
Programming Pinball Machines for Fun and Education∗

Daniel Wong Darren Earl Fred Zyda Sven Koenig
University of Southern California
Computer Science Department

wongdani@usc.edu earl.darren@gmail.com fzyda@usc.edu skoenig@usc.edu

ABSTRACT
The University of Southern California has recently created
a Bachelor’s Program in Computer Science (Games) and
a Master’s Program in Computer Science (Game Develop-
ment). As part of this effort, we are currently working on
creating a motivational project class on programming pin-
ball machines, where the students interface a PC to an ex-
isting pinball machine and then re-program the pinball ma-
chine with a pinball game developed by them. In Summer
and Fall 2008, we performed a feasibility study with the ob-
jective to develop the computer interface between a PC and
a recent Lord of the Rings pinball machine, the software to
drive the interface, libraries that provide abstractions of this
interface, and a program that uses these libraries to imple-
ment an engaging pinball game. In this paper, we describe
the results of this successful feasibility study. As far as we
know, this is the first time that anyone has managed to con-
trol an existing pinball machine completely and re-program
it with a new complete (but simple) pinball game.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—Computer Science Education,
Curriculum; K.8.0 [Personal Computing]: General—
Games; B.4.m [Hardware]: Input/Output and Data Com-
munications—Miscellaneous

General Terms
∗Figure 3 uses parts of images by Cassidy Thomas, obtained
from the Internet Pinball Database at www.ipdb.org. The
game music of Pinhorse is a mix of “Fearless Flight” from
Null Space, “March of the Nucleotides” from Bit Shifter and
other pieces from Castlevania. The pinball project was sup-
ported in part by a grant from the USC Fund for Innova-
tive Undergraduate Teaching. Daniel Wong did his research
in Summer 2008 as a summer scholar in the undergradu-
ate merit research program, funded by the Viterbi School
of Engineering, and received a scholarship from the Rose
Hill Foundation in Fall 2008. We thank the Orange County
Pinball League for their hospitality.

Figure 1: Lord of the Rings Pinball Machine

Computer Interface, Game Development, Pinball Class, Pin-
ball Machines, Teaching Computer Science

1. INTRODUCTION
The faculty members of the Department of Computer Sci-
ence at the University of Southern California believe that
teaching computer science hands on via the development
of games helps them to motivate students to learn com-
puter science. They have therefore created a Bachelor’s
Program in Computer Science (Games) and a Master’s Pro-
gram in Computer Science (Game Development), which not
only provide students with all the necessary computer sci-
ence knowledge and skills for working anywhere in indus-
try or pursuing advanced degrees but also enable them to
be immediately productive in the game-development indus-
try [19]. In this paper, we describe our experience with
a feasibility study for a motivational project class on pro-
gramming pinball machines, where the students interface a
PC to an existing pinball machine and then re-program the
pinball machine with a pinball game developed by them.
Solid-state pinball machines basically consist of a computer
that reads the switches and controls the lights, solenoids,
speakers and the dot-matrix display [13]. A pinball game is
determined by the input-output behavior of the computer,
that is, what outputs the computer activates and when it
activates them in response to its input-output history. The
pinball class will cover how to build a hardware interface to
the pinball machine, how to design and implement the soft-
ware interface for the low and high level real-time control
of the pinball machine (including how to best represent the
rules of the pinball game), and how to write the rules of the
pinball game.

In Summer and Fall 2008, we performed a feasibility study

with a Lord of the Rings pinball machine, see Figure 1 (left).
Our objective was to develop the hardware interface between
a PC and the pinball machine, the software interface to drive
the hardware interface, libraries that provide abstractions
of this software interface, and a program that uses these
libraries to implement an engaging pinball game. In this
paper, we describe the results of this successful feasibility
study. As far as we know, this is the first time that anyone
has managed to control an existing pinball machine com-
pletely and re-program it with a new complete (but simple)
pinball game.

2. THE PINBALL CLASS
The pinball class will be a semester-long capstone class for
students that have already taken some traditional computer
science classes and now have to use a variety of knowledge
and skills that they have acquired in these classes to solve
a larger problem, namely to develop a way of programming
a pinball machine easily and to create a pinball game that
is playable, engaging and entertaining. Fundamentally, the
pinball class will be a design class. Some of the design prob-
lems are from computer science and thus look familiar to
computer science students, for example, designing software
for writing the rules of the pinball game. Other design prob-
lems are not from computer science and thus unfamiliar to
computer science students, for example, how to design an
engaging pinball game. The students need to solve the fol-
lowing technical problems as part of the pinball class:

How to build and program a hardware interface to
the pinball machine? We have decided that we will pro-
vide students with the hardware interface for the initial offer-
ings of the pinball class since many computer science majors
might not have practical experience with TTL/CMOS logic
and simple electronics.

How to implement software for the low and high
level real-time control of the pinball machine? The
students need to let lights blink, that is, switch them on
and off at the correct times. They need to form complex
light patterns of light with the many available lights. They
need to detect patterns of switch closures and determine
the mode based on them. They need to synchronize the
lights, sounds, speech, music and information displayed on
the dot-matrix display, which is important because the var-
ious output modalities take different amounts of time and
compete for the available output resources. For example,
a sound effect and an animation on the dot-matrix display
take different amounts of time and are long enough that
the situation might change, which might require a different
sound effect and a different animation. On one hand, it is
not satisfactory to stop the old sound effect and animation
before they are finished. On the other hand, it is not satis-
factory either to delay the new sound effect and animation
long beyond the event that prompted them. There are dif-
ferent ways how the necessary hierarchical control structure
can be implemented, for example, with a blackboard struc-
ture on which concurrent processes operate. Thus, the stu-
dents need to experiment with different ways of implement-
ing the hierarchical control structure to achieve real-time
control, assign scarce resources, manage the complexity of
the software and make it easily adaptable to changing the
specifications of the pinball game (including how to best rep-

resent the rules of the pinball game), as will frequently arise
during game development. These tasks require understand-
ing of concepts from operating systems, concurrent processes
and rule-based expert systems (such as black-board systems)
as well as software engineering. Furthermore, many com-
puter science majors might not have practical experience
with playing sounds, speech and music.

How to write the rules of the pinball game? The
students need to have a good understanding of what makes
pinball games engaging. For example, pinball players look
for variability in game play via different modes but also the
opportunity to make multiple shots and work on multiple
objectives, switching among them as opportunities present
themselves. Thus, the rules of pinball games need to get
designed carefully, including the shots, modes and scoring.
The user interface also needs to get designed carefully, in-
cluding the lights, sounds, speech, music and information
displayed on the dot-matrix display, both to communicate
the state of the pinball game to the user (which requires
user-interface skills that some students will be familiar with)
and set an appropriate mood for the current state (which re-
quires artistic skills typically not taught to computer science
students).

The students will form teams that include students with
majors different from computer science, such as electrical
engineering and arts, since the task requires a variety of ex-
pertise and talent. Each team will determine its own path
to develop and program a pinball game. The pinball class
will not prescribe any path to a good solution. In fact, there
is no material available on the internet about how to pro-
gram pinball machines and create engaging pinball games.
Thus, the teams can try out ideas, make mistakes and learn
from them, similar to problem-based learning [15, 1] and
learning by design [11]. They will be assisted in two ways.
First, the students will read papers on related topics, such
as how to form project teams, how to design operating sys-
tems for embedded applications, how to design black-board
systems, how to program concurrent processes, what makes
pinball games engaging and how use lights, sounds, speech,
and music to set an appropriate mood. Thus, the readings
will cover not only topics from computer science but a vari-
ety of other disciplines as well. Second, the students will use
pin-up sessions to foster ideas by bringing groups together
for brainstorming and to share their work with others and
hear their feedback [9]. In several iterations of research and
reflection cycles, the students will brainstorm about ideas,
try them out, and report on their experience, which forces
them to explain their ideas to other students and justify
them [11].

3. ADVANTAGES OF A PINBALL CLASS
Traditional computer science classes usually cover individual
topics in hardware and software, such as computer architec-
ture, operating systems, artificial intelligence and software
engineering. Traditional computer science classes typically
emphasize individual work, resulting in disjoint knowledge
with an insufficient ability to solve complex problems. Fi-
nally, traditional computer science classes often present the
students with homework that requires them to use the mate-
rial that was taught immediately preceeding the homework,
which means that the general approach to the solution is

known in advance. The pinball class will reinforce the mate-
rial covered in traditional computer science classes but will
also give students a more holistic view of computer science.
It will teach or reinforce a variety of skills, including hard-
ware skills, computational thinking skills, software engineer-
ing skills and programming skills. It will also teach a vari-
ety of skills that are not taught in traditional computer sci-
ence classes, including creativity, design skills, artistic skills,
problem-solving skills and teamwork skills (including collab-
oration and communication skills). The students, for exam-
ple, will learn to work as part of heterogeneous teams and
respect students with different expertise. All of these skills
are important job skills that are seldomly taught at univer-
sities.

A pinball machine is a game. Traditional game develop-
ment classes have advantages similar to the pinball class [6].
However, pinball machines have the advantage over other
games that they cover aspects of hardware and robotics in
addition to aspects of software. A pinball machine is essen-
tially also a robot, given that it interfaces to the physical
world. Traditional robotics classes cover software and hard-
ware. However, pinball machines have the advantage over
robots that they are cheaper, much easier to maintain and,
if necessary, can even be serviced by readily available pin-
ball technicians for a small fee. Their low level control is
simple and the resulting behavior thus robust, resulting in
a motivational experience. Also, the students can concen-
trate on developing the high-level behavior, which will allow
them to write the software from scratch in one semester. At
the same time, programming pinball machines is not trivial
since it requires knowledge of different areas of computer
science and the size of the resulting code is substantial and
thus needs to get managed carefully.

4. THE PINBALL PROJECT
There is a substantial overhead in creating a pinball class
since it requires both hardware and software development.
In Summer and Fall 2008, we performed a feasibility study
with one faculty advisor (Sven Koenig) and three students of
very different background who were interested in program-
ming pinball machines: Daniel Wong was an undergraduate
student in electrical engineering and computer science and
responsible for the computer and software interface; Darren
Earl was a Master’s student in computer science and respon-
sible for game programming; and Fred Zyda was a Ph.d.
student in computer science and also responsible for game
programming. Our objective was to develop the hardware
interface between a PC and a pinball game, the software
interface to drive the hardware interface, libraries that pro-
vide abstractions of this software interface, and a program
that uses these libraries to implement a engaging pinball
game. Daniel created the hardware and software interface in
Summer 2008. Darren and Fred designed and implemented
the pinball game as part of “Designing and Implementing
Games on Pinball Machines” (CSCI499) at the University
of Southern California (USC) in Fall 2008, while Daniel re-
fined the hardware and software interface. Daniel worked
on the hardware and software interface for approximately
200 hours in Summer 2008 and 75 hours in Fall 2008, split
roughly half and half between the hardware and software
interface. Darren and Fred worked on the pinball game for
approximately 3 hours a week during Fall 2008. The com-

Figure 2: Playfield and Underside

Orthanc Balrog Palantir POTD Ring Magnet

Arrow Lamps Pop Bumpers Loop Diverter

Figure 3: Important Playfield Parts

pleted pinball game was demonstrated at the biannual demo
day of the GamePipe Laboratory in December 2008 to stu-
dents, faculty members and representatives from the game
industry.

5. THE PINBALL MACHINE
We decided to work with a used solid-state Lord of the Rings
(LOTR) pinball machine from Stern Pinball of Chicago, cur-
rently the only manufacturer of pinball machines. Stern Pin-
ball produced about 5,100 of these pinball machines, starting
in 2003. Used LOTR pinball machines cost about $3000-
$3500. The layout of their playfield is flexible and not par-
ticularly theme-specific, see Figure 2 (left) for the layout and
Figure 3 for some of the important playfield parts. LOTR
pinball machines are highly rated for playability and need
to be used in creative ways to create engaging pinball games
since we do not want to alter the playfield physically. We
control the pinball machine via its I/O Power Driver Board,
which was used by all Sega and Stern pinball machines with
a WhiteStar or WhiteStar II board system (roughly from
1995 to 2004). Thus, we expect the hardware interface to
the pinball machine and software to be usable with a variety
of pinball machines from Stern.

The input devices of the LOTR pinball machine consist of
the 58 playfield switches, see Figure 2 (right), and the 7 ded-

Figure 4: CPU/Sound and I/O Power Driver Boards

Figure 5: Original Hardware Architecture

icated switches, which correspond to switches that humans
interact with (such as the left and right flipper buttons). The
LOTR pinball machine supports up to 64 playfield switches,
arranged in an 8x8 matrix. The controller reads the playfield
switches by software polling. It strobes each column and
then reads the row signal after it has gone through RC filters
(for noise filtering) and a comparator (for signal buffering)
to create a stronger steady signal. The LOTR pinball ma-
chine supports up to 8 dedicated switches. The controller
reads the dedicated switches directly. The output devices
of a LOTR pinball machine consist of the lights (namely 80
lamps, 9 flash lamps and 19 LEDs) and 23 low and high cur-
rent solenoids (including 2 slingshots, 3 vertical upkickers, 3
pop bumpers, 2 flippers, 1 loop diverter, 1 ring magnet and
1 Balrog motor), see Figure 2 (right). They also consist of a
pair of speakers and the dot-matrix display. The lamps are
arranged in a 10x8 matrix and need to be strobed, similar to
the switches, at approximately 1ms to minimize flickering.
The LOTR pinball machine is controlled by the following
components, see Figures 4 and 5:

The CPU/Sound Board processes the input signals and
generates the control signals for the speakers, the Display
Controller Board and the I/O Power Driver Board. It in-
cludes the 8-bit 68B09E microprocessor, the CPU Game
ROM and the Sound/Voice ROM.

The I/O Power Driver Board drives the output devices.
It includes registers that hold the status of each output de-
vice. The CPU/Sound Board sets the data of these registers.
The I/O Power Driver Board then activates the output de-
vices accordingly.

The Display Controller Board controls the 128x32

Figure 6: New Hardware Architecture

plasma dot-matrix display (DMD). It includes the Image
ROM. The CPU/Sound Board determines which image from
the Image ROM to display. The Display Controller Board
then retrieves the image and generates it on the DMD.

6. THE HARDWARE INTERFACE
One extreme of programming the LOTR pinball machine
is to reprogram its ROMs. However, a reverse engineering
effort is very difficult without any available documentation
for the proprietary boards other than the LOTR manual.
The other extreme of programming the LOTR pinball ma-
chine is to replace all boards. However, this is costly and
time-consuming since there more than 100 input and output
devices. We therefore decided to replace the CPU/Sound
Board with a PC. We decided to interface the PC to the
pinball machine via a small number of existing connectors,
namely the connectors A-E in Figure 4, rather than sol-
dering wires onto the existing boards, which would make
it difficult to both make additional pinball machines pro-
grammable and transform them back into their original state
(which means that they would lose retail value). We also
decided to interface the PC to our own Display Controller
Board because we wanted to be able to generate images on
the DMD on the fly rather than having to store them in the
Image ROM. Finally, we decided to use the PC speakers for
sounds, speech and music. Thus, the pinball game can play
arbitrary sound files with the high-level commands provided
by SDL. The LOTR pinball machine is thus controlled by
the following new components, see Figures 1 (right) and 6:

The PC is used for programming and running the game
code. We use a Dell Outlet Inspiron 530 PC with an Intel
Core 2 Quad Q6600 Kentsfield 2.4GHz processor and the de-
fault installation of OpenSuse 10.3 Linux, except that we re-
compiled the kernel with support for a high-resolution timer
and installed libraries for the Digital I/O Board (NIDAQmx
driver) and serial communication (libserial). The PC costs
$469, and Linux costs $0.

The DMD Board interfaces the PC to the DMD. We use
a Parallax Propeller, an 8-core 32-bit microprocessor. Each
of its cores (called cogs) is capable of running independently
of the others. We use one cog to drive the DMD at about
70Hz, the recommended refresh rate. We use one cog to

Figure 7: New Software Architecture

handle the serial connection with the PC at about 115.2k
Baud. Finally, we use one cog to process the data received
from the PC. When data is received from the PC, the Serial
Cog hands it over to the Processing Cog, which writes the
data to memory, forming an image. The Display Driver Cog
then reads the image and drives the DMD to display it. The
images are double buffered to create a steady image on the
DMD. The Parallax Propeller Demo board costs about $80.

The Intermediate Switch Detection Board filters and
buffers the incoming switch signals similar to what the
CPU/Sound Board did before. The parts of this custom-
made board cost about $30.

The Digital I/O Board interfaces the PC to the I/O Power
Driver Board and the Intermediate Switch Detection Board.
We use a National Instruments PCI-6509, a high-current
96-channel 5V TTL/CMOS Digital I/O card. We chose the
PCI-6509 for its ample ports, its support for 5V TTL/CMOS
levels which makes it compatible with components on the
I/O Power Driver Board, and its ability to source or sink up
to 24mA of current which enables it to drive the data bus
of the I/O Power Driver Board. Its 96 channels are orga-
nized into 12 ports of 8 channels each. To read the playfield
switches from the Intermediate Switch Detection Board, we
use one port as output to strobe the column and one port as
input to read the row signal. To read the dedicated switches
from the Intermediate Switch Detection Board, we use one
port as input. To set the data of the registers of the I/O
Power Driver Board, we use two ports as outputs, one for
the address of a register and one for the data to be written
into that register. The PCI-6509 costs $299, and its cabling
kit costs $259.

All cables connect to the Intermediate Switch Detection
Board to keep the cabling organized. The custom-made
Molex connectors and header pins cost about $40. The to-
tal cost of all additions is approximately $708 plus the cost
of the PC. We expect to be able to reduce this cost to ap-
proximately $300 plus the cost of the PC with an embedded
system currently in development.

7. THE SOFTWARE INTERFACE
The software interface allows a pinball game to control all as-
pects of the pinball machine via function calls. It is written
in C/C++ and provides the interface between the pinball
game and the Digital I/O Board via the NIDAQmx driver
and the pinball game and the DMD Board via serial com-

munication (a USB connector as a virtual COM port), see
Figure 7:

The Display Controller Interface interfaces the pinball
game to the DMD Board. It repeatedly grabs the content
of the screen and transfers it to the DMD Board. Thus,
the pinball game can create arbitrary graphics on the fly
with the high-level commands provided by SDL. The Display
Controller Interface can display approximately 15 frames per
second on the DMD, which is sufficient for full motion ani-
mation.

The Digital I/O Board Interface interfaces the pinball
game to the Digital I/O Board. It consists of two layers:

The Hardware Interface Layer communicates with the
Digital I/O Board via the NIDAQmx driver to read the
switches and drive the lights and solenoids. For example,
it converts the desired status of the lights and solenoids into
byte representation, places the address of the register onto
the address bus, the data of the register onto the data bus
and finally clocks the register to save the data.

The Behavior Layer uses the Hardware Interface Layer
to implement behaviors for every output device. Pinball
games need to contain a main loop that repeatedly calls
the Main Loop Function of the Behavior Layer to read the
current status of the switches and set the current status of
the lights and solenoids. The Main Loop Function detects
both levels and edges of switches by monitoring the history
of the switch status. It activates the lights and solenoids
according to behaviors that the pinball game can set via
function calls.

The Behavior Layer implements three different behaviors:
The standard behavior for lights and solenoids is to turn
on (= activate) immediately and then turn off (= deacti-
vate) after a set period of time. The second behavior is for
those solenoids that need to stay on for extended periods of
time and thus are typically individually fused, namely the
flippers, the ring magnet, the loop diverter and the Balrog
motor. Their behavior is identical to the standard behavior
but they require pulse-width modulation to limit the amount
of current going through them, which reduces the amount of
heat and allows them to stay on longer. Thus, the behavior
needs to activate and deactivate them repeated while they
are turned on. The third behavior is for the Balrog, which
acts as a door that opens and closes. Its behavior needs to
set the relay to the desired turning direction and then turn
on the Balrog motor.

The Behavior Layer performs safety checks to prevent fuses
and transistors from blowing. These safety checks are the
result of trial and error. They implement conservative time-
outs for all solenoids driven by pulse-width modulation. For
example, the loop diverter automatically turns off after one
minute, and the Balrog motor turns off immediately when
Balrog is completely open or closed. The safety checks im-
plement timeouts of half a second for the lights and all other
solenoids since they need to be active only for fractions of a
second.

8. CURRENT STATUS / FUTURE WORK

We encountered the following difficulties during the project:
First, we had the LOTR manual available but not much fur-
ther documentation. Thus, we had to develop parts of the
hardware and software interface via trial and error, which
was especially problematic for the I/O Power Driver Board,
DMD and LEDs. Second, we had to develop the safety
checks via trial and error, blowing many fuses and some
transistors in the process. Third, the hardware and software
interface were more complicated than necessary due to our
design decision to interface the PC to the I/O Power Driver
Board via a small number of existing connectors. For exam-
ple, we needed to design the Intermediate Switch Detection
Board to replicate part of the original CPU/Sound Board,
and we needed to strobe the playfield switches and lamps.
The playfield switches cannot be strobed too quickly (oth-
erwise the data will not have time to propagate through the
wires), and the lamps cannot be strobed too slowly (other-
wise a watchdog timer on the I/O Power Driver Board resets
the system). Fourth, the PC needs to run fast both to strobe
the lamps sufficiently fast (to prevent them from flickering
and the watchdog timer from triggering) and to control the
solenoids with precision. Fifth, the software interface suf-
fers from slight inconsistencies in timing due to our design
decision not to use an operating system with a real-time
kernel since the system load then determines how often the
software interface gets called in the main loop, which deter-
mines the flickering of the lamps and the precision of control
of the solenoids. We mitigated this effect by recompiling the
Linux kernel with support for a high-resolution timer with
an accuracy of 1ns and gave the pinball game high priority
so that other processes would interrupt it less.

The software interface is now fully functional, with three
minor issues: First, the software interface is currently able
to display only two colors on the DMD but is already de-
signed to use software modulation to produce three levels of
grayscale. Second, the software interface does not perform
all necessary safety checks to guard against unreasonable
game programmers. For example, the flow of current that
results from activating all solenoids at once can blow fuses
and potentially damage the I/O Power Board. Third, the
software interface still suffers from minor inconsistencies in
timing: The lamps flicker subtly (although this is barely no-
ticeable); the ring magnet is not always able to catch the
pinball and throw it backwards; and the force applied by
the vertical upkickers is not completely consistent. We are
now working on creating an embedded system to produce
the control signals for the pinball machine, which will solve
the inconsistencies in timing, lower the total cost by replac-
ing the Digital I/O Board and reduce the number of cables
required by handling all data transfer through serial com-
munication.

9. DESIGNING A NEW PINBALL GAME
When we set off to design a new pinball game, we first had
to understand what makes pinball games fun. We attended
a meeting of the Orange County Pinball League (at least one
of whose players was ranked in the top 20 in 2008 accord-
ing to pinballrankings.com), where we were able to play 15
different pinball machines. We also observed expert pinball
players and asked them questions about their strategies. We
learned that pinball games seem to follow a fairly strict for-
mula where the players need to make a series of predefined

Figure 8: State Diagram of Pinhorse

Figure 9: Shotmap of Pinhorse

shots to advance the game. This can make them unexcit-
ing for expert players since they quickly become monotone.
In multiplayer mode, pinball games keep a score for each
player, with little to no change in game play. This can make
them unexciting for nonexpert players since the expert play-
ers in the group can keep the pinball in play for long periods
of time and the nonexpert players are then idle most of the
time.

This experience made us settle on three design goals: First,
we wanted to design a pinball game where the sequence of
shots required to win the game is determined during the
game and can thus be different each time the pinball game
is played. Second, we wanted to design a multiplayer game
where each player directly influences the game of the other
player. Finally, we wanted to design a pinball game that
limits the playtime of each player.

To satisfy the three design goals and ensure that our pinball
game would be different from the original pinball game of
LOTR pinball machines, we designed a pinball game based
on the concept behind Horse. Horse is a game played on a
basketball court where the first play makes a shot that the
second player must duplicate from the same position on the
court. We adapted this concept to pinball by dividing the
play into two roles: a shot establisher and a shot matcher.
The first player completes a series of shots within a fixed
amount of time with no restrictions on his play. His goal is
to create a sequence of shots that is difficult to match either

due to its length or the skill required to make the individual
shots. Once his time is up, the flippers become disabled
and the pinball drains. The second player then attempts to
replicate this sequence of shots within the allotted time. If
he is successful, he is allowed to complete additional shots
with no restrictions on his play to improve his score, see
Figure 8. A full game would eventually consist of several
iterations with players switching roles and keeping running
totals of their performance.

We defined seven possible shots based on the physical layout
of the playfield, namely the left orbit (A), middle orbit (D),
right orbit (G), left ramp (B), center ramp (E), right ramp
(F) and the Orthanc tower (C), see Figure 9. These are the
shots that skillful players can make reliably. If the player
hits the Palantir (chosen for its unique lighting characteris-
tics and visibility), the loop diverter and Balrog open for a
short amount of time. The loop diverter opens to make the
Orthanc tower shot easier, and the Balrog opens to enable
the center ramp shot. These dynamics allow skilled play-
ers to make substantially more difficult shot sequences. We
quickly learned that replicating a sequence of shots is almost
impossible for regular players without intervening shots and
thus relaxed the rules to allow intermediate shots by the
second player. For example, if the first player defines the
shot sequence “left orbit” and “right ramp,” then the second
player can replicate it with the shot sequence “left orbit,”
“right orbit” and “right ramp.” We call the resulting pinball
game Pinhorse.

10. IMPLEMENTING THE GAME
Shots consist of sequences (usually of length two) of switch
edges in quick succession, which allows Pinhorse to detect
whether the shot was sufficiently strong to complete success-
fully and what the direction of the shot was. Some shots con-
sist of more than one sequence of switch edges, which allows
the player to complete it in different ways. Pinhorse adds
every switch edge to a small buffer and then scans the buffer
in an attempt to match a shot (shot recognition). For the
first player, recognized shots are added to the end of a queue.
For the second player, recognized shots are compared to the
first shot in the queue. If they match, the first shot in the
queue is removed (shot matching). Pinhorse knows that the
second player has matched all shots of the first player once
the queue is empty and then starts a bonus mode where the
second player can make extra shots to increase their score.

Pinball games require both visual and audio cues to com-
municate the current state of the game to the players and
create the right mood. Pinhorse uses the DMD to display
the current player, the number of shots made by the first
player or the number of shots still to be made by the sec-
ond player, the next shot to be made by the second player
and the remaining time. However, since the pinball action
is fast paced, Pinhorse makes extensive use of the lights to
give visual cues to the player.

Pinhorse uses a variety of lighting effects. The software
interface addresses the lights according to the architecture
imposed by the I/O Power Driver Board. We therefore im-
plemented a wrapper that allows Pinhorse to reason about
lights by Cartesian coordinates. These coordinates are de-
rived as the projections of the lights onto the playfield glass

from the point of view of the player and thus loosely re-
flect the absolute positions of the lights. The lights are
grouped hierarchically, for example, into circles, arcs and
arrows. Lighting functions operate on these groups and can
access the system time and maintain state to realize complex
light patterns, such as rotating half circles, expanding rings,
balls with time-dependent radii and strobing lights. Each
light pattern has several configurable parameters, such as
the velocity of progression, acceleration, start coordinates
and duration. More than one light pattern can be active at
any time.

Pinhorse defines about 20 groups of lights and uses light
patterns in several ways. For example, Pinhorse strobes
Palantir at an increasing rate after a Palantir hit to indicate
the amount of time left before the loop diverter and Balrog
close again. For the first player, Pinhorse confirms that a
shot was established with a quick flash of light. The speed
of a rotating half circle across the entire playfield indicates
the amount of remaining time. For the second player, Pin-
horse indicates the next shot to be made with a ball of light
with time-dependent radius centered on the corresponding
blinking arrow lamp to catch his attention. As with the first
player, the speed of a rotating half circle of lights indicates
the remaining time. However, the animation is restricted to
a small group of lights near the flippers as to not interfere
with the indication of shots. In the bonus mode, all lights
on the board are strobed to signify the accomplishment of
the second player.

Pinhorse uses sound effects to inform the players of the out-
comes of their actions. For example, Pinhorse plays voice
recordings to reinforce which shot the second player is ex-
pected to make next, which greatly improved the player ex-
perience. Pinhorse also uses sound effects to encourage the
second player to act quickly when his time runs out. Finally,
Pinhorse plays background music during game play.

11. CURRENT STATUS / FUTURE WORK
Pinhorse was intended to help us improve the computer and
software interface and demonstrate the feasibility of writing
a pinball game within a semester. The Pinhorse program
consists of about 680 lines of code, the helper classes for
shot recognition, shot matching and light patterns consist of
about 1600 lines of code, and the software interface consists
of about 2500 lines of code. Almost all of this code can be
reused to speed up the development of future pinball games
and to increase their complexity.

Pinhorse works well, with three minor issues: First, Pin-
horse occasionally fails to detect shots due to switch edge-
detection errors and adjustment problems. For example, the
pinball can sometimes squeeze by the upper switch of the
right orbit without triggering it, which could be prevented
only by adjusting the switch position. Second, pinball games
enter a ball-find mode when the pinball gets stuck some-
where and no switches trigger. Pinhorse, however, has very
short rounds and thus enters the ball-find mode only when
the pinball is missing at the end of the round. A stuck pin-
ball thus ends the turn of a player. Finally, the first player
can define as many as 10 to 12 shots in the 60 seconds that
we allotted for each round, which can be difficult for the sec-
ond player to replicate. Pinball Horse could be made easier

with a system of power-ups that the second player can earn
with particular shots and that then increase their remaining
time or turn off features of the pinball machine that ran-
domize the movement of the pinball, such as the slingshots
or pop bumpers.

12. RELATED WORK / CONCLUSIONS
Several universities have recently introduced game develop-
ment classes, see for example the issue of the Communi-
cations of the ACM on “Creating a Science of Games” [18],
the proceedings of the First to Third Annual Microsoft Aca-
demic Days Conference on Game Development in Computer
Science Education and the proceedings of the ACM Techni-
cal Symposium on Computer Science Education, including
[14]. Game development classes typically develop only soft-
ware that does not interface to the physical world, such as
real-time strategy games.

Simulations of pinball machines have, in research, been
used to develop and evaluate machine learning algorithms
[10, 17, 16]. In teaching, they have been used to teach artifi-
cial intelligence as part of “Artificial Intelligence” (CS6361)
at Georgia Institute of Technology (USA) in Winter 1999
taught by Sven Koenig (one of the authors of this paper).

Actual pinball machines have, in research, been used to
study hybrid system control [12] and to develop and evaluate
machine learning algorithms by an undergraduate student of
Sven Koenig (one of the authors of this paper) at Georgia
Institute of Technology (USA) in 1999. In teaching, they
have been used to teach real-time and embedded systems as
part of“Introduction to Embedded and Real-Time Program-
ming” (CS160) at Brown University (USA) in Spring 2007,
“Smart Product Design Laboratory” (ME218a) at Stanford
University (USA) in 2007, “Designing with Microcontrollers”
(EE476) at Cornell University (USA) in Spring 2007 and
“Special Topics in Electrical Engineering: Pinball Machine
Project”(ENEE 488Q) at the University of Maryland at Col-
lege Park (USA) in Spring 1997. A similar effort existed at
Brooklyn College (USA) around 1997 [5]. Pinball machines
have also been used to teach signal and image processing
as part of “Project Course in Signal Processing and Digital
Communication” (EQ2430/EQ2440) at Kungliga Tekniska
Högskolan (Sweden) in Spring 2004 and “Project: Pinball”
(EOH 2004) of the ACM Special Interest Group for Com-
puter Architecture at the University of Illinois at Urbana
Champaign (USA) in Spring 2004.

One of these efforts attempted to build a pinball machine
from scratch, which allows them to customize the hardware
for easier control. Other efforts used old electro-mechanical
pinball machines, which are easier to control than newer
solid-state pinball machines. The state of the art in con-
trolling a pinball machine was as follows: Some efforts con-
trolled the flippers by modifying the hardware [4]. Some
tracked the ball via input from the playfield switches [12] or
an overhead camera [8, 7]. The most sophisticated project so
far mimicked the microcomputer-based control unit to read
the switches and control the solenoids [3, 2]. We, on the
other hand, provide a hardware and software interface that
controls all aspects of an existing solid-state pinball machine
(including the lights, solenoids, DMD and speaker) without
needing to modify its hardware. Furthermore, we have used

the hardware and software interface to program a complete
(but simple) pinball game that makes use of all of these
aspects. Thus, our project extends the start of the art sub-
stantially. Additional information and a video of Pinhorse,
our pinball game, in action can be found on our webpages
at idm-lab.org/pinball.

13. REFERENCES
[1] H. Barrows. How to Design a Problem-Based Curriculum

for the Preclinical Years. Springer, 1985.

[2] J. Bork. Controlling a pinball machine using Linux. Linux
Journal, 139, 2005.

[3] J. Bork. Reverse engineering a microcomputer-based control
unit. Master’s thesis, Industrial Technology, Bowling Green
State University, Bowling Green (Ohio), 2005.

[4] D. Clark. An inexpensive realtime testbed - the pinball
player project. In Proceedings of the IEEE Workshop on
Real-Time Applications, pages 86–88, 1994.

[5] D. Clark. Progress toward an inexpensive real-time testbed:
The pinball player project. In Proceedings of the Real-Time
Educational: Second Workshop, pages 72–79, 1997.

[6] D. Cliburn. Games across the curriculum: Can we quantify
their effectiveness? (birds of a feather session). In ACM
Technical Symposium on Computer Science Education,
2007.

[7] R. Cohen. Designing an experimental pinball wizard. The
Electronic System Design Magazine, 19, 1989.

[8] S. Gustafsson, J. Munoz, S. Norell, D. Real, and Y. Xiao.
Smart pinball project - final report. Technical report,
Skolan för Elektro- och Systemteknik, Royal Institute of
Technology, Stockholm (Sweden), 2004.

[9] J. Holbrook, B. Fasse, and J. Gray. Creating a classroom
culture and promoting transfer with ’launcher units’. In
American Educational Research Association, 2001.

[10] M. Johnson. Algorithms for pinball simulation, ball
tracking and learning flipper control. Master’s thesis,
Department of Electrical Engineering and Computer
Science, Massachussetts Institute of Technology, Boston
(Massachussetts), 1993.

[11] J. Kolodner, D. Crismond, J. Gray, J. Holbrook, and
S. Puntambekar. Learning by design: From theory to
practice. In Proceedings of the International Conference of
the Learning Sciences, pages 223–229, 1998.

[12] G. Lichtenberg and J. Neidig. An example of hybrid
systems control: The pinball machine. Technical Report
2003.13, Lehrstuhl für Automatisierungstechnik and
Prozessinformatik, Ruhr-Universität Bochum, Bochum
(Germany), 2003.

[13] M. Rossignoli. The Complete Pinball Book. Schiffer, 1999.

[14] N. Sturtevant, H. Hoover, J. Schaeffer, S. Gouglas,
M. Bowling, F. Southey, M. Bouchard, and G. Zabaneh.
Multidisciplinary students and instructors: A second-year
games course. In ACM Technical Symposium on Computer
Science Education, 2008.

[15] S. Williams. Putting case-based instruction into context:
Examples from legal and medical education. Journal of the
Learning Sciences, 2(4):367–427, 1992.

[16] N. Winstead. Some explorations in reinforcement learning
techniques applied to the problem of learning to play
pinball. In Proceedings of the AAAI-03 Workshop on
Entertainment and AI/A-Life, pages 1–5, 1996.

[17] N. Winstead and A. Christiansen. Pinball: Planning and
learning in a dynamic real-time environment. In AAAI-94
Fall Symposium on Control of the Physical World by
Intelligent Agents, pages 153–157, 1994.

[18] M. Zyda. Creating a science of games. Communications of
the ACM, 50(7), 2007.

[19] M. Zyda and S. Koenig. Teaching artificial intelligence
playfully. In Proceedings of the AAAI-08 Education
Colloquium, 2008.

