versus
LRTA*). We only compared pairs of experiments in the same domain and with the same heuristic values.
In addition, we used the same (random) ordering of successor states for systematic tie-breaking in all pairs
of runs to be compared. In other words, when comparing algorithm 1 with algorithm 2, run 1 of both
experiments used the same ordering, run 2 of both experiments used the same ordering (but different from
that of run 1) etc. . . Furthermore, each pair of corresponding runs used the same start state (and the same
grid and goal state in the Gridworld domain). Now, assume that we wanted to compare the travel cost to
convergence of FALCONS in a particular domain and with a particular set of heuristic values (experiment
1) with that of LRTA* in the same domain and with the same set of heuristic values (experiment 2). Our
experimental setup guaranteed that the only difference between run i (i = 1, . . . , n) of experiment 1 and run
i of experiment 2 was the algorithm tested, whereas each run was made under different conditions (namely,
start state and ordering of successor states) from all of the other runs in the same experiment. This setup
enabled us to test our results for statistical significance using the (non-parametric) sign test, as reported in
(Furcy & Koenig 2000).

3 Theoretical Results

3.1 Definitions

S denotes the finite state space; sstart ∈ S denotes the start state; and sgoal ∈ S denotes the goal state.2

succ(s) ⊆ S denotes the set of successors of state s, and pred(s) ⊆ S denotes the set of its predecessors.
c(s, s′) denotes the cost of moving from state s to successor s′ ∈ succ(s). The goal distance gd(s) of state
s is the cost of a shortest path from state s to the goal, and the start distance sd(s) of state s is the cost
of a shortest path from the start to state s. Each state s has a g-value and an h-value associated with it,
two concepts known from A* search (Nilsson 1971). We use the notation g(s)/h(s) to denote these values.
The h-value of state s denotes an estimate of its true goal distance h∗(s) := gd(s). Similarly, the g-value of
state s denotes an estimate of its true start distance g∗(s) := sd(s). Finally, the f-value of state s denotes
an estimate of the cost f∗(s) := g∗(s) + h∗(s) of a shortest path from the start to the goal through state s.

D1 G-values are admissible iff 0 ≤ g(s) ≤ sd(s) for all states s.

D2 H-values are admissible iff 0 ≤ h(s) ≤ gd(s) for all states s.

D3 G-values are consistent iff g(sstart) = 0 and 0 ≤ g(s′) ≤ g(s) + c(s, s′) for all states s with s 6= sstart and
s′ ∈ succ(s), that is, if they satisfy the triangle inequality.

D4 H-values are consistent iff h(sgoal) = 0 and 0 ≤ h(s) ≤ c(s, s′) + h(s′) for all states s with s 6= sgoal and
s′ ∈ succ(s), that is, if they satisfy the triangle inequality.

D5 The state space S is safely explorable iff the goal distances of all states are finite

3.2 Notation

Superscripts of f-, g-, and h-values. In the following proofs, f t(s) (resp. gt(s) and ht(s)) refers to
the f-value (resp. g-value and h-value) of state s before the t+ 1 value update, i.e. before Step 3 (Figure 1)
of iteration t+ 1. Thus, g0(s) and h0(s) are the initial g- and h-values of state s before Step 3 of iteration 1.

Subscripts of state variables. st refers to the current state before Step 5 (Figure 1) of iteration t+ 1.
Thus, s0 = sstart.

2Although we assumed in (Furcy & Koenig 2000) that there was only one goal state, all of our results continue to
hold in domains with multiple goals.

4



3.3 Assumptions

Our results hold under the following assumptions:

A1 The state space S is finite.

A2 The state space S is safely explorable.

A3 All actions costs are positive.

A4 The initial g- and h- values are admissible.

A5 The initial g-values are consistent.

Assumption A5 is only used for results pertaining to the use of FALCONS without G-UPDATE. Furthermore,
A5 implies the part of A4 that pertains to the g-values, since the consistency of the g-values implies their
admissibility. In practice, most admissible heuristic values are also consistent. Indeed, all of the heuristic
values described in Section 2.1 are consistent.

3.4 Proofs

We first prove some lemmata pertaining to properties of the g-, h-, and f-values that are guaranteed to hold
during the execution of FALCONS. Then, we prove that each trial of FALCONS is guaranteed to terminate
(Theorems 1 and 2), that each run of FALCONS is also guaranteed to terminate, i.e. FALCONS always
converges to a unique path (Lemma 6 and Corollary 6), and finally that the path FALCONS converges to at
the end of each run is a minimum-cost path (Theorems 3 and 4). When appropriate, the following lemmata
and theorems are accompanied by corrolaries that extend the results to FALCONS without the G-UPDATE
rule.

Lemma 1

1. Under assumptions A1-4, FALCONS cannot decrease the g-values.

2. Under assumptions A1-4, FALCONS cannot decrease the h-values.

Proof:
Since only Step 3 of FALCONS modifies the heuristic values, we need only consider that step. Let
t ∈ {1, 2, 3, . . .} be the number of the current iteration. Let s be any state in S.

1. Proof for G-UPDATE

Case (i): s = st

If s = sstart then gt+1(s)
G−UPDATE

= gt(s), else

gt+1(s)
G−UPDATE

= max





gt(s),
mins′′∈pred(s)(gt(s′′) + c(s′′, s)),
maxs′′∈succ(s)(gt(s′′) − c(s, s′′))





def. of max
≥ gt(s).

Case (ii): s 6= st
In this case, g(s) is not updated, and thus gt+1(s) = gt(s).

Therefore in both cases, ∀t ∈ {1, 2, 3, . . .}, s ∈ S: gt+1(s) ≥ gt(s).

2. Proof for H-UPDATE

Case (i): s = st

If s = sgoal then ht+1(s)
H−UPDATE

= ht(s), else

ht+1(s)
H−UPDATE

= max





ht(s),
mins′′∈succ(s)(c(s, s′′) + ht(s′′)),
maxs′′∈pred(s)(ht(s′′)− c(s′′, s))





def. of max
≥ ht(s).

5



Case (ii): s 6= st
In this case, h(s) is not updated, and thus ht+1(s) = ht(s).

Therefore in both cases, ∀t ∈ {1, 2, 3, . . .}, s ∈ S: ht+1(s) ≥ ht(s).

Corollary 1

1. Under assumptions A1-5, FALCONS without G-UPDATE cannot decrease the g-values.

2. Under assumptions A1-5, FALCONS without G-UPDATE cannot decrease the h-values.

Proof:
1. Since G-UPDATE is the only place in FALCONS where the g-values are updated, FALCONS without
G-UPDATE never modifies the g-values and thus cannot increase them.
2. The proof is the same as that for Lemma 1(2).

Let us now define the start distance sd(s) and goal distance gd(s) of state s:

sd(s) :=

{
0 if s = sstart
mins′∈pred(s)(sd(s′) + c(s′, s)) otherwise

(1)

gd(s) :=

{
0 if s = sgoal
mins′∈succ(s)(c(s, s

′) + gd(s′)) otherwise
(2)

Lemma 2

1. Under assumptions A1-4, the g-values remain admissible during the execution of FALCONS.

2. Under assumptions A1-4, the h-values remain admissible during the execution of FALCONS.

Proof:
1. Proof by induction on t.

At t = 0, assumption A4 guarantees that ∀s ∈ S: g0(s) is admissible.
Assume that the induction hypothesis holds at the beginning of iteration t:

∀s ∈ S, gt(s) is admissible (3)

Let us prove that ∀s ∈ S, gt+1(s) is admissible as well. Let s be any state in S.

If s 6= st, then g(s) is not modified during iteration t. Therefore, gt+1(s) = gt(s), which is admissible by
Equation 3. If s = st, then g(s) is only modified by G-UPDATE (Step 3 of FALCONS). Now, if s = sstart,

then gt+1(s)
G−UPDATE

= gt(s), which is admissible by Equation 3. Therefore, we need only consider the
situation where s = st 6= sstart, for which it holds that:

gt+1(s)
G−UPDATE

= max





gt(s),
mins′′∈pred(s)(gt(s′′) + c(s′′, s)),
maxs′′∈succ(s)(gt(s′′) − c(s, s′′))





We distinguish 3 cases, depending on which of the 3 arguments of max is the largest.

Let sp := arg min
s′′∈pred(s)

(gt(s′′) + c(s′′, s)). (4)

Let ss := arg max
s′′∈succ(s)

(gt(s′′) − c(s, s′′)). (5)

Case (i): gt+1(s) = gt(s)
Then, by Equation 3, gt+1(s) is admissible.

6



Case (ii):

gt+1(s) = gt(sp) + c(sp, s) (6)

Proof by contradiction.

Let ssd := arg min
s′′∈pred(s)

(sd(s′′) + c(s′′, s)). (7)

Thus, sd(s) = sd(ssd) + c(ssd, s). (8)

(Note that Equation 8 implies that ssd 6= s.) Now, assume gt+1(s) > sd(s).
This, combined with Equations 6 and 8, yields

gt(sp) + c(sp, s) = gt+1(s) > sd(s) = sd(ssd) + c(ssd, s). (9)

But, since gt(ssd) is admissible by Equation 3, sd(ssd) + c(ssd, s) ≥ gt(ssd) + c(ssd, s), which, combined
with Equation 9, implies: gt(sp) + c(sp, s) > gt(ssd) + c(ssd, s). The latter contradicts Equation 4.
Therefore, gt+1(s) ≤ sd(s), i.e. gt+1(s) is admissible.

Case (iii):

gt+1(s) = gt(ss) − c(s, ss) (10)

(Note that Equation 10 implies that ss 6= s. Otherwise, g(s) = g(ss) would strictly decrease between t

and t + 1, since c(s, ss)
A3
> 0.) From gt(ss)

Equation 3

≤ sd(ss) and sd(ss)
def. of sd
≤ sd(s) + c(s, ss), we obtain

gt(ss) ≤ sd(s) + c(s, ss), or equivalently gt(ss)− c(s, ss) ≤ sd(s), which, combined with Equation 10, yields
gt+1(s) ≤ sd(s). Therefore, gt+1(s) is admissible.

In conclusion, gt+1(s) is admissible in all cases.

2. Proof by induction on t.
At t = 0, assumption A4 guarantees that ∀s ∈ S: h0(s) is admissible.
Assume that the induction hypothesis holds at the beginning of iteration t:

∀s ∈ S: ht(s) is admissible (11)

Let us prove that ∀s ∈ S: ht+1(s) is admissible as well. Let s be any state in S.

If s 6= st, then h(s) is not modified during iteration t. Therefore, ht+1(s) = ht(s), which is admissible by
Equation 11. If s = st, then h(s) is only modified by H-UPDATE (Step 3 of FALCONS). Now, if s = sgoal,

then ht+1(s)
H−UPDATE

= ht(s), which is admissible by Equation 11. Therefore, we need only consider the
situation where s = st 6= sgoal , for which it holds that:

ht+1(s)
H−UPDATE

= max





ht(s),
mins′′∈succ(s)(c(s, s′′) + ht(s′′)),
maxs′′∈pred(s)(ht(s′′)− c(s′′, s))





We distinguish 3 cases, depending on which of the 3 arguments of max is the largest.

Let ss := arg min
s′′∈succ(s)

(c(s, s′′) + ht(s′′)). (12)

Let sp := arg max
s′′∈pred(s)

(ht(s′′) − c(s′′, s)). (13)

Case (i): ht+1(s) = ht(s)
Then, by Equation 11, ht+1(s) is admissible.

Case (ii):

ht+1(s) = c(s, ss) + ht(ss) (14)

Proof by contradiction.

Let sgd := arg min
s′′∈succ(s)

(c(s, s′′) + gd(s′′)). (15)

Thus, gd(s) = c(s, sgd) + gd(sgd). (16)

7



(Note that Equation 16 implies that sgd 6= s.) Now, assume ht+1(s) > gd(s).
This, combined with Equations 14 and 16, yields

c(s, ss) + ht(ss) = ht+1(s) > gd(s) = c(s, sgd) + gd(sgd). (17)

But, since ht(sgd) is admissible by Equation 11, c(s, sgd) + gd(sgd) ≥ c(s, sgd) + ht(sgd), which, combined
with Equation 17, implies c(s, ss) + ht(ss) > c(s, sgd) + ht(sgd). The latter contradicts Equation 12.
Therefore, ht+1(s) ≤ gd(s), i.e. ht+1(s) is admissible.

Case (iii):

ht+1(s) = ht(sp) − c(sp, s) (18)

(Note that Equation 18 implies that sp 6= s. Otherwise, h(s) = h(sp) would strictly decrease between t and

t + 1, since c(sp, s)
A3
> 0.) From ht(sp)

Equation 11

≤ gd(sp) and gd(sp)
def. of gd

≤ c(sp, s) + gd(s), we obtain
ht(sp) ≤ c(sp, s) +gd(s), or equivalently ht(sp)− c(sp, s) ≤ gd(s), which, combined with Equation 18, yields
ht+1(s) ≤ gd(s). Therefore, ht+1(s) is admissible.

In conclusion, ht+1(s) is admissible in all cases.

Corollary 2

1. Under assumptions A1-5, the g-values remain admissible during the execution of FALCONS without G-
UPDATE.

2. Under assumptions A1-5, the h-values remain admissible during the execution of FALCONS without G-
UPDATE.

Proof:
1. Since G-UPDATE in Step 3 of FALCONS is the only step that modifies the g-values, FALCONS without
G-UPDATE does not modify the g-values, and the g-values thus remain admissible.

2. Since G-UPDATE does not have any effect on the h-values, its absence in FALCONS does not make
a difference in whether the h-values remain admissible. Therefore, this proof is the same as that for
Lemma 2(2).

Lemma 3
Under assumptions A1-4, a trial of FALCONS could only run forever if, from some time on, it repeatedly
moved along a finite cyclic path without modifying any of the g- and h-values in the cycle.

Proof: Consider the h-values. Lemma 1(2) guarantees that, on every transition, the h-value of the current
state s can only increase or stay the same. In addition, Lemma 2(2) provides an upper bound on h(s), namely
gd(s) (which is finite, by A2). This means that the maximum number of strict increases of h(s) is finite. This
reasoning holds for all states s in S. And since S is finite (A1), we infer that the maximum total number
(over S) of strict increases of h-values by H-UPDATE is finite. The same reasoning applies to G-UPDATE
for the g-values. In conclusion, there is a maximum, finite number of strict increases possible for both the g-
and h-values. Therefore, if FALCONS never terminates, there must be a point in time, say T , after which
no g- nor h-values are modified. Now, we prove that from some time T1 on (T1 ≥ T ), it must be the case
that FALCONS repeatedly moves along a cycle. Let s1 denote the first state to be visited twice after time
T (s1 must exist, by A1). Let T1 (resp. T2) denote the instant in time at which s1 is reached for the first
(resp. second) time after time T. By definition, T2 ≥ T1 ≥ T . Let C be the sequence of states (starting with
s1) travelled through in the time interval [T1,T2). From time T1 on, the cycle C is repeatedly followed by
FALCONS. The reason for this is that no values in the state space changes after time T (and therefore after
time T1) and systematic tie-breaking (TB2) ensures that FALCONS will thereafter always choose the same
successor at every decision point.

8



Corollary 3
Under assumptions A1-5, a trial of FALCONS without G-UPDATE could only run forever if, from some
time on, it repeatedly moved along a finite cyclic path without modifying any of the g- and h-values in the
cycle.

Proof: This proof is identical to that of Lemma 3, except that the finite number of strict increases of the
g-values (namely zero) directly follows from the fact that FALCONS without G-UPDATE never modifies
the g-values.

Lemma 4
Under assumptions A1-4, assume that FALCONS makes a transition from a state st to a state st+1 without
modifying the g- and h-values of st. Let s′′ := argmins′∈succ(st)(c(st, s

′) + ht(s′)). Then, s′′ is such that:

1. ht(s′′) ≤ ht(st)− c(st, s′′),
2. gt(s′′) ≤ gt(st) + c(st, s

′′),
3. f t(s′′) ≤ f t(st),
4. f t(st+1) ≤ f t(s′′), and

5. if f t(st) ≤ f t(sstart), then f t(st+1) ≤ f t(sstart).
Proof:

First, note that st 6= sgoal . Otherwise, FALCONS would stop in st.

Second, note that s′′ 6= st. If that was not the case, it would hold that ht+1(st)
H−UPDATE

≥
mins′∈succ(st)(c(st, s

′) + ht(s′))
Equation 19

= c(st, st) + ht(st), which would imply that ht+1(st) − ht(st) ≥
c(st, st)

A3
> 0 and contradict our assumption that ht+1(st) = ht(st). Thus, s′′ 6= st.

Let s′′ := argmins′∈succ(st)(c(st, s
′) + ht(s′)). (19)

1. Proof by contradiction.
Assume ht(st) < c(st, s

′′) + ht(s′′). This, together with Equation 19, implies that ht(st) <

mins′∈succ(st)(c(st, s
′) + ht(s′))

H−UPDATE
≤ ht+1(st), which contradicts ht+1(st) = ht(st). Therefore,

s′′ must satisfy ht(st) ≥ c(st, s′′) + ht(s′′), or equivalently ht(s′′) ≤ ht(st) − c(st, s′′).

2. Case (i): st = sstart

First, note that

∀t ∈ {1, 2, 3, . . .}: gt(sstart) = 0 (20)

follows from the fact that initially admissible g-values (A4) remain admissible (Lemma 2(1)).

gt(s′′)
Lemma 2(1)

≤ sd(s′′) and sd(s′′)
def. of sd
≤ sd(st) + c(st, s

′′) = c(st, s
′′) imply that gt(s′′) ≤ c(st, s

′′) or

equivalently gt(s′′) ≤ 0 + c(st, s
′′)

Equation 20
= gt(sstart) + c(st, s

′′) = gt(st) + c(st, s
′′).

Case (ii): st 6= sstart (Proof by contradiction)

Assume gt(st) < gt(s′′) − c(st, s′′).
This implies that gt(st) < maxs′∈succ(st)(g

t(s′) − c(st, s
′))

G−UPDATE
≤ gt+1(st), which contradicts the

assumption that gt+1(st) = gt(st). Thus, gt(st) ≥ gt(s′′)−c(st, s′′) or equivalently gt(s′′) ≤ gt(st)+c(st, s
′′).

3. From Results 1 and 2 above, we have gt(s′′)+ht(s′′) ≤ gt(st)+c(st, s
′′)+ht(st)−c(st, s′′) or equivalently

gt(s′′) + ht(s′′) ≤ gt(st) + ht(st). Thus, max(ht(sstart), g
t(s′′) + ht(s′′)) ≤ max(ht(sstart), g

t(st) + ht(st))
which, by F-CALC, is equivalent to f t(s′′) ≤ f t(st).

4. Since FALCONS chooses st+1 as the next state, it must hold that f t(st+1) ≤ f t(s′′).

9



5. Assume f t(st) ≤ f t(sstart). This, together with Result 3 above, implies that

f t(s′′) ≤ f t(sstart). (21)

Since FALCONS chooses to move to st+1, it must be the case that f t(st+1) ≤ f t(s′′), which, together with
Equation 21, yields f t(st+1) ≤ f t(sstart).

Corollary 4
Under assumptions A1-5, assume that FALCONS without G-UPDATE makes a transition from a state st
to a state st+1 without modifying the g- and h-values of st. Let s′′ := argmins′∈succ(st)(c(st, s

′) + ht(s′)).
Then, s′′ is such that:

1. ht(s′′) ≤ ht(st)− c(st, s′′),
2. gt(s′′) ≤ gt(st) + c(st, s

′′),
3. f t(s′′) ≤ f t(st),
4. f t(st+1) ≤ f t(s′′), and

5. if f t(st) ≤ f t(sstart), then f t(st+1) ≤ f t(sstart).
Proof:
For the same reasons as in the proof for Lemma 4, st 6= sgoal and s′′ 6= st. In addition, the g-values are
never modified.

1. This proof is the same as that for Lemma 4(1).

2. Case (i): st = sstart
This proof is the same as that for Lemma 4(2), except that Equation 20 is now true because of A4 and the
absence of G-UPDATE, and that we use Corollary 2(1) instead of Lemma 2(1).

Case (ii): st 6= sstart
gt(s′′) ≤ gt(st) + c(st, s

′′) directly follows from A5 and the definition of the consistency of the g-values.

3. This proof is the same as that for Lemma 4(3) above.

4. This proof is the same as that for Lemma 4(4) above.

5. This proof is the same as that for Lemma 4(5) above.

Lemma 5
Under assumptions A1-4, assume that FALCONS follows a path P starting in any state s1 without modifying
the g- and h-values of any state on P . If f(s1) ≤ f(sstart), then for all states s on P ,

f(s) ≤ f(sstart). (22)

Proof: Proof by induction on the distance of s from s1 on P .
If s = s1, then f(s) = f(s1) ≤ f(sstart). So, Equation 22 trivially holds for s1.
Assume that s is any state on P but the last one. Then, s has a successor s′ on P . Lemma 4(5) directly
allows us to infer that, if Equation 22 holds for s, then it also holds for s′.

Corollary 5
Under assumptions A1-5, assume that FALCONS without G-UPDATE follows a path P starting in any state
s1 without modifying the g- and h-values of any state on P . If f(s1) ≤ f(sstart), then for all states s on P ,
s on P ,

f(s) ≤ f(sstart). (23)

10



Proof: The proof is the same as that for Lemma 5, except that it uses Corollary 4(5) instead of
Lemma 4(5).

Lemma 6
Under assumptions A1-4, at all times t during the execution of FALCONS, f t(sstart) = ht(sstart).

Proof:

f t(sstart)
F−CALC

= max(gt(sstart) + ht(sstart), h
t(sstart))

A4+Lemma 2(1)
= max(0 + ht(sstart), h

t(sstart)) =
ht(sstart).

Corollary 6
Under assumptions A1-5, at all times t during the execution of FALCONS without G-UPDATE, f t(sstart) =
ht(sstart).

Proof:
The proof is the same as that for Lemma 6, except that it uses Corollary 2(1) instead of Lemma 2(1).

Theorem 1 (Termination 1)
Under assumptions A1-4, each trial of FALCONS is guaranteed to terminate.

Proof: Proof by contradiction.
If FALCONS cycles forever then there exists a finite cyclic path P along which the g- and h-values do not
change from some time T on (Lemma 3). In the following, we can drop the superscripts on the h- and
f-values since they do not change after time T.

We distinguish two cases. Either all states on P have f-values smaller than or equal to f(sstart), or all states
on P have f values greater than f(sstart). These are the only two possible cases. Indeed, if there is at least
one state s1 on P such that f(s1) ≤ f(sstart), then all states following s1 on P will also have an f-value
smaller than or equal to f(sstart) (by Lemma 5). But, since P is cyclic, every state s on P follows s1 and
therefore satisfies f(s) ≤ (sstart).

Case (i): For all states st on the cycle, f(st) > f(sstart).
In this case, it must hold that for all successors s′ of all states in the cycle, f(s′) > f(sstart). Otherwise,
FALCONS would choose as next state a successor with f(s′) ≤ f(sstart) and thus leave the cycle.
Let st be any state on this cycle, st+1 be the successor of s on the cycle, and
s′′ := argmins′∈succ(st)(c(st, s

′) + h(s′)).
By Lemma 4(3&4), f(st+1) ≤ f(st), i.e. the f-values cannot increase along a transition. Therefore they
cannot decrease either because otherwise they would have to increase again before the end of the cycle.
So the f-values of all states on the cycle are the same and in particular f(st+1) = f(st) which, combined
with Lemma 4(3&4) yields f(st+1) = f(s′′) = f(st). Since FALCONS chooses st+1 as the next state,

c(st, st+1) + h(st+1)
TB
≤ c(st, s

′′) + h(s′′). By definition of s′′ and H-UPDATE (since h(st) does not change),
c(st, s

′′) + h(s′′) ≤ h(st) Combining the two previous inequalities yields c(st, st+1) + h(st+1) ≤ h(st). Since

c(st, st+1)
A3
> 0, it follows that h(st+1) < h(st). This means that the h-value strictly decreases along this

and therefore all transitions on the cycle, which is impossible.

Case (ii): For all states st on the cycle, f(st) ≤ f(sstart).
Let st be any state on the cycle. Let st+1 be the successor of s on the cycle and
s′′ := argmins′∈succ(st)(c(st, s

′) + h(s′)).

Now, f(s′′)
Lemma 4(3)

≤ f(st) and f(st) ≤ f(sstart) imply that f(s′′) ≤ f(sstart)
Lemma 6

= h(sstart), which,

combined with f(s′′)
F−CALC
≥ h(sstart), yields

f(s′′) = h(sstart). (24)

11



Furthermore, f(st+1)
Lemma 4(5)

≤ f(sstart)
Lemma 6

= h(sstart) implies, together with f(st+1)
F−CALC
≥ h(sstart),

that f(st+1) = h(sstart). Combining this equation with Equation 24 yields f(s′′) = f(st+1). Now,

c(st, st+1) + h(st+1)
TB
≤ c(st, s

′′) + h(s′′). In addition, since h(st) does not change after the update, we
know that c(st, s

′′) + h(s′′) ≤ h(st). Chaining the two together, we get c(st, st+1) + h(st+1) ≤ h(st) or

equivalently h(st+1) ≤ h(st)− c(st, st+1) < h(st), since c(st, st+1)
A3
> 0. This means that the h-value strictly

decreases along this and therefore all transitions in the cycle, which is impossible.

Theorem 2 (Termination 2)
Under assumptions A1-5, each trial of FALCONS without G-UPDATE is guaranteed to terminate.

Proof: The proof for this theorem is the same as that for Theorem 1 except that it uses the corollaries
instead of the lemmata with the corresponding numbers.

Lemma 7 (Convergence)
Under assumptions A1-4, assume FALCONS is reset to sstart at the end of each trial and the g- and h-values
are kept from each trial to the next. Then, from some time on, FALCONS will always follow the same path.

Proof:
Theorem 1 above has established that each trial of FALCONS will always terminate. We now assume that
FALCONS is reset into sstart at the end of each trial. We can follow a reasoning similar to that used in the
proof of Lemma 3 to establish that from some time T on, no g- and h-value will change any longer. This is
because these values can only increase or remain unchanged (Lemma 1) and remain admissible (Lemma 2).
Therefore, the g- and h-values are bounded from above by finite values (by A2) and cannot increase forever.
Now, let t1 denote the first trial that starts after time T and let P denote the path followed during t1.
Since no g- nor h-value changes during t1, the next trial, say t2, will start with the same heuristic values.
And since remaining ties are broken systematically (TB2), FALCONS, starting at the same state sstart, will
necessarily follow the same path P during t2. The same reasoning holds for all subsequent trials. Therefore,
from trial t1 on, FALCONS will always follow the same path P . It has therefore converged to P .

Corollary 7
Under assumptions A1-5, assume FALCONS without G-UPDATE is reset to sstart at the end of each trial
and the g- and h-values are kept from each trial to the next. Then, from some time on, FALCONS without
G-UPDATE will always follow the same path.

Proof:
The proof is identical to that for Lemma 7 except that it uses Theorem 2 instead of Theorem 1 and the
corollaries corresponding to the lemmata.

Theorem 3 (Convergence to a shortest path 1)
Under assumptions A1-4, FALCONS converges to a shortest path.

Proof:
(In this proof, the time superscript of the f- and h-values are omitted for ease of reading.) Assume that
FALCONS has converged to a path P from sstart to sgoal (Lemma 7).
Since the first state in P is sstart and its f-value is trivially less than or equal to f(sstart), we can use
Lemma 5 to infer that, for all states st on P , f(st) ≤ f(sstart). Let us consider any state st on P , st+1 its
successor on P , and let s′′ := argmins′∈succ(st)(c(st, s

′) + h(s′)).

By combining Lemma 4(3) with f(st) ≤ f(sstart), we get f(s′′) ≤ f(st) ≤ f(sstart)
Lemma 6

= h(sstart),

which, combined with f(s′′)
F−CALC
≥ h(sstart) yields f(s′′) = h(sstart). Similarly, f(st+1)

Lemma 4(5)

≤
f(sstart)

Lemma 6
= h(sstart) and f(st+1)

F−CALC
≥ h(sstart) yield f(st+1) = h(sstart). Thus, f(s′′) = f(st+1).

Since the chosen successor is st+1, it must be the case (by TB) that h(st+1) + c(st, st+1) ≤ h(s′′) + c(st, s
′′).

12



According to Lemma 4(1), h(s′′) + c(st, s
′′) ≤ h(st). Combining the last two inequalities, we get

h(st+1) + c(st, st+1) ≤ h(st), or equivalently

h(st)− h(st+1) ≥ c(st, st+1). (25)

Adding up the instances of Equation 25 for each transition on P yields h(sstart) − h(sgoal) ≥
costP (sstart, sgoal), where costP (sstart, sgoal) denotes the total cost of path P . Since h(sgoal)

A4+Lemma 2(2)
=

0, we infer h(sstart) ≥ costP (sstart, sgoal). Now, the definition of the goal distance implies that
costP (sstart, sgoal) ≥ gd(sstart). Finally, admissibility of h means that gd(sstart) ≥ h(sstart). Chaining
the last three inequalities, we get gd(sstart) ≥ h(sstart) ≥ costP (sstart, sgoal) ≥ gd(sstart) and conclude that
costP (sstart, sgoal) = gd(sstart). Therefore, P is a minimum-cost path from sstart to sgoal , which means that
FALCONS has converged to a shortest path.

Theorem 4 (Convergence to a shortest path 2)
Under assumptions A1-5, FALCONS without G-UPDATE converges to a shortest path.

Proof: The proof is the same as that for Theorem 3 except that the corollaries are used instead of the
corresponding lemmata.

References
Furcy, D., and Koenig, S. 2000. Speeding up the convergence of real-time search. In Proceedings of the
National Conference on Artificial Intelligence.

Holte, R.; Drummond, C.; Perez, M.; Zimmer, R.; and MacDonald, A. 1994. Searching with abstractions:
A unifying framework and new high-performance algorithm. In Proceedings of the Canadian Conference on
Artificial Intelligence, 263–270.

Holte, R.; Perez, M.; Zimmer, R.; and MacDonald, A. 1996. Hierarchical A*: Searching abstraction
hierarchies efficiently. In Proceedings of the National Conference on Artificial Intelligence, 530–535.

Ishida, T. 1997. Real-Time Search for Learning Autonomous Agents. Kluwer Academic Publishers.

Korf, R. 1980. Towards a model of representation changes. Artificial Intelligence 14:41–78.

Korf, R. 1990. Real-time heuristic search. Artificial Intelligence 42(2-3):189–211.

Nilsson, N. 1971. Problem-Solving Methods in Artificial Intelligence. McGraw-Hill.

13


