
Complexity Analysis of

Real-Time Reinforcement Learning

Applied to

Finding Shortest Paths in Deterministic Domains

Sven Koenig and Reid G. Simmons

December 1992

CMU-CS-93-106

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This research was supported in part by NASA under contract NAGW-1175.
The views and conclusions contained in this document are those of the authors and should not

be interpreted as representing the o�cial policies, either expressed or implied, of NASA or the U.S.
government.

Keywords: Machine Learning (Reinforcement Learning), Learning/Adaptation (Ex-
ploration), Search (Real-Time Search), Planning (Path Planning)

Abstract

This report analyzes the complexity of on-line reinforcement learning algorithms,
namely asynchronous real-time versions of Q-learning and value-iteration, applied to
the problems of reaching any goal state from the given start state and �nding shortest
paths from all states to a goal state. Previous work had concluded that, in many cases,
initially uninformed (i.e. tabula rasa) reinforcement learning was exponential for such
problems, or that it was tractable (i.e. of polynomial time-complexity) only if the
learning algorithm was augmented. We prove that, to the contrary, the algorithms are
tractable with only a simple change in the task representation (\penalizing the agent
for action executions") or initialization (\initializing high"). We provide tight bounds
on their worst-case complexity, and show how the complexity is even smaller if the
state space has certain special properties. We compare these reinforcement learning
algorithms to other uninformed on-line search methods and to informed o�-line search
methods, and investigate how initial knowledge of the topology of the state space can
decrease their complexity. We also present two novel algorithms, the bi-directional Q-

learning algorithm and the bi-directional value-iteration algorithm, for �nding shortest
paths from all states to a goal state, and show that they are no more complex than their
counterparts for reaching a goal state from a given start state. The worst-case analy-
sis of the reinforcement learning algorithms is complemented by an empirical study of
their average-case complexity in three domains.

1 Introduction

Consider the problem for an agent of �nding its way to one of a set of goal locations,
where actions consist of moving from one intersection (state) to another (on a map, on
a directed graph, or in a state space, see Figure 1). Initially, the agent has no knowledge
of the topology of the state space. We consider two di�erent tasks: reaching any goal
state and �nding shortest paths from every state to a goal state. [27] call the former
task satis�cing search (search for \all-or-none solutions"), whereas the latter one
corresponds to shortest-path search for all states.

O�-line search methods, which �rst derive a plan that is then executed, cannot be
used to solve the path planning tasks, since the topology of the state space is initially
unknown to the agent and can only be discovered by exploring: i.e. executing actions
and observing their e�ects. Thus, the path planning tasks have to be solved on-
line. On-line search methods, also called incremental or real-time search methods
[17], interleave search with action execution, see Figure 2. The algorithms that we
describe here perform only minimal computation between action executions, choosing
only which action to execute next, and basing this decision only on information local
to the current state1 of the agent (and perhaps its immediate successor states). This
way, the time between action executions is linear in the number of actions available in
the current state. If this number does not depend on the size of the state space, then
neither does the search time between action executions. Such methods have recently
been proven to be very powerful if executed by multiple agents [12].

There is a potential trade-o� between exploitation and exploration when selecting an
action, see [33]. Exploitation means to behave optimally according to the current
knowledge, whereas exploration means to acquire new knowledge. Exploration con-
sumes time, but may subsequently allow the agent to solve the task faster. Exploration
is necessary for the path planning tasks, since the agent initially has no knowledge of
the topology of the state space. A standard strategy to deal with the exploitation ex-
ploration trade-o� is to exploit most of the time and to explore only from time to time.
For exploration, the agent has to overcome the limited experimentation problem,
since it is constrained to execute only one action of its choice in the current state, which
then uniquely determines the new state of the agent.2 Furthermore, it might not be
able to reverse the e�ect of an action immediately, i.e. to backtrack to its former state,
since there might not be an action that leads from its new state back to its former
state.

We will investigate a class of search algorithms which perform reinforcement learning.
The application of reinforcement learning to on-line path planning problems has been

1When we talk about \the current state of the agent," we always refer to a state of the state space
and not to the knowledge of the agent, i.e. not to the values of the variables of the algorithm that
controls the agent.

2Other researchers, for example [30], [38], [24], and [19], have proposed planning schemes for the
case that arbitrary (not just local) actions can be executed at any time (in a mental model of the
state space, i.e. as part of a \Gedankenexperiment"). Our assumptions are more restrictive.

1

on
e

w
ay

one way

one way

one way

one way

goal

Figure 1: Navigating on a map

studied by [2], [5], [23], [19], [24], and others. [35] showed that reaching a goal state with
uninformed (i.e. tabula rasa) reinforcement learning methods can require a number of
action executions that is exponential in the size of the state space. [33] has shown that
by augmenting reinforcement learning algorithms, the problem can be made tractable.
We address the question raised by these results whether one has to augment standard
reinforcement learning algorithms to make them tractable. We will show that, contrary
to prior belief, reinforcement learning algorithms are tractable without any need for
augmentation, i.e. their run-time is a small polynomial in the size of the state space.
All that is necessary is a change in the way the state space (task) is represented.

In this report, we use the following notation.3 S denotes the �nite set of states of the
state space, and G (with ; 6= G � S) is the non-empty set of goal states. sstart 2 S is
the start state of the agent. A domain is a state space together with a start state and
a set of goal states. A(s) is the �nite set of actions that can be executed in s 2 S. The
size of the state space is n := jSj, and the total number of actions is e :=

P
s2S jA(s)j

(i.e. an action that is applicable in more than one state counts more than once).
Executing an action causes a deterministic state transition that depends only on the
action and the state it is executed in (Markov assumption). succ(s; a) is the uniquely
determined successor state when a 2 A(s) is executed in s 2 S. The distance d(s; s0)
between s 2 S and s0 2 S is de�ned to be the (unique) solution of the following set of

3We use the following sets of numbers: R is the set of reals, N0 is the set of non-negative integers,
N� is the set of negative integers, and N�

0 is the set of non-positive integers.

2

search execute

(a) Off-line search

(b) On-line search

here: minimize

Figure 2: O�-line versus on-line search

equations

d(s; s0) =

(
0 if s = s0

1 + mina2A(s) d(succ(s; a); s
0) otherwise

for all s; s0 2 S

i.e. it is the smallest number of action executions required to reach state s0 from
state s. The goal distance gd(s) of s 2 S is de�ned to be gd(s) := mins02G d(s; s0).
Similarly, the depth of the state space d is de�ned to be d := maxs;s02S d(s; s0), i.e.
the maximum of the distances between two arbitrary states. We assume that the state
space is strongly connected (or, synonymously, irreducible), i.e. every state can be
reached from every other state (formally: d(s; s0) < 1 for all s; s0 2 S). Since the
state space is strongly connected, it holds that d � n � 1 and n � e. We also assume
that the state space is totally observable, i.e. the agent can determine its current state
with certainty.4 It also knows at every point in time which actions it can execute in its
current state and whether its current state is a goal state. Furthermore, the domain is
single agent and stationary, i.e. does not change over time.

Formally, the results of the report are as follows. If a good task representation (\pe-
nalizing the agent for action executions") or suitable initialization (\initializing high")
is chosen, the worst-case complexity of reaching a goal state has a tight bound of
O(n3) action executions for Q-learning (provided that the state space has no duplicate
actions) and O(n2) action executions for value-iteration. If the agent has initial knowl-
edge of the topology of the state space or the state space has additional properties,
these bounds can be decreased further. In addition, we show that reinforcement learn-
ing methods for �nding shortest paths from every state to a goal state are no more
complex than reinforcement learning methods that simply reach a goal state from the
start state. (All proofs can easily be derived by induction and are stated in the ap-

4[21] state results about the worst-case complexity of every algorithm for cases where the states
are partially observable or hidden, i.e. not observable at all.

3

pendix.) This demonstrates that one does not need to augment reinforcement learning
algorithms to make them tractable.

2 Reinforcement Learning

Reinforcement learning is learning from positive and negative rewards. (Negative
rewards are often called penalties or costs). Every action5 a 2 A(s) has an immediate
reward r(s; a) 2 R, that is obtained when the agent executes the action. If the agent
starts in sstart = s 2 S and executes actions for which it receives immediate reward rt
at step (number of actions executed previously) t 2 N0, then the total reward that the
agent receives over its lifetime for this particular behavior is

U(s) :=
1X
t=0

trt (1)

where
 2 (0; 1] is called the discount factor. We say that discounting is used if
 < 1,
otherwise no discounting is used.

Reinforcement learning algorithms �nd a behavior for the agent that maximizes the
total reward for every possible start state.6 Such a behavior is usually speci�ed as a
stationary, deterministic policy, in the following called policy. A policy, also called
action map or state-action rules,

f : S !
[
s2S

A(s)

where f (s) 2 A(s) for all s 2 S, is an assignment of actions to states that determines
which action f(s) 2 A(s) the agent has to execute in its current state s 2 S. Exe-
cuting a policy makes the agent highly reactive. By using closed loop plans instead
of open loop plans, the agent is able to deal with uncertain action outcomes (\con-
tingencies") and thus overcomes some of the de�ciencies caused by more traditional
planning approaches. Although the notion \policy" originated in the �eld of Stochastic
Dynamic Programming, similar schemes have been proposed in the context of Arti�cial
Intelligence, for example Schopper's universal plans [26].

Finding an optimal policy solves the credit-assignment problem, i.e. which ac-
tion(s) of an action sequence to blame if the total reward is non-optimal. Usually it is
not su�cient to always execute the action with the largest immediate reward, because
executing actions with small immediate rewards can be necessary to make large future
rewards possible. This is called the problem of delayed rewards or, alternatively,
reinforcement learning with delayed rewards.

5To describe reinforcement learning, we use the symbols of the path planning domain, but overline
them.

6Depending on the reinforcement learning problem, the total reward can become (plus or minus)
in�nity if no discounting is used, and might then not be useful to discriminate between good and bad
behavior of the agent. In this case, one can use either the total discounted reward or the average
reward per step in the limit.

4

Reinforcement learning algorithms proceed in two steps to �nd an optimal policy:

1. First, they determine the values Uopt(s) for all s 2 S. U opt(s) is the largest total
reward possible for sstart = s. These values are the solutions of the following set
of equations

U opt(s) = max
a2A(s)

(r(s; a) +
Uopt(succ(s; a))) for all s 2 S (2)

If
 < 1, then the solution is unique. The solution might not be unique for
 = 1,
but the di�erences Uopt(s)� Uopt(s0) for all s; s0 2 S are [8]. Thus, any solution
determines the same preferences among the states.

2. Then, an optimal policy is to execute action argmaxa2A(s)(r(s; a) +

Uopt(succ(s; a))) in state s 2 S.7

We analyze two reinforcement learning algorithms that are widely used: Q-learning
[34] and value-iteration [4]. Both can be used o�-line, and especially value-iteration
has traditionally been used by updating all states either synchronously, for example
simultaneously or by performing a sweep over the state space and updating every
state in turn (\Gauss-Seidel updating"), or asynchronously. Since both Q-learning
and value-iteration are temporal di�erence methods and therefore incremental, one
can interleave them with action execution to construct asynchronous real-time forms
that use actual state transitions. In the following, we investigate these on-line versions:
1-step Q-learning and 1-step value-iteration.

2.1 Q-Learning

The 1-step Q-learning algorithm8 [35], in the following called Q-learning, consists
of a termination checking step (line 2), an action selection step (line 3), an action
execution step (line 4), and a value update step (line 5), see Figure 3. For now, we
leave the initial Q-values unspeci�ed.

The action selection step implements the exploration rule (\which state to go to next").
It is constrained to look only at information local to the current state s of the agent.
Q-learning does not learn or use an action model, i.e. the action selection step does
not need to predict succ(s; a) for an a 2 A(s). Instead, information about the relative
goodness of the actions is stored in the states. This includes a value Q(s; a) in state
s for each action a 2 A(s). Q(s; a) approximates the optimal total reward received if
the agent starts in s, executes a, and then behaves optimally.

7read: \any action a 2 A(s) for which r(s; a) +
U opt(succ(s; a)) = max
a02A(s)(r(s; a

0) +

U opt(succ(s; a0)))". If several actions tie, an arbitrary one of the equally good actions can be selected.
8Since we consider only actions with deterministic outcomes, we state the Q-learning algorithm

with the learning rate � set to one.

5

1. Set s := the current state.

2. If s 2 G, then stop.

3. Select an action a 2 A(s).

4. Execute action a.
/* As a consequence, the agent receives reward r(s; a) and is in state succ(s; a).
Increment the number of steps taken, i.e. set t := t+ 1. */

5. Set Q(s; a) := r(s; a) +
U(succ(s; a)).

6. Go to 1.

where
U(s) := maxa2A(s)Q(s; a)
at every point in time.

Figure 3: The Q-learning algorithm

The action selection step can use the Q-values, but does not need to. The actual
selection strategy is left open: It could, for example, select an action randomly, select
the action that it has executed the least number of times, or select the action with the
largest Q-value. Exploration is termed undirected [33] if it uses only the Q-values
(or no information at all), otherwise it is termed directed. The basic Q-learning
algorithms studied by us do not maintain other local information than the Q-values
and are therefore undirected.

Once the selected action a has been executed in state s and the immediate reward r(s; a)
has been received, the agent temporarily has access to the Q-values of its former and
its new state at the same time, and the value update step adjusts Q(s; a). The 1-step
look-ahead value r(s; a)+
U(succ(s; a)) is more accurate than, and therefore replaces,
Q(s; a). The value update step can also adjust other information local to the former
state if needed.

The Q-learning algorithm is memoryless. We call an on-line search algorithm mem-

oryless [14] if it cannot remember information other than what it has stored in the
states. Its access to this information is restricted to information local to the current
state of the agent. After the execution of an action, the algorithm can only propagate
information from the new state of the agent to its former state. Since the algorithm
cannot propagate information in the other direction and has no internal memory, it
cannot easily accumulate information: Information that it had available in its former
state is inaccessible in its new state. The notion \memoryless" is motivated by the
observation that the size required for the internal memory of an on-line search algo-
rithm should not depend on the size of the state space. If one actually builds a robot,
then one can give it only an internal memory of �nite size. If this robot is to solve
tasks in state spaces of arbitrary size, then the size of the internal memory needed by
the algorithm that controls the robot cannot depend on n. Thus, only algorithms that

6

1. s := the current state.

2. If s 2 G, then stop.

3. Select an action a 2 A(s).

4. Execute action a.
/* As a consequence, the agent receives reward r(s; a) and is in state succ(s; a).
Increment the number of steps taken, i.e. set t := t+ 1. */

5. Set U(s) := maxa2A(s)(r(s; a) +
U (succ(s; a))).

6. Go to 1.

Figure 4: The value-iteration algorithm

merely need a memory of constant size (i.e. �nite state machines) can work unchanged
in arbitrarily large state spaces. A memoryless algorithm is an extreme example of
such algorithms.

2.2 Value-Iteration

The 1-step value-iteration algorithm, in the following called value-iteration, is sim-
ilar to the 1-step Q-learning algorithm, see Figure 4. Like the Q-learning algorithm, it
is memoryless. The di�erence is that the value-iteration algorithm can access r(s; a),
U(succ(s; a)) and other information of state succ(s; a) for every action a 2 A(s) in
the current state s, whereas the Q-learning algorithm has to estimate them with the
Q-values (and other information local to the current state). This di�erence is illus-
trated graphically in Figure 5. Thus, the action selection step of the value-iteration
algorithm (line 3) can always use the current value of U (succ(s; a)) to evaluate the
goodness of executing a in s, even if this value has changed since the last execu-
tion of a in s. The expectation Q(s; a), however, changes only when a is executed
in s and can therefore be out-dated. The value update step (line 5) becomes \Set
U(s) := maxa2A(s)(r(s; a) +
U (succ(s; a)))" for value-iteration.

Value-iteration shares with Q-learning that it does not explicitly infer the topology of
the state space (i.e. it does not know or learn a map), but it must know an action
model (i.e. be able to predict succ(s; a) for all a 2 A(s) in the current state s 2 S).9

Whereas Q-learning does not know the e�ect of an action before it has executed it at
least once, value-iteration only needs to enter a state at least once to discover all of its

9The agent knows a map if it is able to predict succ(s; a) for all s 2 S and a 2 A(s), no matter
which state it is in. The agent knows an action model (a \distributed map") if it is able to predict
succ(s; a) for all a 2 A(s) in its current state s 2 S. It is not necessarily able to predict the outcomes
of actions that are executed in other states than its current state. Thus, knowing a map is more
powerful than knowing an action model.

7

Q(here,left) = -2
Q(here,right) = 0 U(here) = -2

U(here) = -1
U(here) = -2

Where do I
go next?

Left or right?

Where do I
go next?
Left or right?

(a) (1-step) Q-learning (b) (1-step) value-iteration

What the agent sees and thinks

Figure 5: Reinforcement learning algorithms

successor states. Since value-iteration is more powerful than Q-learning, we expect it
to have a smaller complexity.

3 Task Representation

To represent the task of �nding shortest paths as a reinforcement learning problem, we
have to specify S, sstart, G, A(s) for s 2 S, succ, and r. We set S := S, sstart := sstart,
G := G, A(s) := A(s) for s 2 S, and use the state transition function succ := succ,
except that we let the lifetime of the agent in formula 1 end when it reaches a goal
state. Formally,

S := S
sstart := sstart

G := G

A(s) :=

(
fidg if s 2 G
A(s) otherwise

for all s 2 S

succ(s; a) :=

(
s if a = id
succ(s; a) otherwise

for all s 2 S and a 2 A(s)

r(s; id) := 0 for all s 2 G

where id is an identity action (i.e. it leaves the state unchanged).

This leaves only the immediate rewards r(s; a) for s 2 S n G := fs 2 S : s 62 Gg and
a 2 A(s) unspeci�ed. Every reward function r can be chosen, as long as it has the
following property:

gd(s) < gd(s0), U opt(s) > Uopt(s0) for all s; s0 2 S (3)

8

(a) Goal-reward representation

(b) Action-penalty representation

0

0

0

0

0

0
1

1

0

0

0

0

0

0

0

0

0

-1
-1

-1

-1

-1
-1-1

-1

-1

-1

-1

-1

-1
-1

0

-1

-1

0

-1

Figure 6: Two representations of the map

i.e. a state with a smaller goal distance has a larger optimal total reward and vice
versa. This guarantees that shorter paths to a goal state are preferred over longer
paths which in turn are preferred over paths that do not lead to a goal state (i.e. let
the agent cycle in non-goal states). If condition 3 did not hold, then reinforcement
learning algorithms would prefer longer paths to a goal state over shorter ones, since
they maximize the total reward for every state.

We consider two possible reward functions with this property, both shown in Figure 6.
(We use the undirected edge s $ s0 as a shortcut for the two directed edges s ! s0

and s s0.)

9

3.1 Goal-Reward Representation

In the goal-reward representation, the agent is rewarded for entering a goal state,
but not rewarded or penalized otherwise. This representation has been used by [35],
[33], [31], and [24], among others.

r(s; a) =

(
1 if succ(s; a) 2 G
0 otherwise

for s 2 S nG and a 2 A(s)

The optimal total discounted reward of s 2 S nG is
gd(s)�1. If no discounting is used,
then the optimal total reward is 1 for every s 2 S nG, independent of its goal distance,
since the state space is strongly connected. Thus, discounting is necessary so that
shorter goal distances equate with larger optimal total rewards, i.e. in order to satisfy
property 3.

3.2 Action-Penalty Representation

In the action-penalty representation, the agent is penalized for every action that
it executes. This representation has a more dense reward structure than the goal-
reward representation (i.e. the agent receives non-zero rewards more often) if goals are
relatively sparse. It has been used by [3], [2], and [13], among others.

r(s; a) = �1 for s 2 S nG and a 2 A(s)

The optimal total discounted reward of s 2 S is (1 �
gd(s))=(
 � 1). Its optimal total
undiscounted reward is �gd(s). Note that discounting can be used with the action-
penalty representation, but is not necessary to satisfy restriction 3. Therefore, the
action-penalty representation provides additional freedom when choosing the parame-
ters of the reinforcement learning algorithms. The Q-values and U -values are integers
if no discounting is used, otherwise they are reals. Integers have the advantage over
reals that they need less memory space and can be stored without loss in precision.

3.3 The Problem of Delayed Rewards

In the goal-reward representation, actions that enter a goal state have a positive imme-
diate reward. All other actions have no immediate reward or penalty at all. Thus, the
agent receives its �rst non-zero reward when it enters a goal state for the �rst time. In
the action-penalty representation, all actions (in non-goal states) have an immediate
cost of one. Thus, the agent always receives non-zero rewards no matter which actions
it executes.

The problem of delayed rewards is present no matter which of the two representations
is used, since it is not necessarily optimal to always execute the action with the largest
immediate reward. In fact, in almost all states all actions have the same immediate

10

reward (provided that goals are relatively sparse), namely 0 if goal-reward representa-
tion is used or �1 if action-penalty representation is used, but usually not all actions
are equally preferable.

To summarize, the agent immediately receives non-zero rewards if action-penalty rep-
resentation is used but no immediate rewards if goal-reward representation is used.
However, switching from goal-reward representation to action-penalty representation
does not transform the reinforcement learning problem from one with delayed rewards
to one with immediate rewards and, thus, does not make the credit-assignment problem
trivial to solve.

4 Reaching a Goal State with Q-Learning

We can now determine the complexity of reinforcement learning algorithms for the path
planning tasks. We �rst analyze the complexity of reaching a goal state for the �rst
time. The agent does not need to �nd shortest paths. It only has to reach a goal state
from the start state. We use the total number of steps that the agent needs to solve
the task in the worst-case as a measure for the complexity of the on-line algorithms.
The worst-case complexity of reaching a goal state provides a lower bound on the
complexity of �nding all shortest paths, since this cannot be done without knowing
where the goal states are. By \worst-case complexity" we mean an upper bound on
the number of steps for an uninformed algorithm that holds for all possible topologies
of the state space, start and goal states, and tie breaking rules among indistinguishable
actions (i.e. actions that have the same Q-values). Clearly, in order to have a worst-
case complexity smaller than in�nity, an initially uninformed search algorithm must
learn something about the e�ects of action executions.

4.1 Zero-Initialized Q-Learning with Goal-Reward Repre-

sentation

Assume that a Q-learning algorithm operates on the goal-reward representation and is
zero-initialized, i.e. has no initial knowledge of the topology of the state space. Such
an algorithm is uninformed.

De�nition 1 A Q-learning algorithm is initialized with q 2 R (or, synonymously,
q-initialized), i� initially

Q(s; a) =

(
0 if s 2 G
q otherwise

for all s 2 S and a 2 A(s)

An example for a possible behavior of the agent in the state space with the reward
structure from Figure 6(a) is shown in Figure 7. It depicts the beginning and end of

11

0

0 0 0

0

0
0

0

0

0

0 0 0

0

0
0

0

0

0

0 0 0

0

0
0

0

0

0

0 0 0

0

0
0

0

0

t = 0:

t = 1:

t = 2:

t = 3:

0 0
0

0

0

0

0

0

0
0

0

0

0

0
0

0

0

0
0

0

t = last step - 1:

0

0

0

0

000

0
0

0

t = last step:

0

0

1

0

000

0
0

0

0

0 0 0

0

0
0

0

0

t = 4:

0
0

0
0

0

...

goal

goal

Figure 7: Possible trace of the agent if goal-reward representation is used

a trace, i.e. state sequence that the agent traverses. The U -values are shown in the
states, and the Q-values label the actions.

During the search for a goal state, all Q-values remain zero. The Q-value of the
action that leads the agent to a goal state is the �rst Q-value that changes. For all
other actions, no information about the topology of the state space is remembered by
the agent, i.e. it does not remember the e�ects of actions. In fact, it does not even
remember which actions it has already explored. As a consequence, the action selection
step has no information on which to base the decision which action to execute next if
it utilizes only the Q-values (i.e. if it performs undirected exploration). We assume
that the agent selects actions randomly, i.e. according to a uniform distribution.10

Therefore, the agent performs a random walk. The same behavior can be achieved
without maintaining Q-values or any other information, simply by repeatedly selecting
one of the available actions at random and executing it.

A random walk in a strongly connected, �nite state space reaches a goal state eventually
with probability one. The number of steps needed can exceed every given bound (with

10If it had a systematic bias, for example always chose the smallest action according to some given
ordering, it would not necessarily reach a goal state and could therefore cycle in the state space forever.

12

(a) state space

(b) Markov chain that models the random walk

...

start goal

1 2 3 4 n

...1 2 3 4 n
1.0 0.5 0.5 0.5 0.5

1.0
0.5

0.5
0.5

a1a1 a1

a2

a2

a2

Figure 8: A domain (\reset state space") for which a random walk needs 3� 2n�2 � 2
steps on average to reach the goal state (for n � 2)

a probability close to zero) so we use the largest average number of steps over all
possible topologies of the state space, start and goal states, rather than the worst-case
complexity. The number of steps needed on average to reach a goal state from state s
equals the absorption time of s in the Markov chain that corresponds to the random
walk. (See Figure 8(b) for an example whose transitions are labeled with the transition
probabilities.) For every s 2 S we introduce a variable xs 2 R that represents the
average number of steps needed until a goal state is reached if the agent starts in s.
These values can be calculated by solving the following set of linear equations

xs =

8><
>:

0 if s 2 G

1 +
1

jA(s)j

X
a2A(s)

xsucc(s;a) otherwise for all s 2 S (4)

xsstart can scale exponentially with n, the number of states. Consider for example
the reset state space shown in Figure 8. A \reset" state space is one in which all
states (except for the start state) have an action that leads back to the start state. It
corresponds for example to the task of stacking n blocks if the agent can either stack
another block or scramble the stack in every state.

Theorem 1 (Whitehead [37]) The expected number of steps that a zero-initialized
Q-learning algorithm with goal-reward representation needs in order to reach a goal
state and terminate can be exponential in n.

[35] made this observation for state spaces that have the following property: In every
state (except for the border states), the probability of choosing an action that leads

13

...1 2 3 4 n

start goalgoal

Figure 9: A domain for which a random walk needs 2n+1 � 3n� 1 steps on average to
reach the goal state (for n � 1)

away from the (only) goal state is larger than the probability of choosing an action that
leads closer to the goal state. Consider for example the version of a one-dimensional
gridworld shown in Figure 9, that is similar to one in [33]. In every state (but the
border states) the agent can execute three actions: one leads to the right, the other
two are identical and lead to the left. If an action is chosen randomly, chances are 2=3
that the agent goes to the left (i.e. goes away from the goal state) and only 1=3 that
it goes to the right (i.e. approaches the goal state).

This observation motivated [35] to explore cooperative reinforcement learning algo-
rithms in order to decrease the complexity. [32] showed that even non-cooperative rein-
forcement learning algorithms have polynomial worst-case complexity if reinforcement
learning is augmented with a directed exploration mechanism that he calls \counter-
based Q-learning." We will show that one does not need to augment Q-learning. It
is tractable if one uses either the action-penalty representation or di�erent initial Q-
values. This con�rms experimental observations of [11], [36], [19], and [24], who men-
tion an improvement in performance during their experiments when using the action-
penalty representation or initializing the Q-values high instead of using the goal-reward
representation and initializing the Q-values with zero.

4.2 Using a Di�erent Task Representation

Assume now that we are still using a zero-initializedQ-learning algorithm, but let it op-
erate on the action-penalty representation. Although the algorithm is still uninformed,
the Q-values change immediately, starting with the �rst action execution, since the
reward structure is dense. In this way, the agent remembers the e�ects of previous
action executions. An example for a possible behavior of the agent in the state space
with the reward structure from Figure 6(b) is shown in Figure 10. The U -values are
shown in the states, and the Q-values label the actions.

4.2.1 Complexity Analysis

While we state the following de�nitions, lemmas, and theorems for the case in which
no discounting is used, they can easily be adapted to the discounted case as outlined

14

0

-1 0 0

0

0
0

0

0

0

1 0 -1

0

0
0

0

0

0

0 0 0

0

0
0

0

0

0

-1 0 -1

-1

0
0

0

0

t = 0:

t = 1:

t = 2:

t = 3:

0 0
0

0

0

0

0

0

0
0

0

0

0

0
0

0

0

0
0

0

t = last step:

0

0

-1

0

000

-1
0

0

0

-1 -1 -1

-1

0
0

0

0

t = 4:

0
0

0
0

0

-1

-1 -1 -1

0
0

0

0

t = 5:

-1 0
0

0

-1 0

0
0

... 0
0

goal

Figure 10: Possible trace of the agent if action-penalty representation is used (
 = 1)

later in this chapter.

De�nition 2 Q-values are consistent i�

0
�1 + U(succ(s; a))

)
� Q(s; a) � 0

(
for all s 2 G and a 2 A(s)
for all s 2 S nG and a 2 A(s)

Zero-initialized Q-values are consistent.

De�nition 3 Q-values are admissible i�

0
�1� gd(succ(s; a))

)
� Q(s; a) � 0

(
for all s 2 G and a 2 A(s)
for all s 2 S nG and a 2 A(s)

Consistent Q-values are admissible.

To understand our choice of terminology, note the following relationship:

Qopt(s; a) =

(
0 for all s 2 G and a 2 A(s)
�1 + Uopt(succ(s; a)) = �1� gd(succ(s; a)) for all s 2 S nG and a 2 A(s)

15

since Uopt(s) = �gd(s) for all s 2 S. Thus, Q-values are admissible i� Qopt(s; a) �
Q(s; a) � 0 for all s 2 S and a 2 A(s). This parallels the notion of admissibility that
is used for heuristic estimates in connection with A*-search (see for example [20] or
[22]). Furthermore, if a heuristic h for the goal distance is known that is admissible for
A*-search, then the following Q-values are admissible as well

Q(s; a) =

(
0 for all s 2 G and a 2 A(s)
�1� h(succ(s; a)) for all s 2 S nG and a 2 A(s)

Admissible heuristics are known for many search problems in Arti�cial Intelligence, for
example for path planning problems in a gridworld (or more general: on a topological
map) or solving the 8-puzzle.

De�nition 4 A Q-learning algorithm is admissible i� it uses the action-penalty rep-
resentation, its action selection step is \a := argmax a02A(s)Q(s; a

0)," and either

� its initial Q-values are consistent, and its value update step is \Set Q(s; a) :=
�1 + U(succ(s; a)),"11 or

� its initial Q-values are admissible, and its value update step is \Set Q(s; a) :=
min(Q(s; a);�1 + U(succ(s; a)))."

If a Q-learning algorithm is admissible, then consistent (admissible) Q-values remain
consistent (admissible) after every step of the agent and are monotonically decreasing.

The action selection step of an admissible Q-learning algorithm always executes the
action with the largest Q-value. This strategy avoids the exploration exploitation
con
ict, since it always exploits (i.e. executes the action that currently seems to be
best) but at the same time explores su�ciently often (i.e. executes actions that it
has never executed before). It performs undirected exploration, since it uses only the
Q-values for action selection and no other information.

Call PG := fs 2 S : U(s) = 0g � G the set of potential goal states. If the Q-learning
algorithm is zero-initialized, then PG is always the set of states in which the agent
has not yet explored all of the actions. We call an action explored i� the agent has
executed it at least once. If Q-values are consistent, then

�1� min
s02PG

d(succ(s; a); s0) � Q(s; a) � 0 for all s 2 S nG and a 2 A(s)

The action selection step can then be interpreted as using Q(s; a) to approximate
�1 � mins02PG d(succ(s; a); s0)) and tending (sometimes unsuccessfully) to direct the
agent from the current state to the closest potential goal state with as few steps as
possible and make it then take an unexplored action.

11i.e. \Set Q(s; a) := r(s; a) +
U (succ(s; a))," where r(s; a) = �1 and
 = 1.

16

It is easy to see that an admissible Q-learning algorithm eventually reaches a goal
state. The argument parallels a similar argument for RTA*-type algorithms [17, 25]
and is by contradiction: If the agent did not reach a goal state eventually, it would run
around in a cycle that would not include a goal state. For every cycle that the agent
completed, the largest Q-value of the actions executed in the cycle would decrease by
at least one. Eventually, the Q-values of all actions executed in the cycle would drop
below every bound. In particular, they would drop below the Q-value of an action that,
when executed, would make the agent leave the cycle. Such an action exists, since the
state space is strongly connected and thus a goal state can be reached from within the
cycle. Then, the agent would leave the cycle, which is a contradiction.

Now that we know that the algorithm terminates (which also means that the algorithm
is correct, i.e. reaches a goal state), we are interested in its complexity. Lemma 1
contains the central invariant for all proofs. It states that the number of steps executed
so far is always bounded by an expression that depends only on the initial and current
Q-values and, more over, \that the sum of all Q-values decreases (on average) by one
for every step taken" (this paraphrase is grossly simpli�ed). A time superscript of t
in Lemmas 1 and 2 refers to the values of the variables immediately before the action
execution step, i.e. line 4, of step t.

Lemma 1 For all steps t 2 N0 (until termination) of an undiscounted, admissible
Q-learning algorithm, it holds that

U t(st) +
X
s2S

X
a2A(s)

Q0(s; a)� t �
X
s2S

X
a2A(s)

Qt(s; a) + U 0(s0)� loopt

and

loopt �
X
s2S

X
a2A(s)

Q0(s; a)�
X
s2S

X
a2A(s)

Qt(s; a);

where loopt := jft0 2 f0; . . . ; t� 1g : st
0

= st
0+1gj (the number of identity actions, i.e.

actions that do not change the state, executed before t).

Lemma 2 An undiscounted, admissible Q-learning algorithm reaches a goal state and
terminates after at most

2
X

s2SnG

X
a2A(s)

(Q0(s; a) + gd(succ(s; a)) + 1)� U0(s0)

steps.

Theorem 2 An admissible Q-learning algorithm reaches a goal state and terminates
after at most O(ed) steps.

Lemma 2 utilizes the invariant and the fact that each of the e di�erent Q-values is
bounded by an expression that depends only on the goal distances to derive a bound

17

on t. Since \the sum of all Q-values decreases (on average) by one for every step
taken" according to the invariant, but is bounded from below, the algorithm must
terminate. Since gd(s) � d for all s 2 S, the result from Theorem 2 follows directly.
O(ed) � O(en), since d � n � 1 in every strongly connected state space. (Remember
that n denotes the number of states, e the total number of actions, and d the depth
of the state space.) Thus, an admissible Q-learning algorithm reaches a goal state and
terminates after at most O(en) steps. This worst-case performance provides, of course,
an upper bound on the average-case performance of the algorithm.

Theorem 2 provides an upper bound on the complexity of every admissible Q-learning
algorithm, including a zero-initialized algorithm. To demonstrate that O(en) is a tight
bound for a zero-initialized Q-learning algorithm, we show that it is also a lower bound.
Lower bounds can be proved by example, i.e. by showing a domain for which the Q-
learning algorithm can need this many steps to reach a goal state. Such a domain is
depicted in Figure 11. Thus, the worst-case complexity of reaching a goal state with
admissible, zero-initialized Q-learning is tight at O(en).

4.2.2 Comparison of Q-Learning to other On-Line Search Algorithms

We de�ne an (initially) uninformed on-line search algorithm to be an algorithm
that does not know the e�ect of an action (i.e. does not know which successor state
the action leads to) before it has executed it at least once. One example of such an
algorithm is zero-initialized Q-learning.

A highly reactive algorithm, such as Q-learning, often executes actions that are sub-
optimal (when judged according to the knowledge that the agent could have acquired
if it had memorized all of its experiences). For example, the agent can move around
for a long time in parts of the state space that it has already explored, thus neither
exploring unknown parts of the state space nor having a chance to �nd a goal. This
can be avoided when planning further into the future: the agent learns a model of
the state space (\world model", which is in our case a map), and uses it to predict the
e�ects of action executions. This enables the agent to make a more informed decision
about which action to execute next.

The DYNA architecture [30] [31], for example, implements look-ahead planning in the
framework of Q-learning. Actions are executed in the real world mainly to re�ne (and,
in non-stationary environments, to update) the model. The model is used to simulate
the execution of actions and thereby to create experiences that are indistinguishable
from the execution of real actions. This way, the real world and the model can inter-
changeably be used to provide input for Q-learning. Using the model, the agent can
optimize its behavior according to its current knowledge without having to execute
actions in the real world. Also, the agent can simulate the execution of arbitrary (not
just local) actions at any time. Various researchers, for example [24] and [19], have
devised strategies which actions to simulate in order to speed-up planning.

There is a trade-o�: When learning a map and using it for planning, the agent has

18

...

start goal

1 2 3 n-1 n

...

Figure 11: A domain for which an admissible, zero-initializedQ-learning algorithm (and
every other uninformed on-line search algorithm) can need at least (e� n + 1)(n� 1)
steps to reach the goal state (for n � 2 and e � n)

to keep more information around and perform more computations between action ex-
ecutions, which increases its deliberation time between action executions. However,
chances are that the agent needs less steps to reach a goal state. In the following, we
compare the worst-case complexity of the Q-learning algorithm, that does not learn a
map, to the worst-case complexity of any other uninformed search algorithm, e.g. one
that learns a map and uses it for planning.

Figure 11 shows that every uninformed on-line search algorithm has a worst-case com-
plexity of at least O(en). If ties are broken in favor of actions that lead to states with
smaller numbers, then every uninformed on-line search algorithm can traverse a super-
sequence of the following state sequence: e � n + 1 times the sequence 123 . . .n � 1,
and �nally n. Basically, all of the O(e) actions in state n � 1 are executed once. All
of these lead the agent back to state 1 and therefore force it to execute O(n) explored
actions before it can explore a new action. Thus, the worst-case complexity is at least
O(en).

We had already seen that one could decrease the complexity of Q-learning dramatically
(i.e. in some cases exponentially) by choosing the action-penalty representation over
the goal-reward representation. Now, we have shown that every uninformed on-line
search algorithm has at least the same worst-case complexity as a zero-initialized Q-
learning algorithm with action-penalty representation. This does not mean, however,
that such a Q-learning algorithm is the best possible algorithm for reaching a goal state.
In the following, we show that there exists an uninformed on-line search algorithm that
strictly dominates an admissible, zero-initialized Q-learning algorithm. We say that an
algorithm X strictly dominates an algorithm Y if X always performs no worse (i.e.
needs no more steps) than Y and performs strictly better in at least one case.

Consider an algorithm that maintains a map of the part of the state space that it has
explored so far. It executes unexplored actions in the same order as zero-initialized
Q-learning, but always chooses the shortest known path to the next unexplored action:
The agent uses its model of the world, i.e. the (partial) map and its knowledge of the

19

start goal

1 n 1+
2

n 3+
2

n...

...

...

a1

a2
a2

a1

this part of the state space is totally connected

Figure 12: A domain for which an admissible, zero-initialized Q-learning algorithm
can need at least 1=16n3 � 3=16n2 � 1=16n + 3=16 steps to reach the goal state, but
Qmap-learning needs only at most 3=8n2 + 3=2n � 23=8 steps (for odd n � 3)

Q-values, to simulate its behavior under the Q-learning algorithm until it would execute
an unexplored action. Then, it uses the map to �nd the shortest known action sequence
that leads from its current state in the world to the state in which it can execute this
action, executes the action sequence and the unexplored action, and repeats the cycle.
We call this algorithm the Qmap-learning algorithm. Per construction, it cannot
perform worse than zero-initialized Q-learning (no matter what the tie-breaking rule
is) if ties are broken in the same way . Thus, the worst-case complexity of Qmap-learning
over all tie-breaking rules cannot be worse than the one of Q-learning. Consider, for
example, the state sequence that Q-learning traverses in a reset state space (shown
in Figure 8) of size n = 6 if ties are broken in favor of actions that lead to states
with smaller numbers: 1212312341234512123456. First, Q-learning �nds out about the
e�ect of action a1 in state 1 and then about a2 in 2, a1 in 2, a2 in 3, a1 in 3, a2 in 4,
a1 in 4, a2 in 5, and a1 in 5, in this order. The Qmap-learning algorithm explores the
actions in the same order. However, after it has executed action a2 in state 5 for the
�rst time, it knows how to reach state 5 again faster than Q-learning: it goes from state
1 through states 2, 3, and 4, to state 5, whereas Q-learning goes through states 2, 1,
2, 3, and 4. Thus, the Qmap-learning algorithm traverses the following state sequence:
12123123412345123456, and is two steps faster than Q-learning. Figure 12 gives an
example of a domain for which the big-O worst-case complexities of the two algorithms
are di�erent: There is a tie-breaking rule that causes Q-learning to need O(n3) steps
to reach the goal state, whereas Qmap-learning needs at most O(n2) steps no matter
how ties are broken. In short: Q-learning can require O(n3) steps to reach the goal
state, whereas Qmap-learning reaches the goal state with at most O(n2) steps.

The Qmap-learning algorithm is mainly of theoretical interest, because it demonstrates
that there exist algorithms that dominate Q-learning, and the domination proof is easy.
However, algorithms whose behavior resembles the one of the Qmap-learning algorithm

20

are not only of theoretical interest:

One idea behind the DYNA architecture is that executing actions in the real world is
slow (and expensive), whereas simulating the execution of actions in a model of the
world is fast (and inexpensive). Therefore, planning should exclusively be done in the
model if possible. Once an action is explored in the real world, it can be integrated in
the model. The e�ect of an action does not change over time, since the state space is
stationary. Consequently, actions should only be executed in the real world

� to learn the e�ect of the executed (unexplored) action,

� to get the agent into a state in which it can �nd out about the e�ect of an
unexplored action, or

� to get the agent to a goal.

If executing actions in the real world and simulating action executions in the model take
approximately the same time, then there is a trade-o�. Simulating actions allows the
agent to utilize its current knowledge better, whereas executing actions in the real-world
increases its knowledge and allow it to stumble across a goal. This trade-o� has for
example been investigated by [15] and [16]. Using the model provides the agent with the
advantage that all actions can be simulated at any time, whereas the world constrains it
to execute only actions in its current state. Reinforcement learning researchers usually
assume that the agent can simulate x action executions for every action execution in
the real world. Then, the problem arises which actions to simulate. Reinforcement
learning researchers have proposed real-time schemes for planning in the world model
of a DYNA architecture that are used to approximate the following behavior of the
agent: \If the current world state is a goal state, stop. Otherwise, go to the closest
state with an unexplored action, execute it, and repeat." This way, one prevents the
agent from unnecessarily executing actions that it has already explored, which is also
the objective of the Qmap-learning algorithm. Di�erent researchers update the Q-values
in the model in di�erent orders. For example, [23] and [9] study reinforcement learning
algorithms that have a look-ahead larger than one or perform best-�rst search. In
contrast, [19] updates those Q-values in the model �rst that are expected to change
most. Note that we have not included the planning time in the complexity measure.
If planning time is not negligible compared to execution time, then the total run-time
(i.e. the sum of planning and execution time) can increase even if the number of steps
needed (i.e. the execution time) decreases.

The relationships between an admissible, zero-initialized Q-learning algorithm, the
Qmap-learning algorithm, and uninformed on-line search algorithms in general are sum-
marized in Figure 13 (for domains that have no duplicate actions, see Chapter 4.4.1).
They show that it can be misleading to focus only on the worst-case complexity of
an on-line search algorithm over all domains. We have demonstrated that there exists
an uninformed on-line search algorithm, namely Q-learning, that reaches a goal state
in O(n3) steps no matter what the domain is. There are domains in which no unin-
formed on-line search algorithm can do better. However, there exists an uninformed

21

1 2 3 4 fig 15 6 fig 12 8 9

O(n3)

O(n2)

maximal number of steps
over all tie-breaking rules

enumeration of all
domains that have
no duplicate actions

every uninformed on-line
search algorithm

Q-learning is never

 is in here

above this line

it is never above the
graph for Q-learning

Qmap-learning:

domain domain domain domain domain domain domain domain domain

admissible, zero-
initialized Q-learning

= corresponds to a data point proved to hold

Figure 13: A diagram showing the relationships between an admissible, zero-initialized
Q-learning algorithm, the Qmap-learning algorithm, and uninformed on-line search al-
gorithms in general (data points for domains other than the ones shown in Figures 12
and 15 are �ctitious)

on-line search algorithm, namely Qmap-learning, that always performs no worse than
Q-learning, but reduces the number of action executions by more than a constant fac-
tor in at least one domain. To summarize, although every uninformed on-line search
algorithm has at least the same big-O worst-case complexity as an admissible, zero-
initialized Q-learning algorithm, learning a map of the state space (and subsequently
using it for planning) can decrease the big-O worst-case complexity for some (but not
all) domains.

4.2.3 Comparison of Q-Learning to O�-Line Search Algorithms

The ratio of the worst-case e�ort spent by a given on-line algorithm to solve a given
problem and the worst-case e�ort spent by the best informed o�-line algorithm to solve
the same problem is called the competitive ratio of the on-line algorithm. An on-line
algorithm is called competitive if its competitive ratio is bounded from above by a
constant (i.e. the upper bound is independent of the problem size) [29]. Figure 14
shows, as expected, that no uninformed on-line search algorithm is competitive: they
need O(en) steps in the worst case, but an o�-line algorithm that knows the topology
of the state space can reach the goal state in only one step.12 On-line search algorithms

12One could argue that it would be more appropriate to use the maximum of the ratio of the average-

case e�ort spent by the on-line algorithm and the average-case e�ort spent by the best totally informed
o�-line algorithm. For the path planning tasks, the average-case complexity of the o�-line algorithm

22

...

goal

2 3 4 n-1 n

...

start

goal

1

Figure 14: A domain for which an admissible, zero-initializedQ-learning algorithm (and
every other uninformed on-line search algorithm) can need at least (e� n)(n � 2) + 1
steps to reach the goal state, but an o�-line search algorithm that knows the topology
of the state space needs only one step to reach the goal state (for n � 3 and e � n+1)

with a look-ahead of one step (such as Q-learning), that reduce deliberation between
action executions to a minimum, and o�-line search algorithms represent extremepoints
on the deliberation action scale, with on-line search algorithms that have a limited look-
ahead larger than one in between. The competitive ratio of O(en) demonstrates that
one increases the number of steps executed by a factor of O(en) at most when moving
from the reactive extreme of the deliberation action scale to the deliberative extreme.

4.2.4 Discounting

All properties of an undiscounted, admissible Q-learning algorithm can immediately
be transferred to the case in which discounting is used, since there is a strictly
monotonically increasing bijection between the Q-values of the former algorithm af-
ter step t and the Q-values of the latter algorithm after the same step, namely: a
Q-value of Qt(s; a) = q 2 N�

0 in the undiscounted case corresponds to a Q-value of
Qt(s; a) = (1 �
�q)=(
 � 1) in the discounted case. Since both algorithms always
execute the action with the largest Q-value, they always choose the same action for
execution (if ties are broken in the same way). Thus, they behave identically.

equals its worst-case complexity, since action outcomes are deterministic. The complexity of the on-
line algorithm, to the contrary, depends on how ties are broken, which is a random process. Therefore,
its average-case complexity can be smaller than its worst-case complexity. However, Figure 14 also
shows that no uninformed on-line search algorithm is competitive, even under this relaxed de�nition
of competitiveness. We continue to use our original de�nition, since we are for now more interested
in the worst-case complexity of the algorithms than in their average-case performance.

23

4.3 Using Di�erent Initial Q-Values

We now analyze Q-learning algorithms that operate on the goal-reward representation,
but are one-initialized. A similar initialization has been used before, for instance in
experiments conducted by [11]. It assumes no prior knowledge of the topology of the
state space if one makes the reasonable assumption that the value update step knows
after the execution of an action whether the new state of the agent is a goal state or
not. Then, the Q-values of actions in non-goal states can be initialized di�erently from
the Q-values of actions in goal states. We assume (again) that the algorithm uses an
action selection step that executes the action with the largest Q-value.

If the value update step knows whether the new state of the agent is a goal state, one
can set the initial Q-values of actions in non-goal states to �1 and the ones of actions in
goal states to 0. Assigning �1 to non-goal states re
ects the fact that the agent knows
that the state is a non-goal state once it is in the state and therefore can conclude that
it takes at least one action execution to reach a goal state. Such an undiscounted, (mi-
nus one)-initialized Q-learning algorithm with action-penalty representation behaves
identically to a discounted one-initialized Q-learning algorithm with goal-reward rep-
resentation, since there is a strictly monotonically increasing bijection between the
Q-values of the former algorithm after step t and the Q-values of the latter algorithm
after the same step, namely: A Q-value of Qt(s; a) = q 2 N� (Qt(s; a) = 0) for a
(minus one)-initialized Q-learning algorithm with action-penalty representation corre-
sponds to a Q-value of Qt(s; a) =
�q�1 (Qt(s; a) = 0) for a one-initialized Q-learning
algorithm with goal-reward representation.13 (As argued in Chaper 3.1, discounting is
necessary if goal-reward representation is used.) Since both algorithms always execute
the action with the largest Q-value, they always choose the same action for execution
(if ties are broken in the same way). Thus, they behave identically. Since (minus one)-
initialized Q-values are consistent, Theorem 2 applies to the former algorithm. This
leads to the following conclusion.

Theorem 3 A discounted, one-initialized Q-learning algorithm with goal-reward rep-
resentation reaches a goal state and terminates after at most O(ed) steps if its ac-
tion selection step is \a := argmax a02A(s)Q(s; a

0)" and its value update step is \Set
Q(s; a) := r(s; a) +
U(succ(s; a))."

The other results and remarks from the previous chapter can be transferred as well.

13This argument generalizes to the bi-directional Q-learning algorithm, that is stated later in this
report. If the task is only to reach a goal state and stop (i.e. the task that we discuss in this chapter),
then a zero-initialized Q-learning algorithmwith action-penalty representation also behaves identically
to a discounted, one-initialized Q-learning algorithm with goal-reward representation. In this case, it
does not matter how the Q-values of actions in goal states are initialized.

24

4.4 Gridworlds and other Common Reinforcement Learning
Domains

Gridworlds and other domains studied in the context of reinforcement learning can
have special properties such as the following.

De�nition 5 A state space has no identity actions i�, for all s 2 S and a 2 A(s),
succ(s; a) 6= s, i.e. there are no actions that leave the state unchanged.

If the agent knows that an action is an identity action, it does not need to execute
it, since it is never optimal to execute an identity action. However, according to our
assumptions the agent is not aware of the fact whether an action is an identity action.
For example, sometimes it is assumed that the location of an agent in a gridworld
does not change when the agent tries to move forward, but bumps into an obstacle.
Although the absence of identity actions can potentially simplify the path planning
tasks, all of the big-O worst-case complexities stated in this report remain unchanged
if the state space has no identity actions. Thus, all of the state spaces that we use
as examples (except for the one in Figure 22) have no identity actions. However,
other properties of reinforcement learning domains can decrease the big-O worst-case
complexity of reaching a goal state with Q-learning. In the following, we will identify
such properties.

4.4.1 State Spaces with no Duplicate Actions, Constant Individual Upper
Action Bounds, Linear Total Upper Action Bounds, or Polynomial
Widths

Consider the following four properties of state spaces:

De�nition 6 A state space has no duplicate actions i�, for all s 2 S and a; a0 2
A(s), either a = a0 or succ(s; a) 6= succ(s; a0), i.e. no two actions that are applicable
in the same state have the same e�ect.14

De�nition 7 A state space topology has a constant individual upper action
bound b 2 R i� jA(s)j � b for all s 2 S and all n 2 N , i.e. the number of ac-
tions that are applicable in a state is bounded from above by a constant.

De�nition 8 A state space topology has a linear total upper action bound b 2 R
i� e � bn for all n 2 N , i.e. the total number of actions increases at most linearly in
the number of states.

14If the agent knows that two or more actions achieve the same e�ect, it needs to consider only one
of them. However, according to our assumptions it is not aware of the fact whether two actions have
the same e�ect.

25

...

start goal

1 2 3 4 n

Figure 15: A domain for which an admissible, zero-initialized Q-learning algorithm
(and every other uninformed on-line search algorithm) can need at least 1=6n3 � 1=6n
steps to reach the goal state (for n � 1)

Note that every state space topology that has constant individual upper action bound
b also has linear total upper action bound b.

De�nition 9 A state space topology has polynomial width [35] i� there exists a
polynomial function p such that n � p(d) for all n 2 N , i.e. the number of states is a
polynomial function of the depth of the state space.

The following inequalities allow us to expressO(ed) in terms of n or d alone by providing
an upper bound on e that depends only on n or d: e � n2 for state spaces that have
no duplicate actions, and e � bn for state spaces that have linear total upper action
bound b. To be more precise: O(e) = O(n) if the state space has linear total upper
action bound b, since then n � e � bn. Similarly, e � p(d) (where p is a polynomial
function) for state spaces with polynomial width that either have no duplicate actions
or a linear total upper action bound.

If a state space has no duplicate actions, then O(ed) � O(n3), and the worst-case
complexity of an admissible Q-learning algorithm becomes O(n3). This bound is tight
for a zero-initialized Q-learning algorithm, as shown in Figure 15. This demonstrates
that, although Q-learning performs undirected exploration, its worst-case complexity
for reaching a goal state is polynomial (and no longer exponential) in n if the action-
penalty representation is chosen instead of the goal-reward representation. Again, every
uninformed on-line search algorithm has at least the same big-O worst-case complexity
as zero-initialized Q-learning.

If a state space topology has linear total upper action bound b, then the worst-case
complexity becomesO(ed) � O(bn2) = O(n2). If it has polynomial width and either no
duplicate actions or a linear total upper action bound, then e � p(d) for a polynomial
function p and the complexity becomes O(ed) � O(p0(d)), where p0 is a polynomial
function. If the depth d of a state space topology is bounded from above by a constant
(i.e. the upper bound is independent of n), then O(ed) = O(e). If it also has no
duplicate actions, then the worst-case complexity decreases to O(ed) = O(e) � O(n2).

26

goal

x

y

goal

start

Figure 16: An example of a two-dimensional gridworld

If a state space topology has both a depth with a constant upper bound and a linear
total upper action bound, then O(ed) = O(e) = O(n).

Deterministic gridworlds with discrete states, in the following called gridworlds, which
have often been used in studying reinforcement learning, see for example [3], [28], [31],
[33], [37], or [24], have both a constant individual upper action bound and polynomial
width. In the state space shown in Figure 16, for example, the agent can move from
any square to each of its four neighboring squares as long as it stays on the grid and the
target square does not contain an obstacle (which are shaded in the �gure). Consider
now such a rectangular gridworld with size x�y, but without obstacles. It has n = xy
states, e = 4xy�2x�2y actions, and depth d = x+y�2. It has no identity or duplicate
actions, a constant individual upper action bound of four and polynomial width, since
n = xy � (x + y)2 = (d + 2)2. It holds that O(ed) = O(x2y + xy2). If the gridworld
is quadratic, i.e. x = y, then the depth increases sublinearly in n, since d = 2

p
n� 2,

and O(ed) = O(x3) = O(n3=2). Therefore, exploration in unknown gridworlds actually
has very low complexity.

4.4.2 State Spaces that are 1-Step Invertible or Eulerian

Gridworlds often have another special property.

De�nition 10 A state space is 1-step invertible [35] i� it has no duplicate ac-
tions and, for all s 2 S and a 2 A(s), there exists an a0 2 A(succ(s; a)) such that
succ(succ(s; a); a0) = s, i.e. the e�ect of an action can be reversed immediately.

27

start goal

1
n 1+

2
n 3+

2
n...

...

...

this part of the state space is totally connected

Figure 17: A domain for which a random walk needs 1=8n3 + 1=8n2 � 5=8n + 3=8
steps on average to reach the goal state (for odd n � 1) and for which an admissible,
zero-initialized Q-learning algorithm can need at least 1=16n3 + 3=8n2 � 3=16n � 1=4
steps to reach the goal state (for n � 1 with n mod 4 = 1)

De�nition 11 A state space is Eulerian i� jA(s)j = jf(s0; a0) : succ(s0; a0) = s ^ s0 2
S ^ a0 2 A(s0)gj for all s 2 S, i.e. there are as many actions that enter a state as there
are actions that leave the state.

Gridworlds are usually 1-step invertible, and every 1-step invertible state space is Eu-
lerian.

We do not assume that the agent knows that the state space is 1-step invertible or
Eulerian. Even a zero-initialized Q-learning algorithm with goal-reward representation
(i.e. a random walk) is tractable for Eulerian state spaces, as the following theorem
states.

Theorem 4 A zero-initialized Q-learning algorithm with goal-reward representation
reaches a goal state and terminates after at most O(ed) steps on average if the state
space is Eulerian.

This theorem is an immediate corollary to [1]. O(ed) � O(en), since d � n�1 in every
strongly connected state space. Thus, a zero-initializedQ-learning algorithm with goal-
reward representation reaches a goal state and terminates after at most O(en) steps on
average if the state space is Eulerian. If the state space also has no duplicate actions,
then the largest average-case complexity becomes O(n3). Figure 17 shows that this
bound is tight.

As an example of a gridworld, consider the one-dimensional gridworld in Figure 18.
The average number of steps that a random walk needs to reach the goal state of this
domain is a standard result in Operations Research for a symmetric random walk in

28

...1 2 3 4 n

start goalgoal

Figure 18: A domain (\one-dimensional gridworld") for which every search algorithm
needs at least n�1 steps to reach the goal state, and a random walk needs n2� 2n+1
steps on average to reach the goal state (for n � 1)

...1 2 3 4 n

start goalgoal

...

Figure 19: A domain for which every uninformed on-line search algorithm can need at
least e+ n � 4 steps to reach the goal state (for n > 2 and e � 2n � 2) and for which
an admissible, zero-initialized Q-learning algorithm can need at least 1=2en� 1=4n2 �
1=2n + 2 steps to reach the goal state (for even n > 2 and e � 2n � 2)

one dimension with one re
ecting and one absorbing barrier [7]. In this case, generating
functions can be used to solve Equations 4.

Although the complexity of a random walk decreases in 1-step invertible state spaces,
the worst-case complexity of an admissible, zero-initialized Q-learning algorithm with
action-penalty representation does not change. It remains tight at O(en) in general
(an example is given in Figure 19) and O(n3) for state spaces that have no duplicate
actions (an example is shown in Figure 17).

To summarize, the largest average-case complexity of a random walk is polynomial (and
no longer exponential) in n if the state space is Eulerian and has no duplicate actions.
In fact, the largest big-O average-case complexity of a random walk equals the big-
O worst-case complexity of an admissible, zero-initialized Q-learning algorithm, and
we can no longer expect an exponential improvement in expected performance when
switching from a zero-initialized Q-learning algorithm with goal-reward representation
to one of the other algorithms.

One can seriously consider random walks as a solution method for reaching a goal state
in Eulerian state spaces, since they can no longer be much less e�cient than the other
algorithms. Note two small advantages of random walks: To perform a random walk,
one does not need any space to store information, whereas an undiscounted, zero-

29

initialized Q-learning algorithm with (at most) action-penalty representation needs
O(e) Q-values with O(log2(d)) bits each. Also, a random walk reaches a goal state in
an in�nite one- or two-dimensional (but not higher-dimensional) gridworld with proba-
bility one [7], whereas the other algorithms cannot guarantee to terminate successfully
(without modi�cations).

However, even for state spaces for which their big-O complexities are identical (such
as the one in Figure 17) we expect some improvement in performance, e.g. a linear
improvement (i.e. improvement by a constant factor), when switching from goal-reward
representation to action-penalty representation, since information about the topology
of the state space is only remembered immediately in the latter case.

If the state space is 1-step invertible and the agent knows for every action which other
action reverses its e�ects, then it can use chronological backtracking to reach a goal
state. Under the assumption that it has to execute an action at least once before it
knows its e�ect, chronological backtracking achieves a worst-case complexity of O(e),
since every action (except for the action that leaves the goal state) is executed exactly
once in the worst case. In fact, even if the agent initially does not know which action
inverts which other action, there is an algorithm for Eulerian state spaces that executes
every action at most twice and thus achieves the same big-O worst-case complexity
[6]: \Take unexplored edges whenever possible. If stuck, consider the closed walk of of
unexplored edges just completed, and retrace it, stopping at nodes that have unexplored
edges, and applying this algorithm recursively from each such node." We call this
algorithm the Deng-Papadimitriou algorithm after its authors. No uninformed
on-line search algorithm can do better than O(e), see for example Figure 19, since the
agent has to execute every action at least once in the worst case to �nd out about
its e�ect. However, Q-learning does not achieve this complexity. Figure 17 gives an
example of a 1-step invertible state space that has O(n2) actions, but Q-learning may
needO(n3) steps to reach a goal state. Thus, if one considers only Eulerian state spaces,
it no longer holds that every uninformed on-line search algorithm has at least the same
big-O worst-case complexity as Q-learning. This demonstrates that algorithms that
know about special properties of the state space, i.e. that use more knowledge of the
state space than Q-learning, can have a smaller big-O worst-case complexity.

4.4.3 Summary

Many reinforcement learning domains have certain properties that decrease the worst-
case complexity of uninformed on-line search algorithms. We have focused on grid-
worlds, because they are popular among reinforcement learning researchers. However,
many other search domains that are commonly used in Arti�cial Intelligence have the
properties discussed here. The 8-puzzle, for example, has no identity or duplicate
actions, a constant individual upper action bound, and is 1-step invertible.

For Eulerian state spaces, we have shown that the largest big-O average-case complexity
of random walks equals the big-O worst-case complexity of admissible, zero-initialized
Q-learning algorithms. However, there are uninformed on-line search algorithms that

30

have a smaller big-O worst-case complexity than Q-learning. This is very di�erent from
the general case. There, the largest big-O average-case complexity of random walks
is much larger than the big-O worst-case complexity of admissible, zero-initialized
Q-learning algorithms, and every uninformed on-line search algorithm has at least
the same big-O worst-case complexity as Q-learning. Thus, general results about the
behavior of reinforcement learning algorithms might not be speci�c enough. It can be
more illuminating to identify speci�c properties of the domains of interest and then
analyze the behavior of reinforcement learning algorithms in domains that possess these
properties.

5 Finding Optimal Policies with Q-Learning

We now consider the problem of �nding shortest paths from all states to a goal state.
We present novel extensions of the Q-learning algorithm to solve this problem that
have the same big-O worst-case complexity as an admissible, zero-initialized Q-learning
algorithm for �nding a single arbitrary path from the start state to a goal state. The
purpose of these algorithms, that we call bi-directional Q-learning, is to be able to
explore the state space su�ciently to solve the task and terminate { their purpose is not
to exploit the acquired knowledge. First, we describe a version that needs to know an
upper bound on the depth of the state space in advance and then proceed to describe
a slightly more complicated version that does not need to know any information about
the state space in advance.

5.1 Bi-Directional Q-Learning (Version 1)

The algorithm, which we term the bi-directional (1-step) Q-learning algorithm
(version 1), is presented in Figure 20. It assumes only that the agent can recognize
whether it is in a goal state and knows an upper bound ub(d) of d. It could for
example know n or an upper bound of n. In the ideal case, it knows the exact value of
d. While the complexity results presented here are for the undiscounted, zero-initialized
version with action-penalty representation, they can easily be transferred to all of the
previously described alternatives.

The bi-directional Q-learning algorithm uses the Qf -values (Uf -values) to implement
an on-line search for a goal state in exactly the same way how the Q-learning algorithm
from Figure 3 uses the Q-values (Uf -values).

We say that state s 2 S is done i� Uf (s) = Uopt
f (s) = �gd(s), and that action

a 2 A(s) is done in s 2 S i� Qf (s; a) = Qopt
f (s; a), i.e. Qf(s; a) = 0 for s 2 G

and Qf(s; a) = �1 � gd(succ(s; a)) for s 2 S n G. For every s 2 S, we introduce a
value done(s), and, for every s 2 S and a 2 A(s), we introduce a value done(s; a),
with the following semantics: done(s) = true i� the agent knows that s 2 S is done,
and similarly for done(s; a). Thus, if done(s) = true, then Uf(s) = �gd(s) (but not

31

Initially, Qf(s; a) = Qb(s; a) = 0 and done(s; a) = false for all s 2 S and a 2 A(s).
/* Also, no steps have been taken so far, i.e. t = 0. */

1. Set s := the current state.

2. If s 2 G, then set done(s; a) := true for all a 2 A(s).

3. If done(s) = true, then go to 8.

4. /* forward step */
Set a := argmaxa02A(s)Qf(s; a0).

5. Execute action a.
/* As a consequence, the agent receives reward �1 and is in state succ(s; a).
Increment the number of steps taken, i.e. set t := t+ 1. */

6. Set Qf(s; a) := �1 + Uf (succ(s; a)) and done(s; a) := done(succ(s; a)).

7. Go to 1.

8. /* backward step */
Set a := argmaxa02A(s)Qb(s; a0).

9. Execute action a.
/* As a consequence, the agent receives reward �1 and is in state succ(s; a).
Increment the number of steps taken, i.e. set t := t+ 1. */

10. Set Qb(s; a) := �1 + Ub(succ(s; a)).

11. If Ub(s) < �ub(d), then stop.

12. Go to 1.

where
Uf (s) := maxa2A(s)Qf (s; a),
done(s) := 9a2A(s)(Qf(s; a) = maxa02A(s)Qf(s; a0) ^ done(s; a)), and
Ub(s) := maxa2A(s)Qb(s; a)
at every point in time.

Figure 20: The bi-directional Q-learning algorithm (version 1)

32

necessarily the other way around) and done(s) remains true until termination.

Initially, done(s) = false for all s 2 S, but the agent can gain additional knowledge
according to the following three rules:

1. If s 2 G and Qf(s; a) = 0, then a 2 A(s) is done in s 2 S.

2. If done(succ(s; a)) = true and Qf(s; a) = �1 + Uf(succ(s; a)), then a 2 A(s) is
done in s 2 S nG.

3. If done(s; a) = true and Uf (s) = Qf (s; a) for an a 2 A(s), then s 2 S is done
(since the Qf -values are monotonically decreasing).

If the agent was in a state s for which done(s) was false , executed action a, and
afterwards is in a state s0 for which done(s0) is true, then done(s; a) was false before
the step, but can be set to true afterwards. We call such a transition an important
transition. After the agent has made at most e important transitions, all n states are
done. If the agent is in a state s with done(s) = false and uses Q-learning to reach a
goal state, then it will �nally make an important transition, since it sets done(s0) to true
in s0 2 G if it was not already set to true. Immediately after the important transition,
the agent can use another Q-learning algorithm with di�erent Qb-values to reach a
state in Gb := fs 2 S nG : done(s) = falseg, and will eventually reach such a state if
one still exists, in which case it uses the Qf -values again to reach a goal state. If such
a state no longer exists, the Ub-values will decrease without a limit. The algorithm
can terminate when a Ub-value drops below �ub(d), since there cannot be shortest
paths to any state that are longer than d. Thus, the agent knows that done(s) = true
for all s 2 S, can conclude that Uf (s) = �gd(s) for all s 2 S, and may terminate.
(This termination criterion is peculiar to version 1 of the bi-directional Q-learning
algorithm, and will be replaced in version 2.) Then, an optimal policy is to select
action argmaxa2A(s)Uf (succ(s; a)) or, equivalently, argmaxa2A(s);done(s;a)=true

Qf(s; a) in
state s 2 S n G, where Qf(s; a) and Uf (s) are the Qf -values and Uf -values upon
termination, since it is optimal to always execute an action that decreases the goal
distance most (i.e., in this case, by one).

To summarize, the bi-directional Q-learning algorithm iterates over two independent
Q-learning searches: a forward phase that uses Qf -values to search for a state s0

with done(s0) = true from a state s with done(s) = false, followed by a backward
phase that uses Qb-values to search for a state s0 with done(s0) = false from a state
s with done(s) = true. The forward and backward phases are implemented using the
Q-learning algorithm from Figure 3. Every forward phase sets at least one additional
done(s; a) value to true and then transfers control to the backward phase, which con-
tinues until a state s with done(s) = false is reached, so that the next forward phase
can begin.

Theorem 5 The bi-directional Q-learning algorithm (version 1) �nds an optimal pol-
icy and terminates after at most O(e� ub(d)) steps.

33

The proof of Theorem 5 is similar to that of Theorem 2. The bi-directional Q-learning
algorithm can be made more e�cient, for example by breaking ties more intelligently,
but this does not change its big-O worst-case complexity.

The agent has to make sure that the value of ub(d) that it uses does not underestimate
d. If ub(d) scales linearly with the correct value of d, then O(e� ub(d)) = O(ed). This
rules out that the agent uses, for example, ub(d) � d2, just to be conservative. Since
d � n � 1 in every strongly connected state space, it holds that O(ed) � O(en). If
the agent uses n � 1 as an upper bound of d, the bi-directional Q-learning algorithm
(version 1) has worst-case complexity O(en), but not necessarily O(ed), since d can
increase sublinearly in n. If the state space has no duplicate actions, the complexity
becomes O(n3). That these bounds are tight follows from Figures 11 and 15, since
�nding optimal policies cannot be easier than reaching a goal state for the �rst time.
So, if ub(d) scales linearly with d (e.g. because the agent uses ub(d) = d), then the
bi-directional Q-learning algorithm (version 1) has exactly the same big-O worst-case
complexity as the Q-learning algorithm for �nding any path from the start state to a
goal state. This is surprising, since one could have expected �nding optimal policies
to be harder for Q-learning than simply reaching a goal state.

5.2 Bi-Directional Q-Learning (Version 2)

The bi-directional Q-learning algorithm that we have presented in the previous chapter
needs to know an upper bound ub(d) on the depth of the state space. ub(d) is only
needed to provide a termination criterion. If the algorithm only has to �nd an optimal
policy in the limit, but does not need to terminate, ub(d) is not needed. Of course,
then the agent always explores and never exploits.

It is easy to construct an algorithm that �nds an optimal policy and terminates but
does not need to know an upper bound on the depth of the state space or any other
information about the state space in advance if we do not require the algorithm to be
memoryless. Note that the worst-case complexity of any algorithm that �nds optimal
policies cannot be less than O(ed) (no matter how the algorithm determines that an
optimal policy has been found), since �nding optimal policies cannot be easier than
reaching a goal state for the �rst time and Figure 11 showed that this has a worst-case
complexity of at least O(ed).

In the following, we show a version of the bi-directional Q-learning algorithm that does
not require the agent to know anything about the state space in advance, needs an
internal memory of at most O(log2 e) bits, and has a tight worst-case complexity of
O(ed). To distinguish the version described earlier from the one introduced here, we
continue to call the original version \bi-directional Q-learning algorithm (version 1)"
(or, shorter, \bi-directional Q-learning algorithm") and refer to the new version as
\bi-directional Q-learning algorithm (version 2)". Version 2 not only requires no initial
knowledge of the state space, but also remedies the problem that the complexity might
be large, only because an overly conservative estimate of d is used.

34

The bi-directional Q-learning algorithm (version 2) is shown in Figure 21. It
di�ers from version 1 (shown in Figure 20) only in the termination criterion. To
implement the termination criterion, version 2 maintains one additional variable that
version 1 does not use. The variable memory implements an internal memory that
the agent maintains across action executions. memory stores integer values that range
from 0 to at most e. Thus, the internal memory needs at most dlog2(e+1)e bits, which
is not enough to store a map of the state space.

The general idea behind the termination criterion is as follows. The agent can terminate
if done(s) = true for all s 2 S, since then an optimal policy has been found. Initially,
done(s) = false for all s 2 S. Thus, done(s) = true for all s 2 S if done(s) = true
for every state s that the agent has already explored, i.e. visited at least once, and
the agent has explored all states. Every action that the agent has not yet explored,
i.e. executed at least once, could potentially lead to an unexplored state. Thus, the
agent can be sure that it has explored all states i� it has explored all actions. This
reasoning leads to the following idea. The agent maintains in its internal memory the
sum of the number of unexplored actions that it knows about and the number of states
s with done(s) = false that it knows about. It can terminate when this sum reaches
zero, since then done(s) = true for all explored states s 2 S and all states have been
explored, i.e. done(s) = true for all s 2 S.

This idea could be implemented exactly as stated. However, a couple of additional
observations simplify the implementation. For example, note that all actions in a non-
goal state s have been explored if done(s) = true. Therefore, the algorithm does not
need to keep track of unexplored actions in non-goal states. Similarly, done(s) = true
for a goal state s if all actions in s have been explored. Thus, the algorithm does not
need to keep track of the number of goal states s with done(s) = false . In short, the
agent needs to maintain in its internal memory (i.e. the variable memory) only the
sum of the number of unexplored actions in goal states that it knows about and the
number of non-goal states s with done(s) = false that it knows about. Again, the
agent knows that it can terminate when this sum reaches zero.

This termination criterion can easily be implemented. Initially, memory = 0.

� Whenever the agent is in a state s that was still unexplored one step ago, then
this state has not been taken into account when calculating the sum, and the
sum has to be adjusted properly. If s is a goal state, the sum has to be increased
by jA(s)j, since all of its jA(s)j actions are still unexplored. If s is not a goal
state, memory has to be increased by one, since done(s) was false initially and
remains false for at least as long as no action has been executed in s.

� Whenever done(s) changes for a non-goal state s, the sum has to be adjusted
properly. done(s) can only change for the current state, it can only change from
false to true, and it can only change after an action execution in the forward
step. Furthermore, a forward step is only executed for non-goal states. Thus,
when done(s) changes for the current state s after action execution in a forward
step, memory has to be decreased by one.

35

Initially, memory = 0, Qf (s; a) = Qb(s; a) = 0, and done(s; a) = false for all s 2 S
and a 2 A(s). /* Also, no steps have been taken so far, i.e. t = 0. */

1. Set s := the current state.

2. If s 2 G, then set done(s; a) := true for all a 2 A(s).

3. If Qf(s; a) = Qb(s; a) = 0 for all a 2 A(s),
then set memory := memory + (if s 2 G then jA(s)j else 1).

4. If memory = 0, then stop.

5. If done(s) = true, then go to 11.

6. /* forward step */
Set a := argmaxa02A(s)Qf(s; a0).

7. Execute action a.
/* As a consequence, the agent receives reward �1 and is in state succ(s; a).
Increment the number of steps taken, i.e. set t := t+ 1. */

8. Set Qf(s; a) := �1 + Uf (succ(s; a)) and done(s; a) := done(succ(s; a)).

9. If done(s) has changed during the execution of step 8,
then set memory := memory � 1.

10. Go to 1.

11. /* backward step */
Set a := argmaxa02A(s)Qb(s; a0).

12. Execute action a.
/* As a consequence, the agent receives reward �1 and is in state succ(s; a).
Increment the number of steps taken, i.e. set t := t+ 1. */

13. Set Qb(s; a) := �1 + Ub(succ(s; a)).

14. If s 2 G and Qb(s; a) has changed from zero to non-zero during the execution of
step 13, then set memory := memory � 1.

15. Go to 1.

where
Uf (s) := maxa2A(s)Qf (s; a),
done(s) := 9a2A(s)(Qf(s; a) = maxa02A(s)Qf(s; a0) ^ done(s; a)), and
Ub(s) := maxa2A(s)Qb(s; a)
at every point in time.

Figure 21: The bi-directional Q-learning algorithm (version 2)

36

� Whenever an action in a goal state becomes explored, the sum has to be adjusted
properly. Actions in goal states can only be executed in backward steps. There-
fore, when an action in a goal state becomes explored after an action execution
in a backward step, memory has to be decreased by one.

Thus, the agent needs to be able to detect whether its current state was unexplored
one step ago and whether an action in a goal state is unexplored or not. In general, an
action a 2 A(s) has never been executed in a forward step i� Qf(s; a) = 0. Similarly,
it has never been executed in a backward step i� Qb(s; a) = 0. Thus, the current state
s of the agent was unexplored one step ago i� the agent has never executed any action
in s, i.e. Qb(s; a) = Qf (s; a) = 0 for all a 2 A(s). An action a 2 A(s) in a goal state
s is unexplored i� Qb(s; a) = 0, since actions in goal states can only be executed in
backward steps and therefore it always holds that Qf(s; a) = 0.

These thoughts translate directly to the bi-directional Q-learning algorithm (ver-
sion 2). Since version 1 and version 2 of the bi-directional Q-learning algorithm
di�er only in the termination criterion, both behave identically after every step
and therefore �nd the same optimal policy (if ties are broken in the same way).
Thus, it is still optimal to select action argmaxa2A(s)Uf (succ(s; a)) or, equivalently,
argmaxa2A(s);done(s;a)=true

Qf (s; a) in state s 2 S nG, where Qf (s; a) and Uf (s) are the
Qf -values and Uf -values upon termination.

Theorem 6 The bi-directional Q-learning algorithm (version 2) �nds an optimal pol-
icy and terminates after at most O(ed) steps.

To prove this theorem, one shows that the termination criterion of the bi-directional
Q-learning algorithm (version 2) is implied by the one of the bi-directional Q-learning
algorithm (version 1). This shows that version 2 always terminates no later than
version 1 no matter what ub(d) is (provided that ties are broken in the same way).15

If ub(d) = d, then the worst-case complexity of the bi-directional Q-learning algorithm
(version 1) is O(ed). Therefore, the worst-case complexity of version 2 is O(ed) as well.
If the state space has no duplicate actions, the complexity becomes O(n3). That these
bounds are tight follows from Figures 11 and 15, since �nding optimal policies cannot
be easier than reaching a goal state for the �rst time.

5.3 Comparison of Bi-Directional Q-Learning to other On-
Line Search Algorithms

To �nd optimal policies, the agent has to execute every action at least once in order to
�nd out about its e�ect. If the state space is Eulerian, then the Deng-Papadimitriou

15To be precise: The bi-directional Q-learning algorithm (version 2) checks the termination criterion
a couple of lines later than version 1. Thus, version 2 always terminates at most a couple of program
statements later than version 1.

37

algorithm can be used to learn a map which is then used for �nding optimal policies.
It executes every action at most twice, i.e. it has complexity O(e) and is competitive.
No uninformed on-line search algorithm can do better. However, the bi-directional Q-
learning algorithms do not achieve this complexity, as shown in Figure 17. This shows
again that on-line search algorithms that know about special properties of the state
space can have an advantage over less informed algorithms. First worst-case results for
uninformed on-line search algorithms in non-Eulerian state spaces are reported in [6].

6 Complexity of Value-Iteration

The results derived for Q-learning can easily be transferred to value-iteration. In the
following, we state the main de�nitions, lemmas, and theorems as they apply to value-
iteration.

De�nition 12 A value-iteration algorithm is initialized with q 2 R (or, synony-
mously, q-initialized) i� initially, for all s 2 G, U(s) = 0, and, for all s 2 S n G,
U(s) = q.

6.1 Reaching a Goal State with Value-Iteration

A zero-initialized value-iteration algorithm with goal-reward representation performs
a random walk. Therefore, Theorem 7 follows immediately from Theorem 1, and
Theorem 8 follows from Theorem 4.

Theorem 7 The expected number of steps that a zero-initialized value-iteration algo-
rithm with goal-reward representation needs in order to reach a goal state and terminate
can be exponential in n.

Theorem 8 An zero-initialized value-iteration algorithm with goal-reward representa-
tion reaches a goals state and terminates after at most O(ed) steps on average if the
state space is Eulerian.

An undiscounted value-iteration algorithm that always executes the action that leads
to the state with the largest U -value is equivalent to the Learning Real-Time A*
(LRTA*) algorithm [15] [16] [17] with a search horizon of one if the state space is
deterministic and the action penalty representation is used [2]. ([2] also showed that
the LRTA* algorithm can be generalized to probabilistic domains.) Ishida and Korf
proved that a zero-initialized LRTA* algorithm is guaranteed to reach a goal state
in at most O(n2) steps if the state space has no identity actions. This follows from
the analysis of the Moving Target Search (MTS) algorithm in [10] if the position of
the target does not change, see [14] for a detailed discussion and bibliography. As

38

argued earlier, the agent does not need to execute identity actions, since they cannot
be part of an optimal plan. However, the value-iteration algorithm treats an identity
action exactly in the same way that it treats every other action (although it could
be augmented to identify and avoid identity actions). Thus, the presence of identity
actions can potentially make the path planning task harder.

The following theorems about value-iteration generalize Ishida and Korf's result to
state spaces that can contain identity actions and show the e�ects of various domain
properties and initial U -values that are non-zero on the worst-case complexity. De�-
nition 13, 14, and 15, as well as Lemma 3 assume no discounting, but can easily be
modi�ed for the discounted case.

De�nition 13 U-values are consistent i�, for all s 2 G, U(s) = 0, and, for all
s 2 S nG, maxa2A(s)(�1 + U(succ(s; a))) � U(s) � 0.

De�nition 14 U-values are admissible i�, for all s 2 S, �gd(s) � U(s) � 0.

Zero-initialized U -values are consistent, and consistent U -values are admissible. U -
values are admissible i� �U is an admissible heuristic for the goal distances of the
states in the context of A*-search.

De�nition 15 A value-iteration algorithm is admissible i� it uses action-penalty rep-
resentation, its action selection step is \a := argmax a02A(s)(r(s; a

0) + U(succ(s; a0))) =
argmax a02A(s)(�1 + U (succ(s; a0))),"16 and either

� its initial U-values are consistent, and its value update step17 is \Set U(s) :=
�1 + U(succ(s; a))," or

� its initial U-values are admissible, and its value update step is \Set U(s) :=
min(U(s);�1 + U (succ(s; a)))."

If a value-iteration algorithm is admissible, then consistent (admissible) U -values re-
main consistent (admissible) after every step of the agent and are monotonically de-
creasing. A time superscript of t in the following lemma refers to the values of the
variables immediately before the action execution step, i.e. line 4, of step t.

Lemma 3 For all steps t 2 N0 (until termination) of an undiscounted, admissible
value-iteration algorithm,

U t(st) +
P

s2S U
0(s)� t � Ps2S U

t(s) + U 0(s0)� loopt

16Since r(s; a0) = �1 for all s 2 S nG and a0 2 A(s), the action selection step can be simpli�ed to
\a := argmaxa02A(s)U (succ(s; a

0))."
17Note that the action selection step \a := argmaxa02A(s)(�1+U (succ(s; a0)))" allows us to simplify

the value update step from the general \Set U (s) := max
a02A(s)(r(s; a

0) +
U (succ(s; a0))).", that

we used in the statement of the value-iteration algorithm in Figure 4, to the more speci�c \Set
U (s) := r(s; a) +
U (succ(s; a)) = �1 +
U (succ(s; a)) = �1 + U (succ(s; a))".

39

start

goal

1

...2 3 4 n-1 n

Figure 22: A domain for which an admissible, zero-initialized value-iteration algorithm
can need at least n2 � n steps to reach the goal state, but an o�-line algorithm that
knows the topology of the state space needs only one step to reach the goal state (for
n � 1)

and

loopt � Ps2S U
0(s)�Ps2S U

t(s)

where loopt := jft0 2 f0; . . . ; t � 1g : st
0

= st
0+1gj (the number of identity actions

executed before t).

All results about undiscounted value-iteration algorithms can be transferred to the
discounted case, as outlined for Q-learning.

Lemma 4 An admissible value-iteration algorithm reaches a goal state and terminates
after at most 2

P
s2S gd(s) � n2� n steps. If the state space has no identity actions, it

reaches a goal state and terminates after at most
P

s2S gd(s) � 0:5n2 � 0:5n steps.

Both bounds are tight for zero-initialized value-iteration, as shown in Figures 22 and
23. (It is important to keep in mind that the agent can only detect whether its current
state is a goal state. Therefore, it cannot detect that state n is a goal state when it is
in state 1.) Note that the worst-case complexity doubles if identity actions are present.
However, the big-O worst-case complexity is the same in both cases.

Theorem 9 An admissible value-iteration algorithm reaches a goal state and termi-
nates after at most O(nd) steps.

This theorem applies to admissible value-iteration algorithms that are zero-initialized.
Note that the worst-case complexity does not depend on e, whereas the analogous
complexity for Q-learning does, see Theorem 2. This is so, because value-iteration
always prefers duplicate actions equally, since duplicate actions have the same outcome

40

start

goal

1

...2 3 4 n-1 n

Figure 23: A domain for which an admissible, zero-initialized value-iteration algorithm
(and every other algorithm that has to enter a state at least once before it knows the
successor states) can need at least 1=2n2 � 1=2n steps to reach the goal state, but an
o�-line algorithm that knows the topology of the state space needs only one step to
reach the goal state (for n � 1)

...

start goal

1 3 5 n-3 n-1

...2 4 6 n-2 n

Figure 24: A domain for which an admissible, zero-initialized value-iteration algorithm
can need at least 3=16n2�3=4 steps to reach the goal state (for n � 1 with n mod 4 = 2)

and actions are evaluated according to the U -values of their outcomes. Thus, value-
iteration does not necessarily need to execute every action at least once. Q-learning, in
contrast, evaluates actions according to their Q-values, and the Q-values of duplicate
actions can di�er.

O(nd) � O(n2), since d � n � 1. The worst-case complexity of O(n2) is tight even
if the state space has no duplicate actions, a constant individual upper action bound,
and is 1-step invertible, see the rectangular gridworld in Figure 24.

Every algorithm that has to enter a state at least once before it knows the successor
states of that state has a worst-case complexity of at least O(n2), see Figure 23. This
holds even if the state space has no duplicate actions and a constant individual upper
action bound, see Figure 25, and thus these algorithms are not competitive. This
includes algorithms that learn a map of the state space. However, if the state space

41

...

start goal

1 3 5 n-3 n-1

...2 4 6 n-2 n

Figure 25: A domain for which an admissible, zero-initialized value-iteration algorithm
(and every other algorithm that has to enter a state at least once before it knows the
successor states) can need at least 1=4n2 � 1 steps to reach the goal state (for even
n > 1)

is 1-step invertible, then the agent can identify which action inverts the action that
it executed last and thus use chronological backtracking to reach a goal state. This
decreases the worst-case complexity to O(n), since the agent leaves every state at most
once. No algorithm can do better in the worst case, see for example Figure 18. However,
value-iteration does not achieve this complexity, as shown above with Figure 24.

Similarly to Q-learning, it holds that a discounted, one-initialized value-iteration al-
gorithm with goal-reward representation behaves exactly like an undiscounted, (minus
one)-initialized value-iteration algorithm with action-penalty representation if ties are
broken in the same way.

Theorem 10 A discounted, one-initialized value-iteration algorithm with goal-reward
representation reaches a goal state and terminates after at most O(nd) steps if its action
selection step is \a := argmax a02A(s)(r(s; a

0) + U(succ(s; a0)))." and its value update
step is \Set U (s) := r(s; a) +
U(succ(s; a))."

All of the above complexity results can be utilized to prove worst-case complexities
for Q-learning, since value-iteration behaves like Q-learning in a slightly modi�ed state
space. Assume that Q-learning operates in a domain with states S, start state sstart,
goal states G, actions A(s) for s 2 S, successor function succ, and initial Q-values
Q(s; a) for s 2 S and a 2 A(s). We refer to this domain in the following as the original
domain. Consider the following transformed domain:

eS := fss;a : s 2 S;a 2 A(s)gesstart := ssstart;argmaxa2A(sstart)
Q(sstart;a)eG := fss;a : s 2 G; a 2 A(s)geA(es) := A(succ(s; a)) for all es = ss;a 2 eSgsucc(es; ea) := ssucc(s;a);ea for all es = ss;a 2 eS and ea 2 eA(es)

42

start

goal

start

goal

(a) Original domain

(b) Transformed domain

Figure 26: A domain and its transformation

where the ss;a are new states. Basically, the actions of the original domain become the
the states of the transformed one. The potential successor states of such an \action
state" ss;a are the \action states" that correspond to the actions that can be executed
immediately after the execution of a in s, i.e. the set A(succ(s; a)). Note that the
transformed domain satis�es all properties that we require in this report to hold for
state spaces. In particular, it is strongly connected. Note also that the size of the
transformed domain en equals the total number of actions e of the original domain.
Similarly, the depth ed of the transformed domain is either equal to either the depth
of the original domain d or to d + 1. An example for an original domain and the
transformed domain that corresponds to it is given in Figure 26.

Assume that action penalty representation and no discounting are used. Admissible
value-iteration behaves in the transformed domain identically to admissible Q-learning
in the original one provided that

43

� the original domain has no identity actions,

� initially Q(s; a) = U(ss;a) for all s 2 S and a 2 A(s), and

� ties are broken in the same way.

During the execution of the algorithms it always holds that Q(s; a) = U (ss;a) for all
s 2 S and a 2 A(s). Furthermore, value-iteration always chooses the same actions as
Q-learning, and needs the same number of steps to terminate. Note that the Q-values
of the original domain are consistent (admissible) i� the U -values of the transformed
domain are consistent (admissible).

The similarity in the behavior of value-iteration and Q-learning can be used to trans-
fer theorems about one algorithm to the other one. For example, Theorem 9 states
that value-iteration has a worst-case complexity of O(en ed) = O(ed) in the transformed
domain. Thus, this is the worst-case complexity of Q-learning in the original domain
as well, which con�rms Theorem 2. (As Theorem 2 shows, the conditions that guaran-
tee equal behavior of value-iteration and Q-learning can be generalized to discounted
algorithms and state spaces that contain identity actions.)

6.2 Finding Optimal Policies with Value-Iteration

Korf showed that the LRTA* algorithm identi�es an optimal path from a given start
state to a set of goal states in the limit if the agent is automatically reset to the
start state when it reaches a goal state. Our bi-directional (1-step) value-iteration
algorithm, see Figure 27, is more general than Korf's algorithm in that it �nds shortest
paths from all states to a goal state, does not need to have reset actions available, and
terminates. ub(d) is again an upper bound on the depth of the state space d.18 See
[14] for details on the bi-directional value-iteration algorithm (and how it can be made
more e�cient, unfortunately without decreasing its big-O worst-case complexity).

Theorem 11 The bi-directional value-iteration algorithm �nds an optimal policy and
terminates after at most O(n� ub(d)) steps.

If ub(d) scales linearly with the correct value of d, then O(n�ub(d)) = O(nd) � O(n2).
That this bound is tight even if the state space has no duplicate actions, a constant

18The bi-directional value-iteration algorithm corresponds to the bi-directional Q-learning algorithm
(version 1). As in the case of that Q-learning algorithm, the upper bound on the depth of the state
space ub(d) is needed only to provide a termination criterion for the bi-directional value-iteration
algorithm. If we do not require the agent to be memoryless, then it is easy to construct a version of
the bi-directional value-iteration algorithm that does not need to know an upper bound on the depth
of the state space or any other information about the state space in advance and has a tight worst-case
complexity of O(nd). This can be done along the lines outlined in Chapter 5.2 for the bi-directional
Q-learning algorithm (version 2).

44

Initially, Uf(s) = Ub(s) = 0 and done(s) = false for all s 2 S.
/* Also, no steps have been taken so far, i.e. t = 0. */

1. Set s := the current state.

2. If s 2 G, then set done(s) := true.

3. If done(s) = true, then go to 8.

4. /* forward step */
Set a := argmaxa02A(s)Uf (succ(s; a0)).

5. Execute action a.
/* As a consequence, the agent receives reward �1 and is in state succ(s; a). Set
t := t+ 1. */

6. Set Uf (s) := �1 + Uf (succ(s; a)) and done(s) := done(succ(s; a)).

7. Go to 1.

8. /* backward step */
Set a := argmaxa02A(s)Ub(succ(s; a0)).

9. Execute action a.
/* As a consequence, the agent receives reward �1 and is in state succ(s; a). Set
t := t+ 1. */

10. Set Ub(s) := �1 + Ub(succ(s; a)).

11. If Ub(s) < �ub(d), then stop.

12. Go to 1.

Figure 27: The bi-directional value-iteration algorithm

45

individual upper action bound, and is 1-step invertible, follows from Figure 24, since
�nding optimal policies cannot be easier than reaching a goal state.

Every algorithm that has to enter a state at least once before it knows the successor
states of that state has a worst-case complexity of at least O(n2) for �nding an optimal
policy even if the state space has no duplicate actions and a constant individual upper
action bound, see for example Figure 25. However, if one considers only Eulerian state
spaces, then the Deng-Papadimitriou algorithm, that has a worst-case complexity of
only O(e), can be used to learn a map that is then used for �nding an optimal policy.
Thus, this algorithm needs at most O(n) steps for �nding optimal policies in Eulerian
state spaces with a linear total upper action bound, whereas the bi-directional value-
iteration algorithm can need O(n2) steps, as shown above with Figure 24. Similarly,
if one considers only 1-step invertible state spaces, chronological backtracking has a
complexity of O(n), but bi-directional value-iteration can still need O(n2) steps, as
shown with Figure 24 as well.

7 Empirical Results

Until now, we have been concerned with the worst-case complexity of reinforcement
learning algorithms. However, for practical purposes their average-case complexities
are equally important. In this chapter, we present a brief case study of the behavior
of various uninformed reinforcement learning algorithms in three simple domains:

� reset state spaces (see Figure 8) of sizes n 2 [2; 50],

� one-dimensional gridworlds (see Figure 18) of sizes n 2 [2; 50], and

� two-dimensional, quadratic gridworlds without obstacles (see Figure 16 for an
example with obstacles) of sizes n 2 [4; 196] that have the start state in the
upper left-hand corner and the goal state in the lower right-hand corner.

The one-dimensional and quadratic gridworlds are 1-step invertible, but the reset state
space is not. The depth of the one-dimensional gridworld and the reset state space
scales linearly with n, since d = n � 1 in both cases. For the quadratic gridworld,
however, d scales sublinearly with n, because d = 2

p
n� 2. All three domains have no

duplicate actions, a constant individual upper action bound, and polynomial width.

The run-times of the reinforcement learning algorithms (i.e. the number of steps
needed) are shown in Figures 28, 29, and 30, respectively. All graphs are scaled in
the same proportion.

The x-axis shows the complexity of the domain (measured as ed) and the y-axis the
run-time (measured as number of steps needed to complete the tasks). The expected
run-time of a random walk (i.e. of a zero-initialized Q-learning or value-iteration
algorithm with goal-reward representation) is determined analytically. The run-times

46

0

500

1000

1500

2000

2500

3000

3500

0 500 1000 1500 2000 2500 3000 3500 4000 4500

s
t
e
p
s

ed

Reset State Space

[1] [2] [3]

[4]

[5] [6] [7]

[8]

random walk, goal state reached [1]
Q-learning, optimal policy (terminated, ub(d)=d) [2]
Q-learning, optimal policy (terminated, no ub(d)) [3]

Q-learning, optimal policy (identified) [4]
value-iteration, optimal policy (terminated, ub(d)=d) [5]

Q-learning, goal state reached [6]
value-iteration, optimal policy (identified) [7]

value-iteration, goal state reached [8]

Figure 28: Run-times in the reset state space (as a function of ed = e(n� 1))

of the other reinforcement learning algorithms (we use zero-initialized algorithms with
action-penalty representation) are averaged over 5000 runs, with ties broken randomly.
For �nding optimal policies, we use either the bi-directional value-iteration algorithm,
the bi-directional Q-learning algorithm (version 1), or its version 2. We label the last
case with \no ub(d)", since the bi-directional Q-learning algorithm (version 2) does not
need to know an upper bound on the depth of the state space in advance.19 In the
�rst two cases, we use either ub(d) = d or ub(d) = n� 1 as upper bounds on the depth
of the state space. In all three cases, we distinguish two performance measures: the
number of steps until Uf (s) = Uopt(s) for every s 2 S (i.e. until an optimal policy is
identi�ed), and the number of steps until the algorithm realizes that and terminates.
For identifying an optimal policy, it does not matter which version of the bi-directional
Q-learning algorithm is used.

Note that value-iteration needs exactly n � 1 steps to reach the goal state in reset
state spaces and one-dimensional gridworlds, the best number of steps possible. These
graphs are thus very close to the x-axis. Also, the bi-directional Q-learning algorithm
(version 2) terminates (almost) immediately after an optimal policy has been identi�ed.
Thus, the corresponding graphs are very close.

Note that d and n � 1 are identical for the reset state space and the one-dimensional
gridworld, but they di�er for the quadratic gridworld. Thus, ub(d) = d and ub(d) =
n�1 collapse for the former two domains and, furthermore, it does not matter whether

19We do not include the results about the corresponding version of the bi-directional value-iteration
algorithm, since we have not described it in this report.

47

0

500

1000

1500

2000

2500

3000

3500

0 500 1000 1500 2000 2500 3000 3500 4000 4500

s
t
e
p
s

ed

One-Dimensional Gridworld

[1] [2] [3]
[4]

[5] [6]

[7]

[8]

Q-learning, optimal policy (terminated, ub(d)=d) [1]
value-iteration, optimal policy (terminated, ub(d)=d) [2]

Q-learning, optimal policy (terminated, no ub(d)) [3]
Q-learning, optimal policy (identified) [4]

random walk, goal state reached [5]
value-iteration, optimal policy (identified) [6]

Q-learning, goal state reached [7]
value-iteration, goal state reached [8]

Figure 29: Run-times in the one-dimensional gridworld (as a function of ed = e(n�1))

we use ed or en as a measure for the complexity of the domain. For the latter domain,
however, d scales sublinearly with n. Thus, it does make a di�erence whether we use
ub(d) = d or ub(d) = n� 1 and whether we use ed or en as a measure for the domain
complexity. Figure 31 contains the same data as Figure 30, except that it uses en for
the domain complexity instead of ed.

In the following, we investigate how the run-times of the algorithms scale with the
complexity of the domains. We have shown in the previous chapters that the worst-
case bounds of the following tasks can be at most linear in ed:

� reaching a goal state with random walks in Eulerian state spaces on average,

� reaching a goal state with (e�cient) Q-learning (i.e. using either zero-initialized
Q-learning with action-penalty representation or one-initialized Q-learning with
goal-reward representation),

� identifying an optimal policy with (e�cient) Q-learning, and

� identifying an optimal policy and terminating with (e�cient) Q-learning if either
version 1 is used and ub(d) scales at most linearly with d or version 2 is used.

Since d � n�1, these bounds are also at most linear in en. If d scales sublinearly with
n, they are even sublinear in en.

48

0

2000

4000

6000

8000

10000

12000

0 2000 4000 6000 8000 10000 12000 14000 16000

s
t
e
p
s

ed

Quadratic Gridworld

[1] [2]

[3]

[4]
[5]

[6]
[7]

[8]

[9]
[10]

Q-learning, optimal policy (terminated, ub(d)=n-1) [1]
value-iteration, optimal policy (terminated, ub(d)=n-1) [2]

Q-learning, optimal policy (terminated, ub(d)=d) [3]
Q-learning, optimal policy (terminated, no ub(d)) [4]

Q-learning, optimal policy (identified) [5]
value-iteration, optimal policy (terminated, ub(d)=d) [6]

value-iteration, optimal policy (identified) [7]
random walk, goal state reached [8]
Q-learning, goal state reached [9]

value-iteration, goal state reached [10]

Figure 30: Run-times in the quadratic gridworld (as a function of ed)

Remember that the worst-case complexity for reaching a goal state with e�cient Q-
learning depends on

P
s2SnG

P
a2A(s)(gd(succ(s; a))+1) (see Lemma 2), of which e(d+1)

and en are upper bounds. Table 1 contains these values for the three domains.

domain
P

s2SnG

P
a2A(s)

(gd(succ(s; a)) + 1) e(d+ 1) en

reset state space 1:5n2 � 2:5n 2n2 � 2n 2n2 � 2n
one-dimensional gridworld n2 � 3 2n2 � 2n 2n2 � 2n
quadratic gridworld 4n3=2 � 4n� 4 8n3=2 � 12n+ 4n1=2 4n2 � 4n3=2

Table 1: Domain characteristics

Thus,

O(
X

s2SnG

X
a2A(s)

(gd(succ(s; a)) + 1)) = O(ed) = O(en)

for reset state spaces and one-dimensional gridworlds, but

O(
X

s2SnG

X
a2A(s)

(gd(succ(s; a)) + 1)) = O(ed)� O(en)

for quadratic gridworlds, since d is linearly proportional to n for the former two do-
mains, but sublinearly proportional for the latter one. In all three cases, ed is linearly
proportional to

P
s2SnG

P
a2A(s)(gd(succ(s; a)) + 1) and therefore a good measure for

49

0

2000

4000

6000

8000

10000

12000

0 20000 40000 60000 80000 100000 120000

s
t
e
p
s

en

Quadratic Gridworld

[1][2]

[3]

[4]
[5]

[6]
[7]

[8]

[9]
[10]

Q-learning, optimal policy (terminated, ub(d)=n-1) [1]
value-iteration, optimal policy (terminated, ub(d)=n-1) [2]

Q-learning, optimal policy (terminated, ub(d)=d) [3]
Q-learning, optimal policy (terminated, no ub(d)) [4]

Q-learning, optimal policy (identified) [5]
value-iteration, optimal policy (terminated, ub(d)=d) [6]

value-iteration, optimal policy (identified) [7]
random walk, goal state reached [8]
Q-learning, goal state reached [9]

value-iteration, goal state reached [10]

Figure 31: Run-times in the quadratic gridworld (as a function of en)

the worst-case complexity of reaching a goal state with e�cient Q-learning. Although
this does not need to be the case, it seems to hold for almost all domains of practical
interest.

The worst-case bound of the following task can be at most linear in en:

� identifying an optimal policy and terminating with (e�cient) Q-learning if ver-
sion 1 is used and ub(d) scales at most linearly with n.

The worst-case bounds of the following tasks can be at most linear in nd:

� reaching a goal state with (e�cient) value-iteration,

� identifying an optimal policy with (e�cient) value-iteration, and

� identifying an optimal policy and terminating with (e�cient) value-iteration if
ub(d) scales at most linearly with d.

Since n � e, these bounds are also at most linear in ed. They can be exactly linear in
ed if the state space has a linear total upper action bound. The bounds are at most
linear in n2, because d � n� 1. If d scales sublinearly with n, they are sublinear in n2.

The worst-case bound of the following task can be at most linear in n2:

50

� identifying an optimal policy and terminating with (e�cient) value-iteration if
ub(d) scales at most linearly with n.

Since n � e, the bound is also at most linear in en. It can be exactly linear in en if
the state space has a linear total upper action bound.

Although the worst-case complexity of an algorithm provides an upper bound for its
average-case complexity, the average-case complexity does not necessarily scale linearly
with the worst-case complexity. Therefore, it is interesting to investigate in which of
the cases not only the worst-case complexity, but also the average-case complexity
scales linearly with the complexity of the domain.

Table 2 shows which graphs of the average-case complexity deviate from the corre-
sponding graphs of the worst-case complexity. The �rst entry is always the shape of
the graph for the worst-case complexity (as stated above, i.e. taking into account only
the general properties of the state space such as being 1-step invertible etc.), the sec-
ond entry is the one of the graph for the average-case complexity. We call a graph
superlinear if it has a positive second derivative, linear if its second derivative is
zero, and sublinear if its second derivative is negative.20

This table demonstrates that { at least for the domains tested { the worst-case complex-
ity of the algorithms for �nding optimal policies behaves similar to their average-case
complexity. Note, however, that the coe�cients for an algorithm (i.e. the slopes of the
graphs) are domain dependent.

Figure 32 shows the complexity (measured as ed) and Figure 33 the sizes (measured as
n) of domains for which the algorithms require 1000 steps on average. We use a simple
linear approximation scheme between data points for cardinal n. (Reaching goal states
with value-iteration needs so few steps that its graph is far above the other graphs and
therefore not contained in the �gures.) These graphs con�rm our expectations about
the algorithms:

� We expect the run-time for reaching a goal state to be smaller than the run-time
for �nding an optimal policy which we expect, in turn, to be smaller than the
run-time for terminating with an optimal policy, given that the same algorithm,
task representation, and initialization is used in all cases: Reaching a goal state
is a prerequisite for �nding an optimal policy, which is necessary for terminating
with an optimal policy.

� We also expect a Q-learning algorithm with \no ub(d)" to terminate with an
optimal policy earlier than a Q-learning algorithm with ub(d) = ub1, which we

20The shapes of the graphs for the average-case complexity were determined by visual inspection
of the graphs only. Therefore, there is for example a chance that a non-linear shape appeared linear,
or that a sublinear or superlinear shape was the result of lower order terms. For example, the graph
(x; f (x)) = (n2; n2 + n) for n 2 [1;10] is sublinear, although n2 � n2 + n � 2n2 and therefore
O(n2) = O(n2 + n). Of course, for large values of the independent variable n, the graph approaches
a linear shape. Unfortunately, we cannot be sure that in our experiments n was large enough.

51

domain reset state space one-dimensional gridworld
domain complexity ed or en ed or en

worst case average case worst case average case
random walk, goal state reached superlinear superlinear linear linear
value-iteration, goal state reached linear sublinear linear sublinear
value-iteration, optimal policy (identi�ed) linear linear linear linear
value-iteration, optimal policy (terminated, ub(d) = d) linear linear linear linear
value-iteration, optimal policy (terminated, ub(d) = n� 1) linear linear linear linear
Q-learning, goal state reached linear linear linear sublinear
Q-learning, optimal policy (identi�ed) linear linear linear linear
Q-learning, optimal policy (terminated, no ub(d)) linear linear linear linear
Q-learning, optimal policy (terminated, ub(d) = d) linear linear linear linear
Q-learning, optimal policy (terminated, ub(d) = n � 1) linear linear linear linear

domain quadratic gridworld
domain complexity ed en

worst case average case worst case average case
random walk, goal state reached linear sublinear sublinear sublinear
value-iteration, goal state reached linear sublinear sublinear sublinear
value-iteration, optimal policy (identi�ed) linear linear sublinear sublinear
value-iteration, optimal policy (terminated, ub(d) = d) linear linear sublinear sublinear
value-iteration, optimal policy (terminated, ub(d) = n� 1) superlinear superlinear linear linear
Q-learning, goal state reached linear sublinear sublinear sublinear
Q-learning, optimal policy (identi�ed) linear linear sublinear sublinear
Q-learning, optimal policy (terminated, no ub(d)) linear linear sublinear sublinear
Q-learning, optimal policy (terminated, ub(d) = d) linear linear sublinear sublinear
Q-learning, optimal policy (terminated, ub(d) = n � 1) superlinear superlinear linear linear

Table 2: Shapes of complexity graphs

expect, in turn, to terminate earlier than a Q-learning algorithm with ub(d) = ub2
for all d � ub1 < ub2. Similarly, we expect a value-iteration algorithm with
ub(d) = ub1 to terminate earlier than a value-iteration algorithm with ub(d) =
ub2 for all d � ub1 < ub2: We have proved that the bi-directional Q-learning
algorithm (version 2) always terminates with an optimal policy no later than any
bi-directional Q-learning algorithm (version 1), provided that ties are broken in
the same way. Also, Q-learning and value-iteration terminate with an optimal
policy the earlier, the smaller ub(d), since then the earlier a U -value drops below
�ub(d), which terminates the algorithm.

� Furthermore, we expect the run-time of the e�cient value-iteration algorithm
to be smaller than the run-time of the e�cient Q-learning algorithm which we
expect to be smaller than the run-time of a random walk, given the same task
to be solved and, for terminating with an optimal policy, the same ub(d) used:
Random walks do not remember the topology of the state space at all. E�cient
value-iteration and e�cient Q-learning both remember the topology partially, but
value-iteration is more powerful, since it uses an action model.

� In addition to these relationships, the graphs show that random walks are in-
e�cient in reset state spaces, but perform much better in one-dimensional and

52

0

1000

2000

3000

4000

5000

reset state space one-dimensional gridworld quadratic gridworld

e
d

domain

[1]

[2]

[3]

[4]

[5]

[6]

[7][8]

[9]

[10]

random walk, goal state reached [1]
value-iteration, goal state reached [2]

value-iteration, optimal policy (identified) [3]
value-iteration, optimal policy (terminated, ub(d)=d) [4]

value-iteration, optimal policy (terminated, ub(d)=n-1) [5]
Q-learning, goal state reached [6]

Q-learning, optimal policy (identified) [7]
Q-learning, optimal policy (terminated, no ub(d)) [8]
Q-learning, optimal policy (terminated, ub(d)=d) [9]

Q-learning, optimal policy (terminated, ub(d)=n-1) [10]

Figure 32: Complexity of domains that can be solved in 1000 steps

quadratic gridworlds, since the latter are Eulerian and therefore easier domains
for random walks than the malicious reset state spaces, where the agent has to
choose the correct action (out of two possible actions) n � 2 times in a row in
order to succeed. But even for gridworlds, the e�cient Q-learning algorithms
continue to perform better than random walks, since they remember information
about the topology of the state space, whereas random walks do not.

8 Extensions

The results presented in this report can easily be extended to cases where the actions
do not have the same reward, or prior knowledge of the topology of the state space is
available.

� Prior knowledge (in form of suitable initial Q-values, i.e. consistent or admissible
Q-values that are non-zero) makes the Q-learning algorithms better informed and
can decrease their run-times, as can easily be seen from Lemma 2. For example, in
the totally informed case, the Q-values are initialized as follows if action-penalty
representation and no discounting are used:

Q(s; a) =

(
0 if s 2 G
�1� gd(succ(s; a)) otherwise

for all s 2 S and a 2 A(s)

53

0

20

40

60

80

100

reset state space one-dimensional gridworld quadratic gridworld

n

domain

[1]

[2]

[3]

[4]

[5]

[6]

[7][8]

[9]

[10]

random walk, goal state reached [1]
value-iteration, goal state reached [2]

value-iteration, optimal policy (identified) [3]
value-iteration, optimal policy (terminated, ub(d)=d) [4]

value-iteration, optimal policy (terminated, ub(d)=n-1) [5]
Q-learning, goal state reached [6]

Q-learning, optimal policy (identified) [7]
Q-learning, optimal policy (terminated, no ub(d)) [8]
Q-learning, optimal policy (terminated, ub(d)=d) [9]

Q-learning, optimal policy (terminated, ub(d)=n-1) [10]

Figure 33: Sizes of domains that can be solved in 1000 steps

Lemma 2 predicts in this case that the agent needs only at most �U(s) = gd(s)
steps to reach a goal state from a given s 2 S, the best number of steps possible.

In many cases, admissible heuristics (for A*-search) are known for the goal dis-
tances. As explained in Chapter 4.2.1, such heuristics allow one to initialize the
Q-values with non-zero values and thus make the Q-learning algorithms better
informed. Similarly, suitable initial U -values make the value-iteration algorithm
better informed. Usually, the initial knowledge will be in between the two ex-
tremes of being totally uninformed and totally informed.

� Under the action-penalty representation, every action has an immediate cost of
one. The results presented in this report can easily be adapted to the case where
actions do not have the same immediate rewards, but arbitrary strictly negative
immediate rewards. In this case, the complexity of reaching a goal state with
admissible Q-learning (with an adequately adapted de�nition of admissibility)
becomesO(rmin

rmax
ed) instead of O(ed), where rmin is the smallest immediate reward

(i.e. the one with the largest absolute value) and rmax is the largest immediate
reward. If one de�nes the weighted distance dw(s; s0) between s 2 S and s0 2 S
to be the (unique) solution of the following set of equations

dw(s; s
0) =

(
0 if s = s0

mina2A(s)(�r(s; a) + dw(succ(s; a); s0)) otherwise
for all s; s0 2 S;

and the weighted depth of the state space to be dw := maxs;s02S dw(s; s0),
then one can prove the even tighter bound O(1

jrmaxj
edw). (The proofs are analo-

54

gous to the proofs of Lemma 1, Lemma 2, and Theorem 2.) Similarly, the com-
plexity of reaching a goal state with admissible value-iteration becomesO(rmin

rmax
nd)

or, alternatively, O(1
jrmaxj

ndw) instead of O(nd).

9 Further Problems

Reinforcement learning algorithms can not only be used in deterministic state spaces,
but also in state spaces with probabilistic action outcomes. The assumption usually
made is that the relative complexities of di�erent algorithms in deterministic domains
predict their performance in probabilistic domains. However, three problems arise in
the latter case that must be dealt with:

� In probabilistic domains, reinforcement learning algorithms do not only have to
learn the potential outcomes of actions, but the transition probabilities as well,
either explicitly (as done by value-iteration) or implicitly (as done by Q-learning).
For Q-learning, the problem arises that the learning rate � can no longer be set
to one, and one has to execute an action a in a state s repeatedly in order for
Q(s; a) to converge even if the U -values of all potential outcomes of a in s are
already correct. This also implies that it can take a long time for Q-learning to
decrease large initial Q-values to their �nal values, since the Q-values are only
adjusted in small increments. Similarly, in case the transition probabilities are
represented explicitly, a number of samples larger than one is needed to estimate
each probability reliably. [11] and [32] propose heuristics that address these
issues.

� In probabilistic domains, admissible Q-values do not necessarily remain admissi-
ble. This is due to the fact that the transition probabilities are unknown and only
estimates are available. These estimates can deviate from the correct values a lot,
although their di�erence approaches zero with probability one when the sample
size goes towards in�nity (provided that a reasonable estimation method is used).
As a consequence, it can happen that U(s) < Uopt(s) for a state s even if the
U -values of the potential outcomes of all actions in s remain admissible. For ex-
ample, consider undiscounted, zero-initialized value-iteration with action-penalty
representation and assume that the transition frequencies are used to estimate
the transition probabilities (i.e. maximum-likelihood estimation is used). Fur-
ther assume that there is a state s with A(s) = fag, executing a in s results in
state s1 with probability 0.5 and in state s2 with the complementary probability,
and Uopt(s1) < Uopt(s2). If U(s1) = Uopt(s1), U (s2) = Uopt(s2), and executing a
in s has resulted n1 times in the successor state s1 and n2 times in the successor
state s2 where n1 > n2, then

U(s) = �1 + n1
n1 + n2

U (s1) +
n2

n1 + n2
U(s2)

55

= �1 +
n1

n1 + n2
U opt(s1) +

n2
n1 + n2

Uopt(s2)

< �1 +
1

2
Uopt(s1) +

1

2
Uopt(s2)

= U opt(s)

after updating s. If U (s) < Uopt(s), then s looks worse than it is, which can
make the agent avoid executing actions that have s as an outcome. [11] calls this
phenomenon \sticking".

� In probabilistic domains, optimal policies can have cycles (i.e. the agent visits
the same state more than once with non-zero probability). This is another reason
why it can take Q-learning (or value-iteration) a long time to decrease large initial
Q-values (or U -values). It also implies that the average number of steps that are
required to reach a goal state when executing the optimal policy can already be
exponential in n [33]. In this case, exploration is clearly exponential and one has
to factor out the inherent complexity of the state space from the complexity of
the learning algorithm.

To summarize, more research is required to transfer the results from deterministic to
probabilistic state spaces. This is part of our current research activities. However, the
results reported here have already proved useful for an analysis of various extensions
of reinforcement learning techniques. For example, [18] utilizes them to analyze the
complexity of hierarchical Q-learning.

10 Conclusion

Many real-world domains have the characteristic of the task presented here | the agent
must reach one of a number of goal states by taking actions, but the initial topology of
the state space is unknown. Prior results which indicated that reinforcement learning
algorithms performed random walks until they reach a goal state for the �rst time
and therefore were exponential in n, the size of the state space, seemed to limit their
usefulness for such tasks.

This report has shown, however, that such algorithms are tractable when using either an
appropriate task representation (the action-penalty representation) or suitable initial
Q-values. Both changes produce a dense reward structure, which facilitates learning.
In particular, we showed that Q-learning needs at most O(ed) steps to �nd a path
from the start state to a goal state, or at most O(n3) steps if the state space has
no duplicate actions. These bounds are tight. Moreover, every uninformed on-line
search algorithm has the same big-O worst-case complexity. We showed, however, that
learning (and subsequently using) a map of the state space can decrease the big-O
worst-case complexity for some (but not all) domains: additional planning between
action executions can reduce the number of action executions by more than a constant

56

factor if one is willing to tolerate an increase in deliberation time between action
executions. But the complexity results also show that even if one knew the topology of
the state space in advance and performed Q-learning anyway, one would only increase
the number of action executions by a factor of O(en) at most.

We have shown that both initial knowledge of the topology of the domain (in form
of initial Q-values that are admissible, but non-zero) and domain properties such as
having no identity actions, no duplicate actions, a constant individual upper action
bound, a linear total upper action bound, polynomial width, being 1-step invertible or
Eulerian can decrease the complexity of the Q-learning algorithm (even if the agent
does not know whether a domain has these properties). Many reinforcement learning
domains, for example gridworlds, share some or all of these properties. Therefore,
exploration in these domains actually has very low complexity. For instance, the worst-
case complexity of reaching a goal state with Q-learning in quadratic gridworlds is only
O(n3=2).

In general, the largest big-O average-case complexity of a random walk is much larger
than the big-O worst-case complexity of Q-learning, and every uninformed on-line
search algorithm has at least the same big-O worst-case complexity than Q-learning.
For Eulerian state spaces, however, we have shown that the largest big-O average-case
complexity of a random walk equals the big-O worst-case complexity of Q-learning.
We continue to expect Q-learning to outperform a random walk (although the im-
provement can no longer be exponential) since random walks have no memory of past
experiences. However, there exist uninformed on-line search algorithms that have a
smaller big-O worst-case complexity than Q-learning. They demonstrate that actively
utilizing properties of the state space can decrease the complexity. These results are
very di�erent from the general case. This shows that general results about the com-
plexity of reinforcement learning algorithms might not be speci�c enough. It can be
more interesting to identify speci�c properties of the reinforcement learning domain of
interest and investigate how they in
uence the complexity.

We have introduced the novel bi-directional Q-learning algorithm for �nding shortest
paths from all states to a goal state and have shown, somewhat surprisingly, that
its complexity is O(ed) as well. This provides an e�cient algorithm to learn optimal
policies.

All results that we have derived in this report for Q-learning can easily be transferred to
value-iteration, which uses an action model and can therefore be expected to be more
e�cient than Q-learning. Undiscounted, admissible value-iteration with action-penalty
representation is equivalent to Korf's LRTA* algorithm with a search horizon of one.
Our results generalize Korf's results to state spaces that contain identity actions and
also show the e�ects of various domain properties and initial U -values that are non-zero
on the complexity. We have shown that the behavior of Q-learning in any domain is
identical to the behavior of value-iteration in an adequately modi�ed domain. Our bi-
directional value-iteration algorithm generalizes the LRTA* algorithm in that it �nds
shortest paths from all states to a goal state, does not need to have reset actions
available, and terminates.

57

Tight bounds on the largest average number of steps required for reaching a goal state
using a zero-initialized algorithm with goal-reward representation (the same results
apply to �nding optimal policies)

State Space Q-Learning Value-Iteration
general case exponential exponential
no duplicate actions exponential exponential
linear total upper action bound exponential exponential

Tight bounds on the number of steps required in the worst case for reaching a goal state
using a zero-initialized algorithm with action-penalty representation or a one-initialized
algorithm with goal-reward representation (the same results apply to �nding optimal
policies)

State Space Q-Learning Value-Iteration
general case O(en) O(n2)
no duplicate actions O(n3) O(n2)
linear total upper action bound O(n2) O(n2)

Figure 34: Complexities of Reinforcement Learning

The important results (expressed in terms of n and e) are summarized in Figure 34.
They demonstrate that undirected exploration methods can be tractable. This result
is supported by our empirical studies in three di�erent reinforcement learning domains,
that also show that ed is a good measure for the complexity of a state space.

While some reinforcement learning tasks cannot be reformulated as shortest path prob-
lems (for example, non-goal-oriented tasks where the agent has to learn how to behave
in the world), the theorems still provide guidance: the run-times can be improved by
making the reward structure dense, for instance, by subtracting some constant c 2 R
from all immediate rewards. This does not change the relative preferences among plans,
since

bUopt(s) < bUopt(s0)
1X
t=0

(
tbrt) <
1X
t=0

(
tbr0t)
1X
t=0

(
t(rt � c)) <
1X
t=0

(
t(r0t � c))

1X
t=0

(
trt)�
c

1 �

<

1X
t=0

(
tr0t)�
c

1 �

Uopt(s)�
c

1 �

< Uopt(s0)�

c

1 �

Uopt(s) < Uopt(s0)

58

Alternatively, one can use su�ciently large initial Q-values for Q-learning (or U -values
for value-iteration). In both cases it can be necessary to use discounting.

In summary, reinforcement learning algorithms are useful for enabling agents to explore
unknown state spaces and learn information relevant to performing tasks. The results
in this report add to that research by showing that reinforcement learning is tractable,
and therefore can scale up to handle real-world problems.

11 Acknowledgments

The Reinforcement Learning Study Group at Carnegie Mellon University provided a
stimulating research environment. Discussions with Sebastian Thrun initiated this re-
search and provided valuable insight. Avrim Blum, Lonnie Chrisman, Long-Ji Lin,
Michael Littman, Andrew Moore, Joseph O'Sullivan, Martha Pollack, and Sebastian
Thrun provided helpful comments on the ideas presented in this report. Lonnie Chris-
man, Michael Littman, and Joseph O'Sullivan read earlier drafts and provided helpful
suggestions. In addition, Lonnie Chrisman provided detailed comments on the proofs
in this report, which improved their presentation. Although we checked the report
carefully, it will almost certainly still have inaccuracies. If you �nd one, please let us
know.

59

References

[1] Romas Aleliunas, Richard M. Karp, Richard J. Lipton, Laszlo Lov�asz, and Charles
Racko�. Random walks, universal traversal sequences, and the complexity of maze
problems. In 20th Annual Symposium on Foundation of Computer Science, pages
218{223, San Juan, Puerto Rico, 10 1979.

[2] Andrew G. Barto, Steven J. Bradtke, and Satinder P. Singh. Real-time learning
and control using asynchronous dynamic programming. Technical Report 91{57,
Department of Computer Science, University of Massachusetts at Amherst, 1991.

[3] Andrew G. Barto, R.S. Sutton, and C.J. Watkins. Learning and sequential decision
making. Technical Report 89{95, Department of Computer Science, University of
Massachusetts at Amherst, 1989.

[4] R. Bellman. Dynamic Programming. Princeton University Press, Princeton, 1957.

[5] Gregory D. Benson and Armand Prieditis. Learning continuous-space navigation
heuristics in real-time. In Proceedings of the Second International Conference on
Simulation of Adaptive Behavior: From Animals to Animats, 1992.

[6] Xiaotie Deng and Christos H. Papadimitriou. Exploring an unknown graph. In
Proceedings of the FOCS, 1990.

[7] William Feller. An Introduction to Probability Theory and Its Applications. John
Wiley and Sons, New York, London, Sydney, second edition, 1966.

[8] Ronald A. Howard. Dynamic Programming and Markov Processes. The MIT
Press, Cambridge (Massachusetts), third edition, 1964.

[9] Toru Ishida. Moving target search. In Proceedings of the AAAI, pages 525{532,
1992.

[10] Toru Ishida and Richard E. Korf. Moving target search. In Proceedings of the
IJCAI, pages 204{210, 1991.

[11] Leslie P. Kaelbling. Learning in Embedded Systems. PhD thesis, Computer Science
Department, Stanford University, 1990.

[12] Kevin Knight. Are many reactive agents better than a few deliberative ones? In
Proceedings of the IJCAI, 1993.

[13] Sven Koenig. Optimal probabilistic and decision-theoretic planning using Marko-
vian decision theory. Master's thesis, Computer Science Department, University of
California at Berkeley, 1991. (Available as Technical Report UCB/CSD 92/685).

[14] Sven Koenig. The complexity of real-time search. Technical Report CMU{CS{
92{145, School of Computer Science, Carnegie Mellon University, 1992.

60

[15] Richard E. Korf. Real-time heuristic search: First results. In Proceedings of the
AAAI, pages 133{138, 1987.

[16] Richard E. Korf. Real-time heuristic search: New results. In Proceedings of the
AAAI, pages 139{144, 1988.

[17] Richard E. Korf. Real-time heuristic search. Arti�cial Intelligence, 42(2-3):189{
211, 3 1990.

[18] Long-Ji Lin. Reinforcement Learning for Robots using Neural Networks. PhD
thesis, School of Computer Science, Carnegie Mellon University, 1993. (Available
as Technical Report CMU-CS-93-103).

[19] Andrew W. Moore and Christopher G. Atkeson. Memory-based reinforcement
learning: E�cient computation with prioritized sweeping. In Proceedings of the
NIPS, 1992.

[20] Nils J. Nilsson. Problem-Solving Methods in Arti�cial Intelligence. McGraw-Hill,
New York, New York, 1971.

[21] Christos H. Papadimitriou and John N. Tsitsiklis. The complexity of Markov
decision processes. Mathematics of Operations Research, 12(3):441{450, 8 1987.

[22] Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solv-
ing. Addison-Wesley, Menlo Park, California, 1985.

[23] Joseph C. Pemberton and Richard E. Korf. Incremental path planning on graphs
with cycles. In Proceedings of the First Annual AI Planning Systems Conference,
pages 179{188, 1992.

[24] Jing Peng and Ronald J. Williams. E�cient learning and planning within the Dyna
framework. In Proceedings of the Second International Conference on Simulation
of Adaptive Behavior: From Animals to Animats, 1992.

[25] Stuart Russell and Eric Wefald. Do the Right Thing { Studies in Limited Ratio-
nality. The MIT Press, Cambridge, Massachusetts, 1991.

[26] M.J. Schoppers. Universal plans for reactive robots in unpredictable environments.
In Proceedings of the IJCAI, pages 1039{1046, 1987.

[27] Herbert A. Simon and Joseph B. Kadane. Optimal problem-solving search: All-
or-none solutions. Arti�cial Intelligence, 6:235{247, 1975.

[28] Satinder P. Singh. Reinforcement learning with a hierarchy of abstract models. In
Proceedings of the AAAI, pages 202{207, 1992.

[29] D.D. Sleator and R.E. Tarjan. Amortized e�ciency of list update and paging
rules. Communications of the ACM, 28(2):202{208, 1985.

61

[30] Richard S. Sutton. First results with DYNA. In Proceedings of the AAAI Spring
Symposium, 1990.

[31] Richard S. Sutton. Integrated architectures for learning, planning, and reacting
based on approximating dynamic programming. In Proceedings of the Seventh
International Conference on Machine Learning, 1990.

[32] Sebastian B. Thrun. E�cient exploration in reinforcement learning. Technical
Report CMU-CS-92-102, School of Computer Science, Carnegie Mellon University,
1992.

[33] Sebastian B. Thrun. The role of exploration in learning control with neural net-
works. In David A. White and Donald A. Sofge, editors, Handbook of Intelligent
Control: Neural, Fuzzy and Adaptive Approaches. Van Nostrand Reinhold, Flo-
rence, Kentucky, 1992.

[34] Christopher J. Watkins. Learning from Delayed Rewards. PhD thesis, King's
College, Cambridge University, 1989.

[35] Steven D. Whitehead. A complexity analysis of cooperative mechanisms in rein-
forcement learning. In Proceedings of the AAAI, pages 607{613, 1991.

[36] Steven D. Whitehead. A study of cooperative mechanisms for faster reinforcement
learning. Technical Report 365, Computer Science Department, University of
Rochester, 1991.

[37] Steven D. Whitehead. Reinforcement Learning for the Adaptive Control of Per-
ception and Action. PhD thesis, Department of Computer Science, University of
Rochester, 1992.

[38] Richard Yee. Abstraction in control learning. Technical Report 92{16, Department
of Computer Science, University of Massachusetts at Amherst, 1992.

62

Appendix

The appendix contains the proofs of the lemmas and theorems stated in the main text
that have not been proved there. We use the terminology and symbols introduced in
the main text.

A Upper Bounds

A.1 Reaching a Goal State with Q-Learning

In the following, we consider an undiscounted, admissible Q-learning algorithm with
action-penalty representation. The proofs can then be transferred to the other algo-
rithms (for example a discounted, admissible Q-learning algorithm with action-penalty
representation or a high-initialized, discounted Q-learning algorithm with goal-reward
representation) as outlined in the main text.

The time superscripts used in this chapter refer to the values of the variables imme-
diately before the action execution step of the Q-learning algorithm, i.e. line 4, of
step t.

Theorem 12 Zero-initialized Q-values are consistent.

Proof: Q(s; a) = 0 for all s 2 G and a 2 A(s). Since U(s) = maxa2A(s)Q(s; a) =
maxa2A(s) 0 = 0 for all s 2 S, it holds for all s 2 S n G and a 2 A(s) that �1 +
U(succ(s; a)) = �1 + 0 � 0 = Q(s; a) � 0.

Theorem 13 (Minus one)-initialized Q-values are consistent.

Proof: Q(s; a) = 0 for all s 2 G and a 2 A(s). Since U (s) = maxa2A(s)Q(s; a) �
maxa2A(s) 0 = 0 for all s 2 S, it holds for all s 2 S n G and a 2 A(s) that �1 +
U(succ(s; a)) � �1 + 0 = Q(s; a) � 0.

Theorem 14 If Q-values are consistent, then �mins02PG d(s; s0) � U(s) � 0 for all
s 2 S, where PG := fs 2 S : U (s) = 0g.

63

Proof by induction on d0(s) := mins02PG d(s; s0):

� If d0(s) = 0, then s 2 PG and therefore U(s) = 0. Thus, �d0(s) = U (s) = 0.

� If d0(s) 6= 0, then s 62 PG � G and therefore s 2 S n G. Since G 6= ;, it holds
that PG 6= ;. Let a := argmina02A(s)d

0(succ(s; a0)). Assume that the theorem
holds for all s00 2 S with d0(s00) < d0(s). Then, it holds for succ(s; a) as well, since

d0(succ(s; a)) = d0(s)�1 < d0(s). Thus, �d0(s) = �1�d0(succ(s; a))
assumption

� �1+
U(succ(s; a)) � Q(s; a) � maxa02A(s)Q(s; a

0) = U(s) � maxs02S;a02A(s)Q(s
0; a0) �

0.

Theorem 15 If Q-values are consistent, then �1 � mins02PG d(succ(s; a); s0) �
Q(s; a) � 0 for all s 2 S nG and a 2 A(s), where PG := fs 2 S : U(s) = 0g.

Proof: �1�mins02PG d(succ(s; a); s0)
Theorem 14

� �1 + U (succ(s; a)) � Q(s; a) � 0 for all
s 2 S nG and a 2 A(s).

Theorem 16 If Q-values are consistent, then �gd(s) � U(s) � 0 for all s 2 S.

Proof: �gd(s) = �mins02G d(s; s
0) � �mins02PG d(s; s

0)
Theorem 14

� U(s)
Theorem 14

� 0 for all
s 2 S.

Theorem 17 If Q-values are consistent, then �d � mins2S U(s)�maxs2S U (s).

Proof of �d � �d0(s) � U(s) �maxs02S U(s0) for all s 2 S by induction on d0(s) :=
mins02G0 d(s; s0), where G0 := fs 2 S : U(s) = maxs02S U(s0)g 6= ;. Then, �d �
mins2S U(s)�maxs2S U(s) and the theorem is proved.

� If d0(s) = 0, then s 2 G0 and �d0(s) = 0 = maxs02S U(s0) � maxs02S U (s0) =
U(s)�maxs02S U (s0).

� If d0(s) 6= 0, then U(s) < maxs02S U (s0)
Theorem 14

� maxs02S 0 = 0 and therefore
s 62 G. Assume that the theorem holds for all s0 2 S with d0(s0) < d0(s). There
exists an a 2 A(s) such that d0(succ(s; a)) = d0(s) � 1 < d0(s). Then, �d0(s) =

�1 � d0(succ(s; a))
assumption

� �1 + U(succ(s; a)) � maxs02S U (s0) � Q(s; a) �
maxs02S U (s0) � maxa02A(s)Q(s; a

0)�maxs02S U (s0) = U(s)�maxs02S U(s0).

64

Theorem 18 Consistent Q-values are admissible.

Proof: Assume consistent Q-values. Q(s; a) = 0 for all s 2 G and a 2 A(s). It holds

for all s 2 S n G and a 2 A(s) that �1 � gd(succ(s; a))
Theorem 16

� �1 + U (succ(s; a)) �
Q(s; a) � 0.

Theorem 19 Uopt(s) = �gd(s) for all s 2 S.

Proof: According to Equations 2 and the fact that we are using action-penalty repre-
sentation

Uopt(s) =

8<: 0 if s 2 G
max
a2A(s)

(�1 + Uopt(succ(s; a))) otherwise for all s 2 S

�Uopt(s) =

8<: 0 if s 2 G
1 + min

a2A(s)
�Uopt(succ(s; a)) otherwise for all s 2 S

(We utilize that Uopt(s) = 0 for s 2 G: Once in a goal state, the agent can execute
only one action, that has an immediate reward of 0 and does not leave the goal state.
Thus, the total reward of the continued execution of this action is 0. This fact does
not follow from Equations 2 if
 = 1.)

Comparing this to the de�nition of gd(s)

gd(s) = min
s02G

d(s; s0)

= min
s02G

8<: 0 if s = s0

1 + min
a2A(s)

d(succ(s; a); s0) otherwise

=

8<: 0 if s 2 G
1 + min

a2A(s)
gd(succ(s; a)) otherwise for all s 2 S

shows that �Uopt(s) = gd(s) for all s 2 S, since the solution of the set of equations is
unique.

Theorem 20 If Q-values are admissible, then �gd(s) � U(s) � 0 for all s 2 S.

Proof: If s 2 G, then �gd(s) = 0 = maxa2A(s) 0 = maxa2A(s)Q(s; a) = U(s). It holds
for all s 2 S n G that �gd(s) = �(1 + mina2A(s) gd(succ(s; a))) = maxa2A(s)(�1 �
gd(succ(s; a))) � maxa2A(s)Q(s; a) = U(s) � maxs02S;a02A(s)Q(s0; a0) � 0.

65

Consider the following algorithm: Given arbitrary Q-values. Pick an arbitrary state
s 2 S n G and determine a := argmaxa02A(s)Q(s; a

0). (Ties can be broken arbitrarily.)
Set Q(s; a) := �1 + U(succ(s; a)) and leave the other Q-values unchanged. Refer to
the old Q-values as Q0(s; a) and to the new ones as Q1(s; a), i.e.

Q1(s0; a0) =

(
�1 + U0(succ(s0; a0)) if s0 = s and a0 = a
Q0(s0; a0) otherwise

for all s0 2 S and a0 2 A(s0)

Theorem 21 If the Q0-values are consistent, then

1. Q1(s0; a0) � Q0(s0; a0) for all s0 2 S and a0 2 A(s0),

2. U1(s0) � U0(s0) for all s0 2 S, and

3. the Q1-values are consistent.

Proof:

1. Q1(s0; a0) = �1 + U0(succ(s0; a0)) � Q0(s0; a0) for s0 = s and a0 = a, and
Q1(s0; a0) = Q0(s0; a0) otherwise. Thus, Q1(s0; a0) � Q0(s0; a0) for all s0 2 S
and a0 2 A(s0).

2. According to the �rst part of this theorem, it holds that Q1(s0; a0) � Q0(s0; a0) � 0
for all s0 2 S and a0 2 A(s0). Then, U1(s0) = maxa02A(s0)Q

1(s0; a0) �
maxa02A(s0)Q

0(s0; a0) = U 0(s0) for all s0 2 S.

3. According to the second part of this theorem, it holds that U 1(s0) � U 0(s0) for
all s0 2 S. Then, �1 + U 1(succ(s0; a0)) � �1 + U 0(succ(s0; a0)) = Q1(s0; a0) � 0
for s0 = s and a0 = a, Q1(s0; a0) = Q0(s0; a0) = 0 for all s0 2 G and a0 2 A(s0),
and �1 + U1(succ(s0; a0)) � �1 + U 0(succ(s0; a0)) � Q0(s0; a0) = Q1(s0; a0) � 0
otherwise. Thus, the Q1-values are consistent.

Theorem 22 If the initial Q-values are consistent, then they remain consistent after
every step of the agent, and the Q-values and U-values are monotonically decreasing.

Proof by induction on the number of steps: The Q-values are consistent before the
�rst step. Assume that they are consistent before an arbitrary step. According to
Theorem 21, they are consistent after the step, and the Q-values and U -values are
monotonically decreasing.

Consider the following algorithm: Given arbitrary Q-values. Pick an arbitrary state
s 2 S n G and determine a := argmaxa02A(s)Q(s; a

0). (Ties can be broken arbitrarily.)

66

SetQ(s; a) := min(Q(s; a);�1+U(succ(s; a))) and leave the other Q-values unchanged.
Refer to the old Q-values as Q0(s; a) and to the new ones as Q1(s; a), i.e.

Q1(s0; a0) =

(
min(Q0(s0; a0);�1 + U0(succ(s0; a0))) if s0 = s and a0 = a
Q0(s0; a0) otherwise

for all s0 2 S and a0 2 A

Theorem 23 If the Q0-values are admissible, then

1. Q1(s0; a0) � Q0(s0; a0) for all s0 2 S and a0 2 A(s0),

2. U1(s0) � U0(s0) for all s0 2 S, and

3. the Q1-values are admissible.

Proof:

1. Q1(s0; a0) = min(Q0(s0; a0);�1 + U0(succ(s0; a0))) � Q0(s0; a0) for s0 = s and
a0 = a, and Q1(s0; a0) = Q0(s0; a0) otherwise. Thus, Q1(s0; a0) � Q0(s0; a0) for all
s0 2 S and a0 2 A(s0).

2. According to the �rst part of this theorem, it holds that Q1(s0; a0) � Q0(s0; a0) � 0
for all s0 2 S and a0 2 A(s0). Then, U1(s0) = maxa02A(s0)Q

1(s0; a0) �
maxa02A(s0)Q

0(s0; a0) = U 0(s0) for all s0 2 S.

3. �1 � gd(succ(s0; a0)) � Q0(s0; a0) and �1 � gd(succ(s0; a0))
Theorem 20

� �1 +
U0(succ(s0; a0)) for s0 = s and a0 = a, therefore �1 � gd(succ(s0; a0)) �
min(Q0(s0; a0);�1 + U0(succ(s0; a0))) = Q1(s0; a0) � 0 for s0 = s and a0 = a.
Q1(s0; a0) = Q0(s0; a0) = 0 for all s0 2 G and a0 2 A(s0), and �1�gd(succ(s0; a0)) �
Q0(s0; a0) = Q1(s0; a0) � 0 otherwise. Thus, the Q1-values are admissible.

Theorem 24 If the initial Q-values are admissible, then they remain admissible after
every step of the agent, and the Q-values and U-values are monotonically decreasing.

Proof by induction on the number of steps: The Q-values are admissible before the
�rst step. Assume that they are admissible before an arbitrary step. According to
Theorem 23, they are admissible after the step, and the Q-values and U -values are
monotonically decreasing.

Theorem 25 For all steps t 2 N0 (until termination) of an undiscounted,
admissible Q-learning algorithm it holds that U t(st) +

P
s2S

P
a2A(s)Q

0(s; a) �
t �

P
s2S

P
a2A(s)Q

t(s; a) + U 0(s0) � loopt and loopt �
P

s2S

P
a2A(s)Q

0(s; a) �P
s2S

P
a2A(s)Q

t(s; a), where loopt := jft0 2 f0; . . . ; t � 1g : st
0

= st
0+1gj (the num-

ber of identity actions executed before t).

67

Proof by induction on t: The theorem trivially holds for t = 0. Assume that it holds
for an arbitrary t. Note that Qt(st; at) = U t(st), due to the speci�c action-selection
step used. We distinguish two cases:

� The action executed at t is an identity action:

Then, st+1 = st and loopt+1 = 1 + loopt. Depending on the value update
step used, it holds that either Qt+1(st; at) = �1 + U t(st) = �1 + Qt(st; at)
or Qt+1(st; at) = min(Qt(st; at);�1 + U t(st)) = min(Qt(st; at);�1 +Qt(st; at)) =
�1 + Qt(st; at). Thus, in both cases Qt+1(st; at) = �1 + Qt(st; at). U t+1(st) =
maxa2A(st)Q

t+1(st; a) � Qt+1(st; at) = �1 + Qt(st; at) = �1 + U t(st). All other
values do not change from t to t+ 1.

U t+1(st+1) +
P

s2S

P
a2A(s)Q

0(s; a) � (t + 1) � (�1 + U t(st)) +P
s2S

P
a2A(s)Q

0(s; a)� (t+1) = (U t(st) +
P

s2S

P
a2A(s)Q

0(s; a)� t)� 2
assumption

�
(
P

s2S

P
a2A(s)Q

t(s; a) + U0(s0) � loopt) � 2 = (�1 +
P

s2S

P
a2A(s)Q

t(s; a)) +
U0(s0)� (1 + loopt) =

P
s2S

P
a2A(s)Q

t+1(s; a) + U0(s0)� loopt+1.

loopt+1 = 1 + loopt
assumption

� 1 + (
P

s2S

P
a2A(s)Q

0(s; a)�
P

s2S

P
a2A(s)Q

t(s; a)) =P
s2S

P
a2A(s)Q

0(s; a) � (�1 +
P

s2S

P
a2A(s)Q

t(s; a)) =
P

s2S

P
a2A(s)Q

0(s; a) �P
s2S

P
a2A(s)Q

t+1(s; a).

In other words, the theorem also holds for t+ 1.

� The action executed at t is not an identity action:

Then, st+1 6= st, loopt+1 = loopt, and (independent of the value update step
used) Qt+1(st; at) � �1 + U t(st+1) = �1 + U t+1(st+1). All other values, except
for U (st), do not change from t to t+ 1.

U t+1(st+1) +
P

s2S

P
a2A(s)Q

0(s; a)� (t+ 1) = (U t(st) +
P

s2S

P
a2A(s)Q

0(s; a)�

t) + U t+1(st+1) � U t(st) � 1
assumption

� (
P

s2S

P
a2A(s)Q

t(s; a) + U0(s0) � loopt) +
U t+1(st+1) � U t(st) � 1 = (�1 + U t+1(st+1)) � U t(st) +

P
s2S

P
a2A(s)Q

t(s; a) +
U0(s0)�loopt � (Qt+1(st; at)�Qt(st; at)+

P
s2S

P
a2A(s)Q

t(s; a))+U 0(s0)�loopt =
(
P

s2S

P
a2A(s)Q

t+1(s; a)) + U0(s0)� loopt+1.

loopt+1 = loopt
assumption

�
P

s2S

P
a2A(s)Q

0(s; a) �
P

s2S

P
a2A(s)Q

t(s; a) �P
s2S

P
a2A(s)Q

0(s; a) �
P

s2S

P
a2A(s)Q

t+1(s; a), since Qt+1(s; a) � Qt(s; a) for
all s 2 S and a 2 A(s) according to Theorems 22 and 24.

In other words, the theorem also holds for t+ 1.

The following theorem is a simpli�ed version of the previous one.

Theorem 26 For all steps t 2 N0 (until termination) of an undiscounted,
zero-initialized, and admissible Q-learning algorithm it holds that U t(st) � t =P

s2S

P
a2A(s)Q

t(s; a) if the state space has no identity actions.

68

Proof by induction on t: The theorem trivially holds for t = 0. Assume that it
holds for an arbitrary t. st+1 6= st and (independent of the value update step used)
Qt+1(st; at) = �1 + U t(st+1) = �1 + U t+1(st+1), since the Qt-values are consistent
according to Theorems 12 and 22 and therefore Qt(st; at) � �1 + U t(succ(st; at)). All
other values, except for U (st), do not change from t to t + 1. Note that Qt(st; at) =
U t(st), due to the speci�c action-selection step used.

U t+1(st+1)�(t+1) = (U t(st)�t)+U t+1(st+1)�U t(st)�1
assumption

=
P

s2S

P
a2A(s)Q

t(s; a)+
U t+1(st+1) � U t(st) � 1 = (�1 + U t+1(st+1)) � U t(st) +

P
s2S

P
a2A(s)Q

t(s; a) =
Qt+1(st; at)�Qt(st; at) +

P
s2S

P
a2A(s)Q

t(s; a) =
P

s2S

P
a2A(s)Q

t+1(s; a).

In other words, the theorem also holds for t+ 1.

Theorem 27 For all steps t 2 N0 (until termination) of an undiscounted, admissible
Q-learning algorithm it holds that t � U t(st) � U 0(s0) + 2

P
s2S

P
a2A(s)(Q

0(s; a) �
Qt(s; a)).

Proof: t
Theorem 25

� U t(st) +
P

s2S

P
a2A(s)Q

0(s; a) �
P

s2S

P
a2A(s)Q

t(s; a) � U0(s0) +

loopt
Theorem 25

� U t(st) +
P

s2S

P
a2A(s)Q

0(s; a) �
P

s2S

P
a2A(s)Q

t(s; a) � U0(s0) +
(
P

s2S

P
a2A(s)Q

0(s; a) �
P

s2S

P
a2A(s)Q

t(s; a)) = U t(st) + 2
P

s2S

P
a2A(s)Q

0(s; a) +
2
P

s2S

P
a2A(s)�Q

t(s; a) � U 0(s0) = U t(st) � U0(s0) + 2
P

s2S

P
a2A(s)(Q

0(s; a) �
Qt(s; a)).

Theorem 28 An undiscounted, admissible Q-learning algorithm reaches a goal state
and terminates after at most 2

P
s2SnG

P
a2A(s)(Q

0(s; a) + gd(succ(s; a)) + 1) � U0(s0)
steps.

Proof: t
Theorem 27

� U t(st) � U0(s0) + 2
P

s2S

P
a2A(s)(Q

0(s; a) � Qt(s; a)) � �U0(s0) +
2
P

s2SnG

P
a2A(s)(Q

0(s; a) + gd(succ(s; a)) + 1), since the Q-values are admissible ac-
cording to Theorems 22 and 18 or Theorem 24, and therefore Q0(s; a) = Qt(s; a) = 0
for all s 2 G and a 2 A(s), �1 � gd(succ(s; a)) � Qt(s; a) for all s 2 S n G and

a 2 A(s), and U t(s)
Theorem 20

� 0 for all s 2 S.

Theorem 29 An admissible Q-learning algorithm reaches a goal state and terminates
after at most O(ed) steps.

Proof: The algorithm reaches a goal state and terminates after at most
O(2

P
s2SnG

P
a2A(s)(Q

0(s; a) + gd(succ(s; a)) + 1)�U 0(s0)) � O(2
P

s2SnG

P
a2A(s)(d+

69

1) + d) � O(2e(d + 1) + d) = O(ed) steps according to Theorem 28, since the Q-
values are admissible according to Theorems 22 and 18 or Theorem 24, and therefore

Q0(s; a) � 0 for all s 2 S and a 2 A(s), and �d � �gd(s)
Theorem 20

� U 0(s) for all s 2 S.

A.2 Finding Optimal Policies with Bi-Directional Q-
Learning (Version 1)

In the following, we consider the bi-directional Q-learning algorithm (version 1) as
stated in Figure 20. The proofs can then be transferred to a discounted, admissi-
ble bi-directional Q-learning algorithm with action-penalty representation or a high-
initialized, discounted bi-directional Q-learning algorithm with goal-reward represen-
tation as outlined in Chapter 4 for the (basic) Q-learning algorithm.

The time superscripts used in this chapter refer to the values of the variables immedi-
ately before the action execution steps of the bi-directional Q-learning algorithm, i.e.
lines 5 and 9, of step t.

We de�ne a \forward phase" of the bi-directional Q-learning algorithm (version 1) to
be a largest interval of steps [ta; tb] � N0 (with ta < tb) such that line 5 was executed
at all steps t 2 [ta; tb � 1]. Analogously, we de�ne a \backward phase" to be a largest
interval of steps [ta; tb] � N0 (with ta < tb) such that line 9 was executed at all steps
t 2 [ta; tb � 1].

These de�nitions imply that the agent is in a state st
a

with donet
a

(st
a

) = false at the
beginning of a forward phase [ta; tb]. Then, it exclusively executes forward steps, until
it �nally reaches a state st

b

with donet
b

(st
b

) = true. The opposite holds for a backward
phase.

The bi-directional Q-learning algorithm starts with a forward phase if sstart 62 G, then
alternates between backward and forward phases, and ends with a backward phase.

Theorem 30 The Qf -values are consistent after every step of the agent and are mono-
tonically decreasing.

Proof by induction on t:

� Initially, Qf (s; a) = 0 for all s 2 S and a 2 A(s). Thus, the Qf -values are
consistent according to Theorem 12.

� Assume that the Qf -values are consistent before an arbitrary step. The only line
that can change a Qf -value is line 6. If line 6 is executed, then the Qf -values

70

remain consistent after the step and are monotonically decreasing according to
Theorem 21. If line 6 is not executed, then the Qf -values remain unchanged and
are consistent according to the assumption.

Theorem 31 Every forward phase terminates.

Proof by contradiction: Assume not. The Qf -values before the �rst step of any forward
phase are consistent according to Theorem 30. The repeated execution of a forward
step implements an admissible Q-learning algorithm. According to Theorem 29, the
agent reaches a state s 2 G eventually, and then sets done(s; a) := true for all a 2 A(s)
in line 2. Afterwards, done(s) = true and the next step executed is a backward step.
This terminates the forward phase, which is a contradiction.

Theorem 32 For all s 2 S and a 2 A(s), it holds that: once done(s; a) = true, it
remains true after every step of the agent and Qf(s; a) remains unchanged.

Proof by contradiction: Assume not. Then done(s; a) = true before some step, but
after the step either the value of done(s; a) or Qf (s; a) has changed. The only line that
can set done(s; a) := false or change the value of Qf (s; a) is line 6 when the current
state equals s. It is only executed if done(s) = false when line 3 is executed. This
implies that done(s; a0) = false for all a0 2 A(s) with Qf(s; a0) = maxa002A(s)Qf(s; a00).
But then done(s; a) = false for the action a selected in line 4, which is a contradiction.

Theorem 33 For all s 2 S, it holds that: once done(s) = true, it remains true after
every step of the agent and Uf (s) remains unchanged.

Proof by contradiction: Assume not. Then done(s) = true before some step, but after
the step either the value of done(s) or Uf(s) has changed. This is only possible if a
value of done(s; a) or Qf (s; a) for an a 2 A(s) has changed. The only line that can
change one of these values is line 6 when the current state equals s, but it cannot be
executed, since done(s) = true when line 3 is executed. This is a contradiction.

Theorem 34 Every forward phase [ta; tb] increases the cardinality of the set D :=
f(s; a) : done(s; a) = true _ done(s) = true; s 2 S; a 2 A(s)g by at least one.

Proof: donet
b

(st
b

) = true per de�nition of a forward phase. We distinguish two cases:

71

� donet
b�1(st

b

) = false:

A(st
b

) 6= ;, since the state space is strongly connected. donet
b�1(st

b

) = false
implies that there exists an a 2 A(st

b

) with donet
b�1(st

b

; a) = false . Thus,
(st

b

; a) 62 Dtb�1. However, (st
b

; a) 2 Dtb, since donet
b

(st
b

) = true.

� donet
b�1(st

b

) = true:

If a forward step is executed at step tb � 1 � ta, then donet
b�1(st

b�1) =
false (otherwise a backward step would be executed, which were a contra-
diction). Thus, donet

b�1(st
b�1; at

b�1) = false (otherwise donet
b�1(st

b�1) =

9a2A(stb�1)(Q
tb�1
f (st

b�1; a) = max
a02A(st

b�1)
Qtb�1

f (st
b�1; a0)^done(st

b�1; a)) = true,

since Qtb�1
f (st

b�1; at
b�1) = max

a02A(stb�1)Q
tb�1
f (st

b�1; a0) and done(st
b�1; at

b�1) =

true, which were a contradiction). Thus, (st
b�1; at

b�1) 62 Dtb�1. However,
(st

b�1; at
b�1) 2 Dtb, since donet

b

(st
b�1; at

b�1) = donet
b�1(succ(st

b�1; at
b�1)) =

donet
b�1(st

b

) = true.

Theorem 35 For all s 2 S, it holds that: if done(s) = true, then Uf (s) = �gd(s) =
Uopt
f (s).

Proof by induction on t: Initially, done(s) = false for all s 2 S and the theorem holds
trivially. We distinguish two cases:

� gd(s) = 0, i.e. s 2 G:

Initially, Uf (s) = maxa2A(s)Qf(s; a) = maxa2A(s) 0 = 0 = �gd(s)
Theorem 19

=
Uopt
f (s). The only line that can change a Qf (s; a) value for a 2 A(s) is line 6

when the current state equals s, but it cannot be executed, since done(s; a) is
set to true for all a 2 A(s) in line 2 and thus done(s) = true when line 3 is
executed. Thus, the Qf(s; a) values cannot be changed for all a 2 A(s), and
Uf (s) = maxa2A(s)Qf(s; a) = maxa2A(s) 0 = 0 = �gd(s) = Uopt

f (s) continues to
hold after every step of the agent (no matter what the value of done(s) is).

� gd(s) 6= 0, i.e. s 2 S nG:

If done(s) never becomes true, the theorem holds trivially for s 2 S. Oth-
erwise, let t := argmint02N0

(donet
0
(s) = true) and assume that the theo-

rem holds for all steps smaller than t. Because donet(s) = true, there ex-
ists an a 2 A(s) with Qt

f(s; a) = maxa02A(s)Q
t
f(s; a

0) and donet(s; a) = true.
Since initially done(s; a) = false, there exists a step t0 2 N0 with t0 < t
and donet

0
(s; a) = false , but donet

0+1(s; a) = true. Line 6 was executed
at step t0, since this is the only way to set done(s; a) := true for a state
s 62 G. Then, donet

0+1(s; a) = donet
0
(succ(s; a)) = true and Qt0+1

f (s; a) =

�1 + U t0

f (succ(s; a)). �1 � gd(succ(s; a)) � maxa02A(s)(�1 � gd(succ(s; a0))) =

72

�(1+mina02A(s) gd(succ(s; a
0))) = �gd(s)

Theorem 16

� U t
f (s) = maxa02A(s)Q

t
f (s; a

0) =

Qt
f(s; a)

Theorem 30

� Qt0+1
f (s; a) = �1 + U t0

f (succ(s; a))
assumption

= �1 � gd(succ(s; a)),
since the Qf -values are consistent at step t according to Theorem 30. Thus,

equality holds and U t
f (s) = �gd(s)

Theorem 19
= Uopt

f (s). Since donet(s) = true, Uf (s)

remains unchanged after every step of the agent and Uf (s) = �gd(s) = Uopt
f (s)

continues to hold according to Theorem 33.

Theorem 36 For all s 2 S nG and a 2 A(s)), it holds that: if done(s; a) = true, then
Qf(s; a) = �1� gd(succ(s; a)).

Proof: Initially, done(s; a) = false. If done(s; a) never becomes true, the theorem holds
trivially for s 2 S nG. Otherwise, let t := argmint2N0

(donet(s; a) = true). Since s 62 G,
the only line that can set done(s; a) := true is line 6 when the current state equals s.
Then, donet(s; a) = donet�1(succ(s; a)) and Qt

f(s; a) = �1 + U t�1
f (succ(s; a)). Since

donet�1(succ(s; a)) = donet(s; a) = true, Theorem 35 asserts that U t�1
f (succ(s; a)) =

�gd(succ(s; a)). It follows that Qt
f (s; a) = �1 � gd(succ(s; a)). Since donet(s; a) =

true, Qf(s; a) remains unchanged after every step of the agent and Qf(s; a) = �1 �
gd(succ(s; a)) continues to hold according to Theorem 32.

Theorem 37 There is a maximum of e forward phases and e+ 1 backward phases.

Proof: According to Theorem 34, every forward phase increases the size of the set
D := f(s; a) : done(s; a) = true _ done(s) = true; s 2 S; a 2 A(s)g by at least one.
Since jDj = e, there can be at most e forward phases. Since forward and backward
phases alternate, there are at most e+ 1 backward phases.

Theorem 38 All forward phases together execute at most O(e� ub(d)) steps.

Proof: There are at most e forward phases according to Theorem 37. Let there be

the forward phases [tai ; t
b
i] for i 2 f0; 1; . . . ; e0g with e0 < e. Q

tb
i

f (s; a) = Q
tai+1
f (s; a)

and U
tb
i

f (s) = U
tai+1
f (s) for all i 2 f0; 1; . . . ; e0 � 1g, s 2 S, and a 2 A(s), since

only forward steps can change Qf -values. According to Theorem 31, every forward
phase terminates. Theorem 27 asserts that the forward phase [tai ; t

b
i] needs at most

U
tbi
f (s

tb
i) � U

tai
f (st

a
i) + 2

P
s2S

P
a2A(s)(Q

tai
f (s; a) �Q

tbi
f (s; a)) steps to terminate. The fol-

lowing relationships hold, since theQf -values are consistent after every step of the agent

according to Theorem 30 and G 6= ;: �d � �gd(s)
Theorem 16

� Uf(s)
Theorem 16

� 0 for all

73

s 2 S, �1�d � �1� gd(succ(s; a)) � Qf(s; a) � 0 for all s 2 S nG and a 2 A(s), and
�1�d � 0 = Qf (s; a) for s 2 G and a 2 A(s). Thus, all forward phases together termi-

nate after at most
Pe0

i=0

�
U

tbi
f (s

tb
i)� U

tai
f (st

a
i) + 2

P
s2S

P
a2A(s)(Q

tai
f (s; a)�Q

tbi
f (s; a))

�
=Pe0

i=0(U
tb
i

f (s
tbi) � U

ta
i

f (st
a
i)) + 2

P
s2S

P
a2A(s)(Q

ta0
f (s; a) � Q

tb
e0

f (s; a)) �
Pe0

i=0(0 + d)) +
2
P

s2S

P
a2A(s)(0 + (d + 1)) � ed + 2e(d + 1) � 3e(d + 1) � 3e(ub(d) + 1) steps in

total, which are O(e� ub(d)) steps.

Theorem 39 The Qb-values are consistent after every step of the agent and are mono-
tonically decreasing.

Proof by induction on t: De�ne Gb := fs 2 S nG : done(s) = falseg. Thus, Gb changes
during execution.

� Initially, Qb(s; a) = 0 for all s 2 S and a 2 A(s). Thus, the Qb-values are
consistent according to Theorem 12.

� Assume that the Qb-values are consistent for the set of goal states Gt
b before an

arbitrary step t+1. Note that if Q-values are consistent for a set of goal states G,
then they are also consistent for any subset G0 � G. According to Theorem 33,
it holds that Gt+1

b � Gt
b. Thus, the Qt

b-values are consistent for the set of goal
states Gt+1

b as well.

The only line that can change a Qb-value is line 10. If line 10 is not executed,
then the Qb-values remain unchanged and therefore remain consistent for Gt+1

b . If
line 10 is executed, then donet(st) = true (otherwise line 3 would have transferred
control to a forward step) and therefore st 62 Gt

b � Gt+1
b . Then, the Qb-values

remain consistent for Gt+1
b after the step and are monotonically decreasing ac-

cording to Theorem 21.

Theorem 40 Uf (s) = �gd(s) = Uopt
f (s), done(s) = true, and Ub(s) < 0 for all s 2 S

after termination if the bi-directional Q-learning algorithm (version 1) terminates.

Proof: Let t be the time superscript for the �nal values of the variables. Then,
U t
b(s

t�1) < �ub(d) � �d, since the condition in line 11 is true at step t. Accord-
ing to Theorem 39, the Qt

b-values are consistent. Theorem 17 states that �d �
mins02S U t

b(s
0) � maxs02S U t

b(s
0) � U t

b(s
t�1) � maxs02S U t

b(s
0) < �d � maxs02S U t

b(s
0).

Thus, 0 = �d+d < �d�maxs02S U t
b (s

0)+d = �maxs02S U t
b(s

0). Consider an arbitrary
s 2 S. Since maxs02S U t

b(s
0) < 0, it must hold that U t

b (s) < 0, but initially Ub(s) = 0.
Thus, all values Qb(s; a) for a 2 A(s) have changed. Since only line 10 can change
these values, it is executed at least once with the current state equal to s. At this

74

point in time, done(s) = true (otherwise line 10 could not have been executed) and,
according to Theorem 33, donet(s) = true. Then, U t

f (s) = �gd(s) = U opt
f (s) according

to Theorem 35.

Theorem 41 It is an optimal policy to select action argmax a2A(s)Uf (succ(s; a)) or,
equivalently, argmax a2A(s);done(s;a)=true

Qf(s; a) in state s 2 S n G after termination if
the bi-directional Q-learning algorithm (version 1) terminates (\correctness").

Proof: Let t be the time superscript for the �nal values of the variables. We prove
both parts of the theorem separately:

� Consider an arbitrary s 2 S n G and any a 2 A(s) with U t
f (succ(s; a)) =

maxa02A(s) U
t
f(succ(s; a

0)). Since U t
f (s

0) = �gd(s0) for all s0 2 S according to
Theorem 40, it holds that gd(succ(s; a)) = mina02A(s) gd(succ(s; a

0)). Thus, it is
optimal to execute a in s.

� Now, consider an arbitrary s 2 S n G and any a 2 A(s) with donet(s; a) =
true and Qt

f(s; a) = maxa002A(s);donet(s;a00)=true Q
t
f(s; a

00). Since donet(s) =
true, there exists an a0 2 A(s) with donet(s; a0) = true and Qt

f(s; a
0) =

maxa002A(s)Q
t
f(s; a

00). Thus, Qt
f(s; a) = maxa002A(s);donet(s;a00)=true Q

t
f (s; a

00) =
Qt

f(s; a
0) = maxa002A(s)Q

t
f (s; a

00) � Qt
f(s; a

000) for all a000 2 A(s). Since
donet(s; a) = true , Qt

f(s; a) = �1 � gd(succ(s; a)) according to Theorem 36.
Furthermore, the Qt

f -values are consistent according to Theorem 30 and there-
fore �1 � gd(succ(s; a000)) � Qt

f (s; a
000). Thus, gd(succ(s; a)) = �1 �Qt

f (s; a) �
�1 � Qt

f(s; a
000) � gd(succ(s; a000)) for all a000 2 A(s). Since gd(succ(s; a)) =

mina002A(s) gd(succ(s; a
00)), it is optimal to execute a in s.

Theorem 42 Every backward phase terminates.

Proof by contradiction: Assume not. Then there must a state s that is visited in�nitely
often. We call the sequence of states between two occurrences of state s a cycle.
Theorem 39 asserts that the Qb-values before the �rst step of the backward phase are
consistent. The repeated execution of a backward step implements an admissible Q-
learning algorithm. Thus, the Qb-values are monotonically decreasing. Furthermore,
for every cycle that the agent completes, the largest Qb-value of the actions executed
in the cycle decreases by at least one. Eventually, the Qb-values of all actions executed
in the cycle drop below every bound, so do the Ub-values. In particular, they drop
below �ub(d), the condition in line 11 is satis�ed, and the backward phase terminates,
which is a contradiction. (For more details, see similar arguments in the context of
RTA*-type search by [17] or [25].)

75

Theorem 43 All backward phases together execute at most O(e� ub(d)) steps.

Proof: There are at most e+ 1 backward phases according to Theorem 37. Let there
be the backward phases [tai ; t

b
i] for i 2 f0; 1; . . . ; e0g with e0 < e + 1, where we set tbe0

to the step before termination (i.e. one smaller than it should be). This simpli�es the
notation in the following.

Q
tb
i

b (s; a) = Q
tai+1
b (s; a) and U

tb
i

b (s) = U
tai+1
b (s) for all i 2 f0; 1; . . . ; e0 � 1g, s 2 S,

and a 2 A(s), since only backward steps can change Qb-values. According to The-
orem 42, every backward phase terminates. Theorem 27 asserts that the backward

phase [tai ; t
b
i] needs at most U

tb
i

b (s
tbi) � U

ta
i

b (st
a
i) + 2

P
s2S

P
a2A(s)(Q

ta
i

b (s; a) � Q
tb
i

b (s; a))
steps to terminate. Note that �ub(d) � Ub(s) � 0 for all s 2 S and all
steps but the �nal step (otherwise the algorithm would have terminated earlier),

and therefore �1 � ub(d) � �1 � U
tb
e0

b (succ(s; a)) � Q
tb
e0

b (s; a) for all s 2 S n G
and a 2 A(s). Thus, all backward phases together terminate after at mostPe0

i=0

�
U

tb
i

b (s
tbi)� U

ta
i

b (st
a
i) + 2

P
s2S

P
a2A(s)(Q

ta
i

b (s; a)�Q
tb
i

b (s; a))
�

=
Pe0

i=0(U
tb
i

b (s
tbi) �

U
tai
b (st

a
i))+2

P
s2S

P
a2A(s)(Q

ta0
b (s; a)�Q

tb
e0

b (s; a)) �
Pe0

i=0(0+ub(d))+2
P

s2S

P
a2A(s)(0+

(ub(d)+ 1)) � (e+1)� ub(d)+ 2e(ub(d) + 1) � 3(e+1)(ub(d) + 1) steps in total (plus
the last step), which are O(e� ub(d)) steps.

Theorem 44 The bi-directional Q-learning algorithm (version 1) �nds an optimal pol-
icy and terminates after at most O(e� ub(d)) steps.

Proof: According to Theorems 38 and 43, the forward and backward phases together
execute at most O(e � ub(d)) steps. According to Theorem 41, the bi-directional Q-
learning algorithm terminates with an optimal policy.

A.3 Finding Optimal Policies with Bi-Directional Q-
Learning (Version 2)

In the following, we consider the bi-directional Q-learning algorithm (version 2) as
stated in Figure 21.

The time superscripts used in this chapter refer to the values of the variables immedi-
ately before the action execution steps of the bi-directional Q-learning algorithm, i.e.
lines 7 and 12, of step t.

We de�ne Ŝ to be the set of states that the agent has already explored, i.e. Ŝt := fs 2
S : 9t0�tst

0
= sg. Let Â(s) � A(s) be the set of actions in s that the agent has not yet

76

explored, i.e. Ât(s) := fa 2 A(s) : :9t0<t(st
0
= s ^ at

0
= a)g. Note the asymmetries:

First, Ŝ is the set of explored states, but Â(s) is a set of unexplored actions. This
asymmetry simpli�es the notation. Second, t0 � t in the de�nition of Ŝt, but t0 < t in
the de�nition of Ât(s). This is so, because a step ends with the execution of an action
(according to the de�nition of \step"). Thus, the current state of the agent before the
action execution is already explored, since the agent is already in the state. However,
the action selected for execution is not, since it has not been executed yet. Thus, we
say that an action that has not been executed before step t, but is executed at step t,
was unexplored (before and) at step t and is explored at step t+ 1.

Theorem 45 For all s 2 S, a 2 A(s), and steps t 2 N0 (until termination), it holds
that: Qt

f(s; a) = 0 i� a has never been executed in s in a forward step before step t, i.e.

for all t0 < t it has never been true that st
0
= s, at

0
= a, and donet

0
(s) = false.

Proof: Initially, Q0
f(s; a) = 0. Only the execution of a in s in a forward step can change

Qf(s; a). Thus, if a has never been executed in s in a forward step before step t, then
Qt

f(s; a) = 0. However, if a has been executed in s in a forward step at least once, say

at step t0 < t, then Qt
f (s; a)

Theorem 30

� Qt0+1
f (s; a) = �1+U t0

f (succ(s; a))
Theorem 16

� �1+0 =
�1 < 0.

Theorem 46 For all s 2 S, a 2 A(s), and steps t 2 N0 (until termination), it holds
that: Qt

b(s; a) = 0 i� a has never been executed in s in a backward step before step t,
i.e. for all t0 < t it has never been true that st

0
= s, at

0
= a, and donet

0
(s) = true.

Proof: Initially, Q0
b(s; a) = 0. Only the execution of a in s in a backward step can

change Qb(s; a). Thus, if a has never been executed in s in a backward step before step
t, then Qt

b(s; a) = 0. However, if a has been executed in s in a backward step at least

once, say at step t0 < t, then Qt
b(s; a)

Theorem 30

� Qt0+1
b (s; a) = �1+U t0

b (succ(s; a))
Theorem 16

�
�1 + 0 = �1 < 0.

Theorem 47 For all s 2 S and steps t 2 N0 (until termination), it holds that:
Qt+1

f (s; a) = Qt+1
b (s; a) = 0 for all a 2 A(s) i� s is unexplored at step t, i.e. s 62 Ŝt.

Proof: If Qt+1
f (s; a) = Qt+1

b (s; a) = 0 for all a 2 A(s), then, according to Theorems 45
and 46, no a 2 A(s) has ever been executed in s before step t + 1 (neither in a
forward step nor in a backward step). Thus, s 62 Ŝt, because otherwise the agent
had been in state s at step t or before and would have had to execute an action in
it, which is a contradiction. Likewise, if s 62 Ŝt, then the agent has never been in

77

s at step t or before, and thus had no chance to execute an action in it. Therefore,
Qt+1

f (s; a) = Qt+1
b (s; a) = 0 for all a 2 A(s) according to Theorems 45 and 46.

Theorem 48 For all steps t 2 N0 (until termination), memoryt = jf(s; a) : s 2
Ŝt \G; a 2 Ât(s)gj+ jfs 2 Ŝt nG : :donet(s)gj.

Proof by induction on t:

� Before the execution of the algorithm (i.e. at \step �1"), memory = 0 and Ŝ = ;.
Thus, memory = 0 = jf(s; a) : s 2 Ŝ \G; a 2 Â(s)gj+ jfs 2 Ŝ nG : :done(s)gj.

� Assume that the equation holds for step t.

The only lines that can change the value of memory are line 3, line 9, and line 14.
Likewise, there are only three ways how jf(s; a) : s 2 Ŝ \ G; a 2 Â(s)gj + jfs 2
Ŝ nG : :done(s)gj can change between steps t and t+ 1: Ŝ can change, done(s)
for one or more s 2 Ŝt n G can change, or Â(s) for one or more s 2 Ŝt \ G can
change. We show that three equivalence relationships hold:

{ The body of the condition on line 3 is executed i� Ŝ has changed between
steps t and t+ 1.

If the body of the condition on line 3 is executed, then Qt+1
f (st+1; a) =

Qt+1
b (st+1; a) = 0 for all a 2 A(st+1), i.e. st+1 62 Ŝt according to Theorem 47.

Since st+1 2 Ŝt+1, Ŝ has changed between steps t and t + 1. After the
execution of line 3, memory is increased by jA(st+1)j if st+1 2 G, otherwise
by one.

Assume now that Ŝ has changed between steps t and t + 1, i.e. st+1 62 Ŝt

and Ŝt+1 = Ŝt [fst+1g. Thus, no action has yet been executed in st+1, i.e.
Ât+1(st+1) = A(st+1), and therefore Qt+1

f (st+1; a) = Qt+1
b (st+1; a) = 0 for all

a 2 A(st+1) according to Theorem 47. Thus, the body of the condition on
line 3 is executed. If st+1 2 G, then jf(s; a) : s 2 Ŝ \G; a 2 Â(s)gj + jfs 2
Ŝ n G : :done(s)gj increases by jA(st+1)j, since jÂt+1(st+1)j = jA(st+1)j. If
st+1 62 G, then jf(s; a) : s 2 Ŝ \ G; a 2 Â(s)gj + jfs 2 Ŝ n G : :done(s)gj
increases by one, since donet+1(st+1) = false: initially done(st+1) = false,
only line 8 can change done(st+1) (because st+1 62 G), and line 8 cannot
have been executed (because st+1 62 Ŝt).

{ The body of the condition on line 9 is executed i� done(s) for one or more
s 2 Ŝt nG has changed between steps t and t+ 1.

If the body of the condition on line 9 is executed, then done(st) has changed.
st 2 Ŝt nG, because otherwise line 2 would set done(st) := true and line 5
would give control to a backward step, which is a contradiction. Thus,
done(s) for one or more s 2 Ŝt n G has changed between steps t and t+ 1.
After the execution of line 9, memory is decreased by one.

78

Assume now that done(s) for one or more s 2 Ŝt n G has changed between
steps t and t+ 1. Only line 8 can change done(s) for s 62 G. Thus, done(st)
has changed, and the body of the condition on line 9 is executed. At most
one done(s) for s 2 ŜtnG can change between steps t and t+1, because line 8
is the only line that can change such a value. According to Theorem 33,
done(s) can only change from false to true for all s 2 S. Thus, jfs 2
Ŝt n G : :done(s)gj is decreased by one, since done(st) has changed from
false to true, but all other done(s) stayed the same.

{ The body of the condition on line 14 is executed i� Â(s) for one or more
s 2 Ŝt \G has changed between steps t and t+ 1.

If the body of the condition on line 14 is executed, then st 2 Ŝt \ G and
Qb(st; at) has changed from zero to non-zero. at 62 Ât+1(st), since at was
executed in st in a backward step at step t. According to Theorem 30, the
Qt

f -values are admissible, which implies that Qt
f (s; a) = 0 for all s 2 G

and a 2 A(s). In particular, Qt
f(s

t; at) = 0. Then, Qt
b(s

t; at) = 0 implies

at 2 Ât(st) according to Theorems 45 and 46. Since at 2 Ât(st), but at 62
Ât+1(st), Â(s) for one or more s 2 Ŝt \G has changed between steps t and
t+ 1. After the execution of line 14, memory is decreased by one.

Assume now that Â(s) for one or more s 2 Ŝt\G has changed between steps
t and t+1. Since only line 12 can execute actions in a goal state s (line 2 sets
done(s) := true and thus line 5 always gives control to a backward step), it
follows that at 2 Ât(st) and Ât+1(st) = Ât(st) n fatg, all other Â(s) stay the
same. Since at 2 Ât(st), Qt

b(s
t; at) = 0 according to Theorem 46. Since at

was executed in st in a backward step at step t, Qt+1
b (st; at) 6= 0 according to

Theorem 46. Then, Qb(st; at) changed from zero to non-zero and the body
of the condition on line 14 is executed. Also, jf(s; a) : s 2 Ŝt\G; a 2 Â(s)gj
is decreased by one.

Since the equation stated in the theorem holds for step t according to the as-
sumption and we have shown that between steps t and step t + 1 the left-hand
side of the equation changes as much as its right-hand side, it follows that the
equation of the theorem holds for step t+ 1 as well.

Theorem 49 0 � memoryt � e for all steps t 2 N0 (until termination).

Proof: According to Theorem 48, it holds that memoryt = jf(s; a) : s 2 Ŝt \ G; a 2
Ât(s)gj + jfs 2 Ŝt n G : :donet(s)gj. 0 � jf(s; a) : s 2 Ŝt \ G; a 2 Ât(s)gj + jfs 2
Ŝt nG : :donet(s)gj �

P
s2G jA(s)j+ jS nGj �

P
s2S jA(s)j = e, since the state space is

strongly connected and therefore jA(s)j � 1 for all s 2 S, i.e. jS nGj �
P

s2SnG jA(s)j.

79

Theorem 50 Uf (s) = �gd(s) = Uopt
f (s) and done(s) = true for all s 2 S after

termination if the bi-directional Q-learning algorithm (version 2) terminates. Further-
more, it is an optimal policy to select action argmax a2A(s)Uf (succ(s; a)) or, equivalently,
argmax a2A(s);done(s;a)=true

Qf (s; a) in state s 2 S nG after termination (\correctness").

Proof by contradiction: Let t be the time superscript for the �nal values of the variables.
Assume that it does not hold that donet(s) = true for all s 2 S. Then, there exists an
s 2 S with donet(s) = false. We distinguish two cases:

� s 2 Ŝt:

s 2 Ŝt and donet(s) = false implies according to Theorem 48 that memoryt � 1.
However, memory = 0 upon termination, which is a contradiction.

� s 62 Ŝt:

s can be reached from every state in Ŝt 6= ;, since the state space is strongly
connected. Thus, Ât(s0) 6= ; for at least one s0 2 Ŝt. Assume a 2 Ât(s0). If
s0 2 G, then memoryt � 1 according to Theorem 48, since jÂt(s0)j > 0. Assume
s0 62 G. Then, �gd(s0) < 0

Theorem 46
= Qt

b(s
0; a) � maxa02A(s0)Q

t
b(s

0; a0) = U t
b(s

0).
This implies according to Theorem 35 that donet(s0) = false. Thus, memoryt � 1
according to Theorem 48, since s0 2 Ŝt, s0 62 G, and donet(s0) = false. In both
cases, memoryt � 1. However, memory = 0 upon termination, which is a
contradiction.

Thus, donet(s) = true and, according to Theorem 35, U t
f (s) = �gd(s) = Uopt

f (s)
for all s 2 S. The proof of Theorem 41 relies only on this fact. Thus, according
to Theorem 41, it is an optimal policy to select action argmaxa2A(s)U

t
f (succ(s; a)) or,

equivalently, argmaxa2A(s);done(s;a)=true
Qt

f(s; a) in state s 2 S nG.

Theorem 51 The bi-directional Q-learning algorithm (version 2) terminates at the
earliest time t at which U t

b(s
t�1) < �d or before.

Proof: Assume that Ub(s) < �d after the value updating in a backward step. Note
that this is exactly the situation in which the bi-directional Q-learning algorithm (ver-
sion 1) terminates. The following two things follow. First, according to Theorem 40,
done(s0) = true for all s0 2 S. Second, also according to Theorem 40, Ub(s

0) < 0 for all
s0 2 S. This implies that Qb(s0; a) � maxa02A(s0)Qb(s0; a0) = Ub(s0) < 0 for all s0 2 S
and a 2 A(s0). Thus, all actions have been executed at least once according to Theo-
rem 46. Put together, it follows that done(s0) = true and Â(s0) = ; for all s0 2 S. Once
done(s0) = true, it remains true according to Theorem 33. Similarly, Â(s0) stays ; once
it is empty. Thus, next time line 4 is reached, memory = 0 according to Theorem 48,
and the algorithm terminates.

80

Theorem 52 The bi-directional Q-learning algorithm (version 2) �nds an optimal pol-
icy and terminates after at most O(ed) steps.

Proof: Version 1 and version 2 of the bi-directional Q-learning algorithm di�er only
in their termination criteria. According to Theorem 44, the bi-directional Q-learning
algorithm (version 1) terminates after at most O(ed) steps if ub(d) = d. Let t be the
time superscript for the values of the variables upon termination of the bi-directional
Q-learning algorithm (version 1). Then, U t

b (s
t�1) < �ub(d) � �d. Then, the bi-

directional Q-learning algorithm (version 2) terminates no later than step t according
to Theorem 51. Thus, it �nds an optimal policy and terminates after at most O(ed)
steps. According to Theorem 50, it terminates with an optimal policy.

A.4 Value-Iteration

All theorems about the value-iteration algorithm or the bi-directional value-iteration
algorithm can be proved analogous to their Q-learning counterparts. Therefore, we
omit the proofs here. Some of the proofs can be found in [14]. It contains proofs for
the theorems about reaching a goal state with an admissible value-iteration algorithm
if the initial Q-values are consistent, and �nding optimal policies with a version of the
bi-directional value-iteration algorithm that is slightly di�erent from the one presented
in this report. With only minor changes, the proofs also apply to the more general
case of reaching a goal state with an admissible value-iteration algorithm if the initial
Q-values are admissible.

A.5 Reaching a Goal State with Random Walks in Eulerian

State Spaces

Consider a random walk that starts in sstart 2 S and continues forever. Let P denote
the steady state probabilities of the random walk. Formally,

Ps := lim
t!1

E(number of times the random walk visits s in the �rst t steps)

t
for all s 2 S

i.e. Ps is the average probability in the long run that the random walk is in s. Ps is
well-de�ned and independent of sstart, since the state space is strongly connected. It
holds that X

s2S

Ps = 1 (5)

Ps =
X
s02S

X
a2A(s0):succ(s0 ;a)=s

Ps0

jA(s0)j
for all s 2 S (6)

81

For all s; s0 2 S, let T (s; s0) denote the expected number of steps that the random walk
needs to enter s0 for the �rst time if sstart = s.

Theorem 53 (Aleliunas et al. [1]) Ps
jA(s)j

= Ps0
jA(s0)j

for all s; s0 2 S if the state space
is Eulerian.

Proof by contradiction: Assume not. Then, there exist s; s0 2 S and a 2 A(s0) with
succ(s0; a) = s such that both Ps

jA(s)j
= maxs002S

Ps00
jA(s00)j

and Ps0
jA(s0)j

< maxs002S
Ps00

jA(s00)j
.

Rewriting Equation 6 yields Ps
jA(s)j

=

P
s002S

P
a2A(s00):succ(s00;a)=s

P
s00

jA(s00)j

jA(s)j
. Since the state

space is Eulerian, it holds that jA(s)j = jf(s00; a) : succ(s00; a) = s^s00 2 S^a 2 A(s00)gj.
Thus, Ps

jA(s)j
is the average over Ps00

jA(s00)j
of all predecessors s00 of s. If one averages over a

couple of numbers all of which are smaller than or equal to a number i and one of the
numbers is strictly smaller than i, then the average is strictly smaller than i, too. Since
Ps0

jA(s0)j
< maxs002S

Ps00
jA(s00)j

for the predecessor s0 of s, it follows that Ps
jA(s)j

< maxs002S
Ps00

jA(s00)j
,

which is a contradiction.

Theorem 54 (Aleliunas et al. [1]) Ps = jA(s)j
e

for all s 2 S if the state space is
Eulerian.

Proof: 1
Equation 5
=

P
s02S Ps0 =

P
s02S(

Ps0
jA(s0)j jA(s

0)j)
Theorem 53

=
P

s02S(
Ps

jA(s)jjA(s
0)j) =

Ps
jA(s)j

P
s02S jA(s

0)j = Ps
jA(s)je for all s 2 S. Thus, Ps =

jA(s)j
e

.

Theorem 55 (Aleliunas et al. [1]) T (s; succ(s; a)) � e for all s 2 S and a 2 A(s)
if the state space is Eulerian.

Proof: Ps
Theorem 54

= jA(s)j
e

. Thus, the average probability that the random walk is in s in

the long run equals jA(s)j
e

. The probability that it executes a when it is in s is 1
jA(s)j .

The joint probability that it is in s in the long run and executes a is jA(s)j
e

1
jA(s)j =

1
e
.

The expected number of steps between two occurrences of the agent being in s and
executing a is the reciprocal of its probability in the long run, i.e. it is e. It follows
that T (s; succ(s; a)) � e.

Theorem 56 T (s; s0) � ed for all s; s0 2 S if the state space is Eulerian.

82

Proof: There is a path from s to s0 of length at most d. The expected number of steps
that a random walk needs to traverse this path is the sum of the expected number of
steps to go from every state on the path to its successor, each of which is at most e
according to Theorem 55. Thus, T (s; s0) � ed.

Theorem 57 A zero-initialized Q-learning algorithm with goal-reward representation
reaches a goal state and terminates after at most O(ed) steps on average if the state
space is Eulerian.

Proof: A zero-initialized Q-learning algorithm with goal-reward representation per-
forms a random walk until it reaches a goal state for the �rst time. The expected num-
ber of steps needed to reach a goal state and terminate is xsstart � mins2G T (sstart; s).

If the state space is Eulerian, then mins2G T (sstart; s)
Theorem 56

� mins2G ed = ed. Thus,
the average-case complexity is at most O(xsstart) � O(ed).

B Lower Bounds

We prove all lower bounds on the worst-case complexity of reaching a goal state by
giving an example of a trace (i.e. state sequence) that achieves or tops the bound.
The traces are speci�ed as pseudo-code that, when executed, prints the state sequence.
The for-to-loops have a default increment of one and the for-downto-loops have a
default increment of minus one, unless speci�ed otherwise with a step-clause. The
statements that belong to the body of a loop are indicated by indentation. They are
not executed if the range of the loop variable is empty. For example, the pseudo-code
given in Chapter B.1 speci�es the trace 1234 . . .n, that has length n � 1 (i.e. needs
n� 1 steps to execute).

B.1 Reaching a Goal State with any Search Algorithm

Figure 18 shows a state space for which every search algorithm needs at least n � 1
steps to reach the goal state (for n � 1):

for i := 1 to n

print i

83

B.2 Reaching a Goal State with Uninformed On-Line Search
Algorithms

The following proofs of lower bounds that hold for all uninformed on-line search al-
gorithms utilize that the agent cannot distinguish the goodness of unexplored actions
in the current state. Similarly, the proofs of lower bounds that hold for all search
algorithms that have to enter a state at least once before they know the successor
states utilize that the agent cannot distinguish among unexplored successor states of
the current state. In both cases, we supply a tie breaking rule that, when followed by
the agent, achieves or tops the lower bound. For all domains in this report, this rule is
to prefer actions that lead to states with smaller numbers. Every uninformed on-line
search algorithm can traverse a supersequence of the traces given by us.

Figure 11 shows a domain for which every uninformed on-line search algorithm can
need at least (e� n+ 1)(n � 1) steps to reach the goal state (for n � 2 and e � n):

for i := 1 to e-n+1

for j := 1 to n-1

print j

print n

Figure 14 shows a domain for which every uninformed on-line search algorithm can
need at least (e�n)(n� 2) +1 steps to reach the goal state (for n � 3 and e � n+1):

print 1

for i := 1 to e-n

for j := 2 to n-1

print j

print n

An o�-line search algorithm that knows the topology of the state space can reach the
goal state in one step:

print 1

print n

Figure 15 shows a domain for which every uninformed on-line search algorithm can
need at least 1=6n3 � 1=6n steps to reach the goal state (for n � 1):

84

for i := 1 to n-1

print i

for j := 1 to i-1

for k := j to i

print k

print n

This fact and Theorem 2 together imply that the complexity of an admissible, zero-
initialized Q-learning algorithm in the domain shown in Figure 15 is tight at O(n3).

Figure 19 shows a domain for which every uninformed on-line search algorithm can
need at least e+ n� 4 steps to reach the goal state (for n > 2 and e � 2n� 2):

for i := 1 to (e-2n+4)/2

print 2

print 1

for i := 2 to n-2

print i

print i+1

print i

print n-1

print n

Figure 23 shows a domain for which every algorithm that has to enter a state at least
once before it knows the successor states can need at least 1=2n2� 1=2n steps to reach
the goal state (for n � 1):

for i := 1 to n-1

for j := i downto 1

print j

print n

An o�-line search algorithm that knows the topology of the state space can reach the
goal state in one step:

print 1

print n

Figure 25 shows a domain for which every algorithm that has to enter a state at least
once before it knows the successor states can need at least 1=4n2�1 steps to reach the
goal state (for even n > 1):

85

for i:= 1 to n-3 step 2

for j := 1 to i step 2

print j

for j := i+1 downto 2 step 2

print j

for i := 1 to n-1 step 2

print i

B.3 Reaching a Goal State with Q-Learning and Value-
Iteration

Because an admissible, zero-initialized Q-learning algorithm is an uninformed on-line
search algorithm, the lower bounds proved above for uninformed on-line search algo-
rithms also hold for Q-learning. Similarly, since an admissible, zero-initialized value-
iteration algorithm is an algorithm that has to enter a state at least once before it
knows the successor states, the lower bounds proved above for these algorithms also
hold for value-iteration. In the following, we provide traces for the domains used in the
main text that are not covered by the above proofs or for which we can prove a larger
lower bound. (See chapter B.4 for an analysis of the domain shown in Figure 12.)

Figure 17 shows a domain for which an admissible, zero-initializedQ-learning algorithm
can need at least 1=16n3+3=8n2�3=16n�1=4 steps to reach the goal state (for n � 1
with n mod 4 = 1):

for i := n-1 downto (3n+1)/4

for j := (n+1)/2 downto 1

print j

for j := 2 to (n+1)/2

print j

for k := 1 to j-2

print k

print j

for j := (n+3)/2 to i-1

print j

for j := i downto (n+3)/2

print j

for j := (n+1)/2 downto 1

print j

for j := 2 to (n+1)/2

print j

for k := 1 to j-2

86

print k

print j

for i := (n+3)/2 to n

print i

Figure 19 shows a domain for which an admissible, zero-initializedQ-learning algorithm
can need at least 1=2en�1=4n2�1=2n+2 steps to reach the goal state (for even n > 2
and e � 2n� 2):

for i := n-1 downto (n+2)/2

for j := 1 to (e-2n+4)/2

print 2

print 1

for j:= 2 to i-1

print j

for j:= i downto 3

print j

for i := 1 to (e-2n+4)/2

print 2

print 1

for i := 2 to n

print i

Figure 22 shows a domain for which an admissible, zero-initialized value-iteration al-
gorithm can need at least n2 � n steps to reach the goal state (for n � 1):

for i := 1 to n-1

for j := 1 to i

print i

for j := i downto 1

print j

print n

An o�-line search algorithm that knows the topology of the state space can reach the
goal state in one step:

print 1

print n

87

Figure 24 shows a domain for which an admissible, zero-initialized value-iteration al-
gorithm can need at least 3=16n2 � 3=4 steps to reach the goal state (for n � 1 with
n mod 4 = 2):

for i := n-3 downto n/2 step 2

for j := 1 to i step 2

print j

for j := i+1 downto 2 step 2

print j

for i := 1 to n-1 step 2

print i

B.4 Reaching a Goal State { A More Complicated Case

Consider an undiscounted, admissible, and zero-initialized Q-learning algorithm that
operates in a reset state space of size n � 1. As shown in Figure 8, the actions a1
decrease the goal distance, whereas the actions a2 lead the agent back to state 1.

Theorem 58 U(s) � s�n
2 for all s 2 S after termination of an undiscounted, admis-

sible, and zero-initialized Q-learning algorithm in a reset state space of size n � 1 if
ties are broken in favor of actions that lead to states with smaller numbers.

Proof by induction on n. Let t0 be the step when the algorithm has terminated, i.e.
U t0(s) are the �nal U -values.

� If n = 1, then the algorithm terminates immediately, since sstart = 1 2 G. All
Q-values remain zero, and U t0(s) = maxa2A(s)Qt0(s; a) = maxa2A(s) 0 = 0 = s�1

2

for all s 2 S = f1g.

� Assume that the theorem holds for an arbitrary n � 1 and consider now a reset
state space of size n+ 1.

When the agent enters state n+1, the algorithm terminates before changing any
Q-value in that state. The values Q(n + 1; a) remain zero for all a 2 A(n + 1),

and U t0(n+ 1) = maxa2A(n+1)Qt0(n+ 1; a) = maxa2A(n+1) 0 = 0 = (n+1)�(n+1)
2 .

State n + 1 is the only goal state. In order to reach it from sstart = 1, the
agent has to visit state n at least once. Let t < t0 be the earliest step at which
st = n. Since the states s � n form (together with their actions that do not leave
this set of states) a reset state space of size n, it holds that U t(s) � s�n

2 for all
s 2 f1; 2; . . . ; ng according to the assumption. Since Qt(n; a1) = Qt(n; a2) = 0,

88

succ(n;a2) = 1 < n+1 = succ(n;a1), and ties are broken in favor of actions that
lead to states with smaller numbers, the agent chooses at = a2 for execution at
step t and is in state st+1 = 1 afterwards. In order to reach the goal state n+ 1
from there, the agent has to execute action a1 in every state s 2 f1; 2; . . . ; ng
at least once. Let t0 > t(s) > t be a step at which st(s) = s 2 f1; 2; . . . ; ng and
at(s) = a1.

The following argument holds for all s 2 f2; 3 . . . ; n � 1g: Qt(s)(s; a1) >
Qt(s)(s; a2), since a1 is chosen over a2 at step t(s). (If Qt(s)(s; a1) � Qt(s)(s; a2),
then a2 would be chosen over a1, since succ(s; a2) = 1 < s+ 1 = succ(s; a1) and
ties are broken in favor of actions that lead to states with smaller numbers.) Since

the Q-values are integers, Qt0(s; a2)
Theorem 22

� Qt(s)(s; a2) � Qt(s)(s; a1)� 1
Theorem 22

�
Qt(s; a1) � 1 � max(Qt(s; a1);Qt(s; a2)) � 1 = U t(s) � 1 � s�n

2
� 1 � s�n�2

2
.

Qt0(s; a1)
Theorem 22

� Qt(s)+1(s; a1) = �1 + U t(s)(succ(s; a1))
Theorem 22

� �1 + U t(s +

1) � �1 + (s+1)�n
2 = s�n�1

2 . Then, U t0(s) = max(Qt0(s; a1); Qt0(s; a2)) �

max(s�n�12 ; s�n�22) = s�(n+1)
2 .

A similar argument holds for state 1: U t0(1) = maxa2A(1)Q
t0(1; a) =

Qt0(1; a1)
Theorem 22

� Qt(1)+1(1; a1) = �1 + U t(1)(succ(1; a1))
Theorem 22

� �1 + U t(2) �

�1 + 2�n
2 = �n

2 = 1�(n+1)
2 .

A similar argument also holds for state n: Qt(n)(n; a2) < Qt(n)(n; a1) � 0. Since

the Q-values are integers, Qt0(n; a2)
Theorem 22

� Qt(n)(n; a2) � �1. Qt0(n; a1)
Theorem 22

�

Qt(n)+1(n; a1) = �1 + U t(n)(succ(n;a1))
Theorem 14

� �1 + 0 = �1. Then, U t0(n) =

max(Qt0(n; a1); Q
t0(n; a2)) � max(�1;�1) = �1 < �1

2
= n�(n+1)

2
.

To summarize, U t0(s) � s�(n+1)
2

for all s 2 S = f1; 2; . . .n + 1g.

Theorem 59 Q(1; a1) �
1�n
2 after termination of an undiscounted, admissible, and

zero-initialized Q-learning algorithm in a reset state space of size n � 1 if ties are
broken in favor of actions that lead to states with smaller numbers.

Proof: Q(1; a1) = maxa2A(1)Q(1; a) = U(1)
Theorem 58

� 1�n
2 after termination.

Theorem 60 Q(1; a1) �
2�n
2

when an undiscounted, admissible, and zero-initialized
Q-learning algorithm is the last time in state 1 of a reset state space of size n � 2 if
ties are broken in favor of actions that lead to states with smaller numbers.

Proof: Let t be the last step at which st = 1, and t0 be the earliest step at which
st

0
= n � 1. The states s � n� 1 form (together with their actions that do not leave

89

this set of states) a reset state space of size n�1. Qt0(1; a1) �
1�(n�1)

2
= 2�n

2
according

to Theorem 59. Since Qt0(n � 1; a1) = Qt0(n � 1; a2) = 0, succ(n � 1; a2) = 1 < n =
succ(n� 1; a1), and ties are broken in favor of actions that lead to states with smaller
numbers, the agent chooses at

0
= a2 for execution at step t0 and is in state st

0+1 = 1

afterwards. Thus, t0 < t and Qt(1; a1)
Theorem 22

� Qt0(1; a1) �
2�n
2
.

Theorem 61 Figure 12 shows a domain for which an admissible, zero-initialized Q-
learning algorithm needs at least (n+1)(n�1)(n�3)

16
= 1=16n3 � 3=16n2 � 1=16n + 3=16

steps to reach the goal state and terminate (for odd n � 3) if ties are broken in favor
of actions that lead to states with smaller numbers.

Proof: The states s 2 fn+1
2 ; n+32 ; . . . ; ng form (together with their actions that do not

leave this set of states) a reset state space of size n+1
2
. sstart =

n+1
2

is also the start
state of the reset state space. Note that state n+1

2
separates the states that belong

to the reset state space from the other states. Consider the trace that an admissible,
zero-initialized Q-learning algorithm traverses in this reset state space if ties are broken
in favor of actions that lead to states with smaller numbers. This state sequence is
a subsequence of the state sequence that an admissible, zero-initialized Q-learning
algorithm traverses in the whole domain (as shown in Figure 12) if ties are broken in
favor of actions that lead to states with smaller numbers.

Let t0 be the step when the algorithm has terminated in the domain from Figure 12
of size n (for odd n � 3) if ties are broken in favor of actions that lead to states
with smaller numbers, i.e. Qt0(s; a) are the �nal Q-values. We assume (without loss of

generality) that the Q-learning algorithm is undiscounted. Then, Qt0(n+1
2
; a1)

Theorem 59

�
1�n+1

2
2 = 1�n

4 , where a1 2 A(n+12) is the action in state n+1
2 that decreases the goal

distance. Similarly, let t00 < t0 be the last step at which st
00
= n+1

2 and at
00
= a1. Then,

Qt00(n+1
2
; a1)

Theorem 60

�
2� n+1

2
2

= 3�n
4
.

Now consider an arbitrary a 2 A(n+12) n fa1g. Qt00(n+12 ; a) < Qt00(n+12 ; a1). (If

Qt00(n+1
2
; a) � Qt00(n+1

2
; a1), then a would be preferred over a1, since succ(n+1

2
; a) <

n+1
2 < n+3

2 = succ(n+12 ; a1) and ties are broken in favor of actions that lead to states

with smaller numbers.) Since the Q-values are integers, Qt00(n+1
2 ; a) � Qt00(n+12 ; a1) �

1 � 3�n
4 � 1 < 0. Thus, there is a step when a is executed in state n+1

2 , since ini-
tially Q(n+12 ; a) = 0. Note that every path from a state smaller than n+1

2 to state
n contains an execution of a1 in state n+1

2
, since since a1 is the last action exe-

cuted in n+1
2 . Let t(a) < t00 be the last step when a is executed in n+1

2 . For all

a0 2 A(succ(n+12 ; a)) it holds that Qt0(succ(n+12 ; a); a0)
Theorem 22

� Qt(a)(succ(n+12 ; a); a0) �
maxa002A(succ(n+12 ;a))Q

t(a)(succ(n+1
2
; a); a00) = U t(a)(succ(n+1

2
; a)) = 1+Qt(a)+1(n+1

2
; a) =

1 + Qt0(n+12 ; a)
Theorem 22

� 1 + Qt00(n+12 ; a) � Qt00(n+12 ; a1) �
3�n
4 . Note that for every

s 2 f1; 2; . . . ; n�1
2
g both jA(s)j = n�1

2
and there exists an a 2 A(n+1

2
) n fa1g such

that succ(n+1
2
; a) = s. Because the state space has no identity actions, Qt0(s; a) � 0

90

0

10000

20000

30000

40000

50000

60000

70000

80000

0 10 20 30 40 50 60 70 80 90 100

s
t
e
p
s

n

actual performance
lower bound: (n+1)(n-1)(n-3)/16

Figure 35: Run-time of an admissible, zero-initializedQ-learning algorithm for reaching
the goal state in the domain shown in Figure 12 (for odd n 2 [3; 99]) if ties are broken
in favor of actions that lead to states with smaller numbers

for all s 2 S and a 2 A(s), U t0(n) = 0 (since state n is a goal), and jA(s)j � n�1
2

for every state s � n+1
2
, it holds that t0

Theorem 26
= U t0(n) �

P
s2S

P
a2A(s)Q

t0(s; a) �

0 �
Pn+1

2
s=1

P
a2A(s)Q

t0(s; a) � �
Pn+1

2
s=1

P
a2A(s)

3�n
4 � n+1

2
n�1
2

n�3
4 = (n+1)(n�1)(n�3)

16 =
1=16n3 � 3=16n2 � 1=16 + 3=16.

Theorem 2 and Theorem 61 together imply that the complexity of an admissible, zero-
initializedQ-learning algorithm in the domain shown in Figure 12 is tight at O(n3). The
actual number of steps needed by an admissible, zero-initialized Q-learning algorithm
to reach the goal state and terminate in the domain shown in Figure 12 if ties are
broken in favor of actions that lead to states with smaller numbers is not a smooth
function of n. Since we ignored the Q-values of the states s 2 fn+3

2 ; n+52 ; . . . ; ng in

the proof of Theorem 61, the lower bound (n+1)(n�1)(n�3)
16

is not tight. Figure 35 shows

both the actual number of steps needed and the lower bound (n+1)(n�1)(n�3)
16 for odd

n 2 [3; 99].

Theorem 62 Figure 12 shows a domain for which the Qmap-learning algorithm needs
at most 3=8n2+3=2n�23=8 steps to reach the goal state and terminate (for odd n � 3).

91

Proof: Note that state n+1
2

separates the states smaller than n+1
2

from the states larger
than n+1

2
. In the following, we assume that an arbitrary trace is given that the Qmap-

learning algorithm has traversed when reaching the goal state from sstart =
n+1
2
. We

analyze the trace in both subsets of states separately.

� Consider the states larger than or equal to n+1
2 . We call the actions that decrease

the goal distance action a1, and the actions that lead the agent back to state n+1
2

action a2. Consider any consecutive subsequence of the trace that starts and ends
in state n+1

2
and otherwise contains only states larger than n+1

2
. This subsequence

must contain an action a2 that is unexplored. (Since the start state and end state
of the sequence are identical, it must contain at least one unexplored action. If
it contains an unexplored action a2, the statement is true. If it contains an
unexplored action a1 2 A(s), then all states s0 with s0 > s are still unexplored
and thus no action has yet been executed in them. In particular, the action a2
that the agent must execute in a state larger than s to reach state n+1

2
again is still

unexplored.) If a2 2 A(s), then the length of the subsequence is 1+s� n+1
2 . There

can be at most one such subsequence for every state s 2 fn+3
2 ; n+52 ; . . . ; n � 1g,

since there is only one action a2 in every such state. In addition, there is one
subsequence of length n � n+1

2 = n�1
2 that leads from state n+1

2 to the goal
state n. Since these are all of the subsequences that contain states larger than
n+1
2 , the total of action executions in this part of the state space is at mostPn�1
s=n+3

2

(1 + s� n+1
2) + n�1

2 = 1=8n2 + 1=2n � 13=8.

� Now consider the states smaller than or equal to n+1
2 . Delete �rst all states n+1

2

from the original trace that are followed by a state larger than n+1
2 and delete

afterwards all states larger then n+1
2
. (We have accounted for all action executions

in these states in the paragraph above.) Note that zero-initialized Q-learning
always executes an unexplored action in the current state if one is available, since
the action execution step always executes the action with the largest Q-value and
unexplored actions have a Q-value of 0 whereas explored actions have a Q-value
smaller than 0. Consequently, Qmap-learning also executes unexplored actions
if they are available. Since the states smaller than or equal to n+1

2 (together
with the actions that do not leave this set of states) form a 1-step invertible
state space, the shortened state sequence contains only executions of unexplored
actions until all actions in state n+1

2 are explored. Then, the following behavior
is repeated until all actions are explored: The agent executes an explored action
that leads to a state s in which at least one action is still unexplored. Then, the
agent executes only unexplored actions, until all actions in state s are explored,
optionally followed by an explored action that leads to state n+1

2 . To summarize,
every of the n+1

2
n�1
2 actions in this part of the state space is executed exactly

once plus at most two actions for every state smaller than n+1
2 , leading to a total

number of action executions of n+1
2

n�1
2 + 2n�12 = 1=4n2 + n� 5=4.

In conclusion, the total number of action executions is bounded from above by (1=8n2+
1=2n � 13=8) + (1=4n2 + n � 5=4) = 3=8n2 + 3=2n � 23=8 no matter how ties among

92

actions that have the same Q-value are broken.

Note that every uninformed on-line search algorithm can need at least 1=2n2+1=2n�2
steps to reach the goal state in a reset state space (shown in Figure 8) of size n (for
n � 2):

for i := 2 to n

for j := 1 to i

print j

Now consider again the domain shown in Figure 12 and assume it has size n. As
remarked earlier, the states s � n+1

2
form a reset state space of size n+1

2
. Thus, every

uninformed on-line search algorithm can need at least 1=2(n+1
2
)2 + 1=2(n+1

2
) � 2 =

1=8n2 + 1=2n � 13=8 steps (for odd n � 3). This fact and Theorem 62 together imply
that the complexity of the Qmap-learning algorithm in the domain shown in Figure 12
is tight at O(n2).

B.5 Reaching a Goal State with Random Walks

Equations 4 allow one to determine the average number of steps required by a random
walk to reach a goal state in a given domain, as outlined in the main text. Consider,
for example, the reset state space shown in �gure 8. The corresponding equations are

x1 = 1 + x2

xs = 1 + 0:5x1 + 0:5xs+1 for all s 2 f2; 3; . . . ; n� 1g

xn = 0

They can be solved for xsstart as follows

xsstart = x1

= 1 + x2

= 1 + 1 + 0:5x1 + 0:5x3

= 1 + (1 + 0:5) + 0:5x1(1 + 0:5) + 0:52x4

= 1 + (1 + 0:5 + 0:52) + 0:5x1(1 + 0:5 + 0:52) + 0:53x5

= . . .

= 1 +
s�3X
i=0

0:5i + 0:5x1
s�3X
i=0

0:5i + 0:5s�2xs for all s 2 f2; 3; . . . ; ng

= . . .

= 1 +
n�3X
i=0

0:5i + 0:5x1
n�3X
i=0

0:5i + 0:5n�2xn

93

= 1 +
1 � 0:5n�2

1� 0:5
+ 0:5x1

1 � 0:5n�2

1� 0:5
+ 0:5n�2 � 0

= 3 � 2n�2 � 2

The equations for the domains in �gures 9, 17, and 18 can be derived in a similar way.
In order to solve them, one usually uses generating functions, see for example [7] for
a mathematical derivation and [37] for an application in the context of reinforcement
learning. Since these derivations are long and cumbersome, we do not state them here,
but make use of the fact that the solution is unique and show how to check a given
solution by plugging it into the equations. Consider for example the one-dimensional
gridworld shown in �gure 18. The corresponding equations are

x1 = 1 + x2 (7)

xs = 1 + 0:5xs�1 + 0:5xs+1 for all s 2 f2; 3; . . . ; n� 1g (8)

xn = 0 (9)

Consider the solution for xsstart stated in �gure 18

xsstart = x1 = n2 � 2n + 1

The solutions for the other variables xs can be derived from this solution as follows

x1 = 1 + x2 = n2 � 2n + 1) x2 = n2 � 2n

x2 = 1 + 0:5x1 + 0:5x3 = n2 � 2n) x3 = n2 � 2n � 3

x3 = 1 + 0:5x2 + 0:5x4 = n2 � 2n� 3) x4 = n2 � 2n � 8

. . .) . . .

xs�1 = 1 + 0:5xs�2 + 0:5xs = n2 � 2n � (s� 1)2 + 2(s� 1)) xs = n2 � 2n� s2 + 2s

for s 2 f3; 4; . . . ; ng. Thus,

xs = n2 � 2n � s2 + 2s for all s 2 S = f1; 2; . . . ; ng

The xs for s 2 S were constructed to satisfy Equation 7 and Equations 8. In order
to prove that the xs are indeed a solution of the set of equations, we are left to verify
Equation 9 and indeed

xn = n2 � 2n� n2 + 2n = 0

C Value-Iteration and Q-Learning

In the following, we use the transformation rule, terminology, and de�nitions of symbols
introduced in Chapter 6.1 to show how results about value-iteration can be transferred
to Q-learning and vice versa.

94

The time superscripts used in this chapter refer to the values of the variables immedi-
ately before the action execution step of the Q-learning or value-iteration algorithm,
i.e. line 4, of step t.

Theorem 63 For all s 2 SnG and a 2 A(s), it holds that fgd(ss;a) = gd(succ(s; a))+1.

Proof: Assume that we execute action ay 2 A(sy) in state sy 2 S at time 1 � y �
x := gd(succ(s; a)) while following a shortest path from state s1 := succ(s; a) to the
closest goal state sx+1 := succ(sx; ax) 2 G. Let ax+1 2 A(sx+1) be an arbitrary action
in sx+1. Then, the state sequence ss;a; ss1;a1; ss2;a2; . . . ; ssx;ax; ssx+1 ;ax+1 of states in eS
describes a path from state ss;a to the goal state ssx+1;ax+1 2

eG of length x+ 1. Thus,
fgd(ss;a) � x+ 1 = gd(succ(s; a)) + 1.

Conversely, assume that we execute action eay 2 eA(esy) in state esy = ssy ;ay 2
eS at time

1 � y � x := fgd(ss;a) while following a shortest path from state es1 := ss;a to the closest
goal state esx+1 := gsucc(esx; eax) 2 eG. Then, the state sequence s2; s3; . . . ; sx+1 of states
in S describes a path from s2 = succ(s; a) to the goal state sx+1 2 G of length x� 1,

which cannot be shorter than gd(succ(s; a)). Thus, fgd(ss;a) = x � gd(succ(s; a)) + 1.

Put together, it follows that fgd(ss;a) = gd(succ(s; a)) + 1.

Theorem 64 d � ed � d + 1.

Proof: We prove d � ed and ed � d+ 1 separately.

Consider two arbitrary states ss;a; ss0;a0 2 eS. We show that ed(ss;a; ss0;a0) � d + 1.
Assume that we execute action ay 2 A(sy) in state sy 2 S at time 1 � y � x :=
d(succ(s; a); s0) � d while following a shortest path from state s1 := succ(s; a) to state
sx+1 := succ(sx; ax) := s0. Then, the state sequence ss;a; ss1;a1; ss2;a2; . . . ; ssx;ax; ss0;a0

of states in eS describes a path from state ss;a to state ss0;a0 of length x + 1. Thus,
ed(ss;a; ss0;a0) � x+ 1 � d + 1 and ed = maxes;es02eS ed(es; es0) = maxes;es02eS(d + 1) � d + 1.

Next, consider two arbitrary states s; s0 2 S together with two arbitrary actions a 2
A(s) and a0 2 A(s0). We show that ed � d(s; s0). Assume that we execute action
eay 2 eA(esy) in state esy = ssy ;ay 2

eS at time 1 � y � x := ed(ss;a; ss0;a0) � ed while
following a shortest path from state es1 := ss;a to state esx+1 := gsucc(esx; eax) := ss0;a0.
Then, the state sequence s1; s2; . . . ; sx+1 of states in S describes a path from state
s1 = s to state sx+1 = s0 of length x, which cannot be shorter than d(s; s0). Thused � x � d(s; s0) and d = maxs;s02S d(s; s0) � maxs;s02S

ed = ed.

Figures 36 and 37 show that indeed both ed = d and ed = d + 1 are possible. Sinceed � d+ 1, the transformed domain is guaranteed to be strongly connected.

95

(b) Transformed domain

(a) Original domain

...

start goal

...

start

goal

Figure 36: A domain with d = n� 1 and its transformation with ed = d

Theorem 65 Undiscounted, admissible value-iteration with action-penalty represen-
tation behaves in the transformed domain identically to undiscounted, admissible Q-
learning with action-penalty representation in the original domain if the original do-
main has no identity actions, initially Q(s; a) = U (ss;a) for all s 2 S and a 2 A(s),
and ties are broken in the same way. Also, U t(ss;a) = Qt(s; a) for all s 2 S, a 2 A(s),
and steps t (until termination).

Proof: We prove by induction on t that U t(ss;a) = ss1;a1 for all s 2 S, a 2 A(s), and
steps t (until termination). At the same time, we prove that est = sst;at for all steps t
(until termination).

� Initially, es1 = esstart = ssstart;argmaxa2A(sstart)Q(sstart;a)
= Q(s1; a1) if ties are broken

in the same way. Also, U1(ss;a) = Q1(s; a) for all s 2 S and a 2 A(s) per
de�nition.

� Assume that the two statements hold for step t.

First, we prove that eat = at+1, i.e. both algorithms select the same actions.

eat = argmaxea2eA(est)U t(gsucc(est; ea))
= argmaxea2eA(sst;at)U

t(gsucc(sst;at; ea))

96

(b) Transformed domain

(a) Original domain

...

start goal

...

start

goal

Figure 37: A domain with d = n � 1 and its transformation with ed = d + 1

= argmaxea2eA(sst;at)U
t(ssucc(st;at);ea)

= argmaxa02A(succ(st;at))Q
t(succ(st; at); a0)

= argmaxa02A(st+1)Q
t(st+1; a0)

= argmaxa02A(st+1)Q
t+1(st+1; a0)

= at+1

if ties are broken in the same way. Note that Q(st; at) is the only Q-value of the
original domain that changes from step t to step t+ 1. Since the domain has no
identity actions, it holds that st 6= st+1 and therefore Qt(st+1; a0) = Qt+1(st+1; a0)
for all a0 2 A(st+1).

Next, we prove that U t+1(est) = Qt+1(st; at).

U t+1(est) = maxea2eA(est)(�1 + U t(gsucc(est; ea)))
= maxea2eA(sst;at)

(�1 + U t(gsucc(sst;at; ea)))

= maxea2eA(sst;at)
(�1 + U t(ssucc(st ;at);ea))

97

= �1 + max
a02A(succ(st;at))

Qt(succ(st; at); a0)

= �1 + U t(succ(st; at))

= Qt+1(st; at)

Since the only U -value that changes from step t to step t+ 1 in the transformed
domain is U (est) = U(sst;at), the only Q-value that changes during the same time
span in the original domain is Q(st; at), and U t(ss;a) = Qt(s; a) for all s 2 S and
a 2 A(s), it follows that U t+1(ss;a) = Qt+1(s; a) for all s 2 S and a 2 A(s) as
well.

Finally, we prove that est+1 = sst+1;at+1. est+1 = gsucc(est; eat) = gsucc(sst;at; eat) =
ssucc(st;at);at+1 = sst+1;at+1.

Q-learning terminates at the earliest step t at which st 2 G. Thus, st
0

62 G for t0 < t.
Since est0 = sst0 ;at0 for all steps t

0, it follows that est0 62 eG for t0 < t and est 2 eG. Since the
value-iteration algorithm terminates at the earliest time at which its current state is a
goal state, it terminates at step t.

Theorem 66 The U-values of the transformed domain are consistent i� the Q-values
of the original domain are consistent.

Proof: Note that es = ss;a 2 eG i� s 2 G, for all s 2 S and a 2 A(s). Also U(ss;a) =
Q(s; a) for all s 2 S and a 2 A(s) according to Theorem 65. The U -values are
consistent i�, for all ss;a 2 eG, U(ss;a) = 0, and, for all ss;a 2 eS n eG, maxea2eA(ss;a)(�1 +
U(gsucc(ss;a; ea))) � U(ss;a) � 0.

U(ss;a) = 0 for all ss;a 2 eG is equivalent to Q(s; a) = U(ss;a) = 0 for all s 2 G.

maxea2eA(ss;a)(�1 + U(gsucc(ss;a; ea))) � U (ss;a) � 0 for all ss;a 2 eS n eG is equivalent to

the following inequalities

maxea2eA(ss;a)
(�1 + U(ssucc(s;a);ea)) � U (ss;a) � 0

�1 + max
a02A(succ(s;a))

Q(succ(s; a); a0) � Q(s; a) � 0

�1 + U (succ(s; a)) � Q(s; a) � 0

for all s 2 S nG.

Put together, it follows that the U -values of the transformed domain are consistent i�
the Q-values of the original domain are consistent.

Theorem 67 The U-values of the transformed domain are admissible i� the Q-values
of the original domain are admissible.

98

Proof: Note that es = ss;a 2 eG i� s 2 G, for all s 2 S and a 2 A(s). Also U(ss;a) =
Q(s; a) for all s 2 S and a 2 A(s) according to Theorem 65. The U -values are

admissible i�, for all es = ss;a 2 eS, �fgd(ss;a) � U (ss;a) � 0, which is equivalent to, for

all ss;a 2 eG, U(ss;a) = 0, and, for all ss;a 2 eS n eG, �fgd(ss;a) � U(ss;a) � 0.

U(ss;a) = 0 for all ss;a 2 eG is equivalent to Q(s; a) = U(ss;a) = 0 for all s 2 G.

�fgd(ss;a) � U (ss;a) � 0 for all ss;a 2 eS n eG is equivalent to �1 � gd(succ(s; a)) =

�fgd(ss;a) � U (ss;a) = Q(s; a) � 0 for all s 2 S nG according to Theorem 63.

Put together, it follows that the U -values of the transformed domain are admissible i�
the Q-values of the original domain are admissible.

99

