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Abstract

In this report, we investigate the influence of domain properties on the perfor-
mance of real-time search algorithms. We study uninformed, revolving real-time
search algorithms with minimal lookahead that solve suboptimal search prob-
lems, for example variants of Korf’s LRTA* algorithm and edge counting (these
algorithms have been used successfully in the literature). We demonstrate, both
theoretically and experimentally, that they can search Eulerian domains (a su-
perset of undirected domains) very easily: even the real-time search algorithms
that can be intractable are always efficient in Eulerian domains. Because tra-
ditional real-time search testbeds (such as the eight puzzle and gridworlds) are
Eulerian, they cannot be used to distinguish between efficient and inefficient real-
time search algorithms. It follows that one has to use non-Eulerian domains to
demonstrate the superiority of a real-time search algorithm across a wide range
of domains – the studied real-time search algorithms differ in this respect from
traditional search algorithms. To this end, we describe two classes of domains
(“reset state spaces” and “quicksand state spaces”) that do not suffer as much
from the problems of the standard test domains and demonstrate the perfor-
mance of various real-time search algorithms in them.

1 Introduction

Real-time heuristic search algorithms, a term coined by Korf [Korf, 1990], interleave
search with action execution by limiting the amount of deliberation performed between
action executions. [Korf, 1990] and [Korf, 1993] demonstrated that real-time search al-
gorithms are powerful search algorithms that often outperform more traditional search
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Figure 1: Good and bad testbeds (1)

algorithms. Empirical results for real-time search algorithms have typically been re-
ported for AI search domains such as

• sliding tile puzzles (such as the 8-puzzle) [Korf, 1987], [Korf, 1988], [Korf, 1990],
[Russell and Wefald, 1991], [Knight, 1993], [Korf, 1993], [Ishida, 1995]; and

• gridworlds [Korf, 1990], [Pirzadeh and Snyder, 1990], [Ishida and Korf, 1991],
[Ishida, 1992], [Pemberton and Korf, 1992], [Thrun, 1992], [Matsubara and Ishida,
1994], [Stentz, 1995], [Ishida, 1995].

Prototypical test domains (such as these AI search domains) allow engineers to compare
different search methods, which enables them to evaluate the algorithms without having
to implement them. Often engineers have to generalize the results that have been
reported in the literature to different search problems. It is therefore important that
the performance of real-time search algorithms in the test domains be representative
of their performance in the domains of interest: test domains should either reflect the
properties of the domains of interest or, at least, be representative of a wide range of
domains.1 To this end, one has to understand how properties of domains affect the
performance of real-time search algorithms.

Although researchers have studied which factors influence the performance of tradi-
tional search algorithms (such as the A* algorithm) [Pearl, 1985], currently not much
is known about how domain properties influence the performance of real-time search
algorithms. We investigate two classes of domains: a domain is considered a bad
testbed for real-time search algorithms (Type 1) if no real-time search algorithm has a

1We do not argue whether micro worlds (often called “toy problems”) should be used to evaluate
AI algorithms experimentally, instead of complex (real-world) domains, see for example the discussion
in [Hanks et al., 1993]. However, we do argue that any kind of test domain should be carefully chosen
if one does not want to compare different algorithms directly in the domains of interest.
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Figure 4: Domain 2

significant performance advantage over other (reasonable) real-time search algorithms,
otherwise the domain is a good testbed (Type 2). In Figure 1, for example, state
spaces of Type 1a are bad testbeds, because they are too hard to search with real-time
search algorithms: even the most efficient real-time search algorithms perform poorly
in them. Likewise, state spaces of Type 1b are bad testbeds, because they are too easy
to search: even inefficient (but “reasonable”) real-time search algorithms perform very
well in them. State spaces of Type 2, on the other hand, are good testbeds, because
they are better able to discriminate between good and bad real-time search algorithms.

Similar domains can be of different types. Consider, for example, the following two
extremely simple blocksworld domains. The simplicity of these artificially constructed
domains allows us to understand the principles that underlie more realistic domains:
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In both cases, there are x indistinguishable blocks, all of which are initially on the
table. The task is to stack all of them on top of one another on a platform, see Fig-
ure 2. Domain 1 has four operators: “pickup block from table,” “put block on stack,”
“pickup block from stack,” and “put block on table” (these are the operators available
in standard blocksworld domains, expect that a pair of “pickup” and a “putdown”
operators are usually merged into one atomic “move” operator). A block picked up
from the table is always followed by a “put on stack,” and a block picked up from the
stack is always subsequently placed on the table. Domain 2 has the same two pickup
operators and the same “put block on stack” operator, but the “put block on table”
operator (which always follows a “pickup block from stack” operator) knocks down the
whole stack onto the table. The state spaces of these two domains are very similar,
see Figures 3 and 4: both have 3x + 1 states, 4x actions, and the largest goal distance
is 2x + 1. Furthermore, corresponding states have the same small number of actions
available, either one or two. Nevertheless, we will show that Domain 1 is of Type 1 for
the real-time search algorithms that we study, while Domain 2 is of Type 2.

Which real-time search algorithm to use is not crucial when searching domains of
Type 1. Assume, however, that one has to decide with which real-time search algorithm
to solve some search problem in a domain of Type 2, but one only has an empirical
evaluation of the real-time search algorithms in a domain of Type 1 available. In
this case, the reported results appear to suggest that all real-time search algorithms
perform equally well and that it does not matter much which of them is used to solve
the problem. In reality, however, there is a huge difference in performance and one
should carefully choose a suitable real-time search algorithm. If one would understand
how to distinguish between domains of different types, authors of performance studies
could publish performance results not only for domains of Type 1, but also for domains
of Type 2, and readers of these empirical evaluations would be prevented from making
wrong generalizations.

In this report, we make a first step in this direction: we study only one property of
state spaces and we consider its effect only on the performance of selected real-time
search algorithms, but not on a whole class of algorithms. We identify one particular
property of domains that makes them bad testbeds for the studied real-time search
algorithms, namely being Eulerian. In Eulerian state spaces, each state has an equal
number of actions that enter and leave the state. All undirected domains are, for
example, Eulerian.

We study several uninformed, revolving real-time search algorithms with minimal
lookahead that solve suboptimal search problems. This restriction allows us to study
the influence of domain properties on the performance of real-time search algorithms
in isolation. For example, there is no difference in the kind and amount of domain
knowledge that the algorithms have available and how they utilize it. We compare a
variant of Korf’s LRTA* algorithm – probably the best known real-time search algo-
rithm – to other real-time search algorithms that have been used in the literature, both
for Eulerian and non-Eulerian domains. Our analysis shows that Eulerian domains are
all of Type 1b – even real-time search algorithms that are inefficient, in general, per-
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form well in Eulerian domains. (Note that the Eulerian property has no effect on the
performance of traditional search algorithms.) To confirm the practical applicability of
these results, we supplement our theoretical worst-case analysis with an experimental
average-case analysis that yields the same results.

Since sliding tile puzzles and gridworlds are typically undirected and therefore Eulerian,
real-time search algorithms that can be intractable perform efficiently in such domains
and have indeed been demonstrated successfully in such domains in the literature.
Therefore, these domains are not appropriate to demonstrate how well real-time search
algorithms perform in general. To remedy this, we propose two classes of non-Eulerian
testbeds (“reset state spaces” and “quicksand state spaces”) that are of Type 2. There-
fore, they do not suffer as much from the problems of the standard test domains.

2 Notation

We use the following notation to describe state spaces formally: S denotes the finite
set of states (“vertices”) of the state space (“directed graph”), G with ∅ 6= G ⊆ S the
non-empty set of goal states, and sstart ∈ S the start state. A(s) is the finite set of
deterministic actions (“directed edges”) that can be executed in s ∈ S (“be traversed
from s”), and succ(s, a) denotes the uniquely determined successor state that results
from the execution of action a ∈ A(s) in s ∈ S.

The size of the state space is n := |S|, and the total number of state-action pairs
(loosely called actions) is e :=

∑

s∈S |A(s)|. gd(s) denotes the goal distance of s ∈ S
(measured in action executions). Finally, the depth d of the state space (its “diameter”)
is its largest goal distance, d := maxs∈S gd(s).

There exist state spaces in which all of our real-time search algorithms can get trapped
in a part of the state space that does not contain a goal state. To exclude these state
spaces, we assume d < ∞, which implies d ≤ n− 1. This means that, no matter which
actions a real-time search algorithm has executed in the past, it can still reach a goal
state. Strongly connected state spaces, for example, have this property. To simplify our
descriptions, we also assume that e ≤ n2 (an extremely realistic assumption), since this
allows us to state all complexity results in terms of n only. (Otherwise this assumption
is unnecessary.)

3 Our Performance Measure

Real-time search algorithms differ from traditional search algorithms, in that they
always maintain a current state. This is a state of the state space; it can only be
changed by executing actions. We study suboptimal search – the task that real-time
search algorithms can perform very well. Suboptimal search means looking for any
path (i.e. sequence of actions) from the start state to a goal state. The sequence of
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The real-time search algorithm starts in state sstart. Initially, memory = 0 and
V (s, a) = 0 for all s ∈ S and a ∈ A(s).

1. s := the current state.

2. If s ∈ G, then stop successfully.

3. Choose an a from A(s) possibly using memory and V (s, a′) for a′ ∈ A(s).

4. Update memory and V (s, a) possibly using memory, V (s, a), and
V (succ(s, a), a′) for a′ ∈ A(succ(s, a)).

5. Execute action a, i.e. change the current state to succ(s, a).

6. Go to 1.

Figure 5: Skeleton of the studied real-time search algorithms

actions that real-time search algorithms execute is such a path, although not necessarily
an optimal one. In real-time search, the search time is (roughly) proportional to the
length of the solution path, i.e. the total number of executed actions. Thus, we use
the length of the path to evaluate the performance of real-time search algorithms.

When we refer to the complexity of a real-time search algorithm, we mean an upper
bound on the total number of actions that it executes until it reaches a goal state,
in big-O notation. This bound must hold for all possible topologies of state spaces
of a given size, start and goal states, and tie breaking rules among indistinguishable
actions. Two algorithms have the same tight complexity if the ratio of their worst-case
performance is bounded from above and below by positive constants, although these
constants can potentially be large.

4 Skeleton of Real-Time Search Algorithms

To make meaningful comparisons, one should only compare algorithms that make sim-
ilar assumptions. We therefore restrict our attention to uninformed revolving real-time
search algorithms with minimal lookahead (search horizon) and greedy action selection.

The algorithms maintain information in form of integer values V (s, a), which are as-
sociated with every state-action pair (s, a). An additional integer value is maintained
across action executions (in the variable memory). The semantics of these values de-
pend on the specific real-time search algorithm used, but all values are zero-initialized,
reflecting that the algorithms are initially uninformed. At no point in time can these
values contain much information, since the algorithms must be able to decide quickly
which actions to execute, and their decisions are based on these values. This require-
ment prevents the algorithms, for example, from encoding significant portions of the
state space in these values.
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The algorithms that we consider all fit the skeleton shown in Figure 5. They consist of
a termination checking step (line 2), an action selection step (line 3), a value update
step (line 4), and an action execution step (line 5). First, they check whether they
have already reached a goal state and thus can terminate successfully (line 2). If not,
they decide on the action to execute next (line 3). For this decision, they can consult
the value stored in their memory and the values V (s, a) associated with the actions
in their current states. Then, they update the value of the selected action and their
memory, possibly also using the values associated with the actions in their new state
(line 4). Finally, they execute the selected action (line 5) and iterate this procedure
(line 6).

All algorithms that fit this skeleton are easy to implement, uninformed, revolving real-
time search algorithms with minimal lookahead and greedy action selection, although
their action selection and value update steps can differ. They are uninformed, because
they do not have any initial knowledge of the state space, not even estimates for the
goal distances. They are revolving, because they repeat the same planning procedure
after every action execution. They have minimal lookahead, because they use only
information local to their current state in order to select an action. (They do not even
have to project one action execution ahead.) Finally, they select only the action to
execute next and do this with a minimal amount of search. This greedy way of selecting
actions minimizes the amount of computation between action executions.

5 Worst-Case Results

We first study the complexity of real-time search algorithms over all state spaces. In
this case, one can freely choose the state space that maximizes the number of action
executions of a given real-time search algorithm (the “worst” state space) from all state
spaces with the same number of states. Later, we restrict the possible choices and study
the complexity of real-time search algorithms over a subset of all state spaces.

Empirical researchers sometimes consider complexity analyses to be unimportant, be-
cause they are more interested in the average-case performance of algorithms than in
their worst-case performance. The reason why worst-case results are interesting is be-
cause such results provide performance guarantees. A proof that an algorithm has a
small (worst-case) complexity over all state spaces, for example, guarantees that the
algorithm is always efficient. This means that there cannot be any unpleasant sur-
prises in form of unanticipated domains in which the performance of the algorithm
deteriorates completely.

We are interested in the complexity of both efficient and inefficient real-time search
algorithms, because the smaller the difference in the two complexities, the stronger
the indication that search problems in such state spaces are of Type 1. (Experimental
average-case results are provided in Chapter 6.)
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Figure 6: A simple reset state space
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Figure 7: A more complex reset state space

5.1 General State Spaces

In this section, we introduce several algorithms that fit our real-time search skeleton
(Figure 5) and consider their complexity in all state spaces with d < ∞ that have the
same size n. In particular, we study a variant of a popular real-time search algorithm
(namely min-LRTA*, a variant of Korf’s LRTA* algorithm) and compare its complexity
to the most efficient and less efficient real-time search algorithms.

Particularly tough state spaces to search are “reset” state spaces. A simple reset state
space is a state space in which all states (but the start state) have an action that leads
back to the start state (we say that the action “resets” the algorithms to the start
state) – or, more generally, in which the lookahead of the real-time search algorithm is
not large enough to avoid the execution of such actions. An example of a simple reset
state space is shown in Figure 6. It is similar to our second blocksworld state space
(Domain 2), shown in Figure 4. The reason why it is tricky to search reset state spaces
is that the algorithms have to choose the correct action (out of two possible actions)
n − 2 times in a row in order to reach the goal state. If they execute only one action
that is not on the optimal path from the start state to the goal state, they end up at
the start state again and have to start all over.

A more complex reset state space is shown in Figure 7. It shares with simple reset state
spaces the property that real-time search algorithms have to execute O(n) actions on
average to make up for a single mistake (to be precise: the average number of action
executions is (n − 1)/2 for simple reset state spaces and n/3 for more complex reset
state spaces (n ≥ 3) if one averages uniformly over all reset actions in non-goal states).
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However, since the more complex reset state space has O(n2) instead of O(n) actions,
the algorithms now have to choose the one correct action in every state out of O(n)
actions on average. The state space of Figure 7 is similar to state spaces of blocksworlds
in which one can stack only single blocks, but (different from the blocksworld domains
discussed earlier) one can remove an arbitrary number of blocks from the top of the
stack.

5.1.1 LRTA*-Type Real-Time Search

Korf’s Learning Real-Time A* (LRTA*) algorithm [Korf, 1987; Korf, 1988; Korf, 1990]

can be used to find suboptimal and optimal solution paths. It is probably the most
popular real-time search algorithm. Variants of LRTA* have, for example, been used
by [Knight, 1993], [Ishida, 1995], and [Koenig and Simmons, 1995]. The variant that we
use here is closely related to Q-learning, a widely-used reinforcement learning method,
see [Koenig and Simmons, 1992]. We call it LRTA* with minimalistic lookahead (short:
min-LRTA*), because the search horizon of its action selection step is even smaller than
that of LRTA* with lookahead one. (We analyze Korf’s original version of LRTA* with
lookahead one in Section 9.)

The following table presents the action selection step and value update step of min-
LRTA*. We use two operators with the following semantics: Given a set X, one-ofX
returns one element of X according to an arbitrary rule. (A subsequent invocation of
one-ofX can return a different element.) argminx∈X f(x) returns the set {x ∈ X :
f(x) = minx′∈X f(x′)}.

Min-LRTA*

action selection step (line 3) a := one-of arg mina′∈A(s) V (s, a′)

value update step (line 4) V (s, a) := 1 + mina′∈A(succ(s,a)) V (succ(s, a), a′)

The action selection step selects the state-action pair with the smallest value. The
value update step replaces V (s, a) with the more accurate lookahead value 1 +
mina′∈A(succ(s,a)) V (succ(s, a), a′). This can be explained as follows: The value of any
state-action pair V (s, a) is always a lower bound on the number of action executions
that one has to execute in order to reach a state with an unexplored action if one
starts by executing action a in state s (unexplored actions can potentially lead to goal
states). Thus, the number of action executions that one has to execute in order to
reach a state with an unexplored action from state s′ is at least mina′∈A(s′) V (s′, a′),
and the number of action executions that one has to execute in order to reach a state
with an unexplored action if one starts by executing action a in state s is at least
1 + mina′∈A(succ(s,a)) V (succ(s, a), a′), see [Koenig and Simmons, 1996] for details.

Min-LRTA* always reaches a goal state with a finite number of action executions. We
can prove the following complexity result for min-LRTA*.

Theorem 1 Min-LRTA* has a tight complexity of O(n3) action executions.
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Proof Sketch: [Koenig and Simmons, 1996] showed that the com-
plexity of min-LRTA* is at most 2

∑

s∈S\G

∑

a∈A(s)[gd(succ(s, a)) + 1], i.e.
O(e × d). Since e ≤ n2 and d ≤ n − 1, it follows that the complexity is at
most O(n3). Reset state spaces with O(n2) actions are examples of state
spaces for which min-LRTA* needs at least O(n3) action executions in the
worst case in order to reach the goal state, as will be shown in the next
section.

5.1.2 Efficient Search Algorithms

No real-time search algorithm that fits our real-time search skeleton can distinguish
between actions that have not been executed, because it does not look at the successor
states of its current state when choosing actions (and initially all actions have the same
value). This implies the following lower bound on their complexity.

Theorem 2 The complexity of every real-time search algorithm that fits our real-time
search skeleton is at least O(n3) action executions.

Proof Sketch: Reset state spaces with O(n2) actions, see Figure 7, are
examples of state spaces for which every real-time search algorithm that fits
our real-time search skeleton needs at least O(n3) action executions in the
worst case in order to reach the goal state. In particular, every real-time
search algorithm can traverse either the state sequence that is printed by
the following program in pseudo code or a super sequence thereof if ties are
broken in favor of successor states with smaller numbers.2

for i := 1 to n-1

print i

for j := 1 to i-1

for k := j to i

print k

print n

In this case, all real-time search algorithms execute at least 1/6× n3 −
1/6 × n actions before they reach the goal state (for n ≥ 1).

Thus, no real-time search algorithm can have a complexity smaller than O(n3) action
executions and beat min-LRTA*, that we have shown to have a tight complexity of
O(n3) action executions. (We do not pursue the question here whether there exist
search algorithms whose performance dominates the one of min-LRTA*, see [Koenig
and Simmons, 1996] for the answer.)

2The scope of the for-statements is shown by indentation. The statements in their scope only get
executed if the range of the for-variable is not empty. The step size for for-statements is either one
(“to”) or minus one (“downto”).
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Figure 8: A quicksand state space

5.1.3 Inefficient Search Algorithms

In this section, we analyze the complexity of inefficient real-time search algorithms.
Note that “the worst real-time search algorithm” does not exist, since one can construct
algorithms that perform arbitrarily badly, even if they fit our real-time search skeleton.
This problem should be addressed by performing a complexity analysis over a suitably
defined class of “reasonable” real-time search algorithms. In this report, however, we
are content with analyzing examples of inefficient real-time search algorithms.

Particularly bad search algorithms are ones that do not remember where they have
already searched. Random walks are examples of such search algorithms. We show that
their deterministic counterpart is a real-time search algorithm called “edge counting,”
and demonstrate that both algorithms are intractable in reset state spaces. Another
class of state spaces in which their performance degrades completely are “quicksand”
state spaces. In every state of a quicksand state space (except for the boundary), there
are more actions that move the agent one action execution away from the goal state (“a
bit into the quicksand”) than move it one action execution towards it (“a bit out of the
quicksand”).3 An example of a quicksand state space is shown in Figure 8. Quicksand
state spaces differ from reset state spaces in the effort that is necessary to recover from
mistakes: all actions in quicksand state spaces have local effects only (it is possible to
recover in only one step), whereas the reset actions in reset state spaces do not have
local effects.

5.1.3.1 Random Walks Random walks choose randomly from the available ac-
tions.

Random Walks

action selection step (line 3) a := pick an action from A(s) with uniform probability
value update step (line 4) (empty)

Random walks have lookahead zero, do not store any information at all, and thus cannot
remember where they have already searched unsuccessfully. As a consequence, the
number of action executions they need in order to reach a goal state can exceed every

3Quicksand state spaces are also crude, discrete models of navigation tasks that require an agent
to travel some distance on a conveyor belt that moves away from the goal location. If the agent can
always select its travel speed from the interval [−vmax, vmax], then the majority of its actions increase
its goal distance.
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given bound with positive probability, implying an infinite (worst-case) complexity.
However, random walks find a goal state with probability one and finite average-case
complexity, although the expected number of action executions can scale exponentially
in the size of the state space.

Theorem 3 Random walks have infinite (worst-case) complexity. Their average-case
complexity is finite, but can be exponential in n.

Proof Sketch: It is easy to show that random walks have infinite
(worst-case) complexity, but finite average-case complexity (proof trivial).
Simple reset state spaces, see Figure 6, are examples of state spaces for
which random walks need a number of action executions on average that is
exponential in n in order to reach a goal state. This can be seen as follows:
For every s ∈ S we introduce a variable xs that represents the average
number of action executions until the random walk reaches a goal state if
it starts in state s. These values can be calculated by solving the following
set of linear equations.

x1 = 1 + x2

xs = 1 + 0.5x1 + 0.5xs+1 for all s ∈ {2, 3, . . . , n − 1}

xn = 0

The result is that random walks execute on average x1 = 3×2n−2−2 actions
before they reach the goal state (for n ≥ 2). – Quicksand state spaces, see
Figure 8, are another kind of state spaces for which random walks need a
number of action executions on average that is exponential in n in order to
reach a goal state. We proceed as we did for reset state spaces: we solve a
set of linear equations to calculate the average-case complexity of random
walks. For every s ∈ S, we introduce a variable xs that represents the
average number of action executions until the random walk reaches a goal
state if it starts in state s.

x1 = 1 + x2

xs = 1 + 2/3 × xs−1 + 1/3 × xs+1 for all s ∈ {2, 3, . . . , n − 1}

xn = 0

The result is that random walks execute on average x1 = 2n+1 − 3n − 1
actions before they reach the goal state (for n ≥ 1).

5.1.3.2 Edge Counting We can easily derive a real-time search algorithm that
shares many properties with random walks, but has finite complexity – basically, by
“removing the randomness” from random walks.
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Edge Counting

action selection step (line 3) a := one-of argmina′∈A(s) V (s, a′)

value update step (line 4) V (s, a) := 1 + V (s, a)

Random walks execute all actions in a state equally often in the long run. The action
selection step of edge counting always chooses the action for execution that has been
executed the least number of times. This achieves the same result as random walks, but
in a deterministic way. One particular tie breaking rule, for example, is to execute all
actions in turn. Shannon used this algorithm as early as in the late 1940’s to implement
an exploration behavior for an electronic mouse that searched a maze, see [Sutherland,
1969]. To the best of our knowledge, however, its relationship to random walks has
never been pointed out nor has its complexity been analyzed.

Edge counting shares many properties with random walks. In particular, edge counting
tends to have the properties in the worst case that random walks have on average.
For example, the (worst-case) complexity of edge counting over all state spaces (in
big-O notation) equals the average-case complexity of random walks. In particular,
edge counting always reaches a goal state with a finite number of action executions,
but its complexity can be exponential in the size of the state space. (We do expect
some improvement in average-case performance when switching from random walks to
edge counting, since edge counting remembers something about where it has already
searched. The improvement, however, can just be a constant factor. Section 6 contains
experimental results.)

Theorem 4 The complexity of edge counting is finite, but at least exponential in n.

Proof Sketch: The argument that edge counting reaches a goal state
eventually is by contradiction: If edge counting did not reach a goal state
eventually, it would execute actions forever. In this case, there is a time t
from which on edge counting only executes those actions that it executes
infinitely often. Eventually, the values of all of these actions exceed every
bound, since – every time an action is executed – its value is incremented
by one. In particular, the values exceed the value of an action that edge
counting considers infinitely often for execution, but never executes after
time t. Such an action exists, since one can reach a goal state from every
state. Then, however, edge counting is forced to execute this action after
time t, which is a contradiction.

Simple reset state spaces, see Figure 6, are examples of state spaces for
which edge counting needs a number of action executions in the worst case
that is at least exponential in n. In particular, edge counting traverses the
state sequence printed by f(n) if ties are broken in favor of successor states
with smaller numbers.

proc f(i) =

if i = 2 then
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print 1

else

f(i-1)

f(i-1)

print i

In this case, edge counting executes 3×2n−2−2 actions before it reaches
the goal state (for n ≥ 2). Similarly, the state space in Figure 4 is a reset
state space for which edge counting executes 3×21/3×n−1/3−4 actions before
it reaches the goal state (for n ≥ 4 with n mod 3 = 1) if ties are broken in
favor of actions that lead “upward.”

Quicksand state spaces, see Figure 8, are another kind of state spaces
for which edge counting needs a number of action executions in the worst
case that is at least exponential in n. In particular, edge counting traverses
the state sequence that is printed by the following program in pseudo code
if ties are broken in favor of successor states with smaller numbers.

print 1

print 2

for i := 3 to n

print i-2

f(i-1)

print i-2

f(i-1)

print i

where

proc f(i) =

if i = 2 then

print 2

else

print i-2

f(i-1)

print i-2

f(i-1)

print i

In this case, edge counting executes 2n+1 − 3n − 1 actions before it
reaches the goal state (for n ≥ 1).

To summarize, edge counting needs a number of action executions that is, in the worst
case, exponential in n for both (simple) reset state spaces (Figure 6) and quicksand
state spaces (Figure 8). These are Type 2 state spaces since, by Theorem 1, min-LRTA*
needs only a polynomial number of action executions in these state spaces.
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Figure 9: Subsets of state spaces (including example domains)

5.2 Undirected and Eulerian State Spaces

In this section, we consider the complexity of real-time search algorithms in a subset
of state spaces, namely state spaces with d < ∞ that are either undirected or Eulerian
(we do not assume that the real-time search algorithms know that the state spaces
have one of these properties), and show that they are all of Type 1b.4

Definition 1 A state space is Eulerian iff |A(s)| = |{(s′, a′) : s′ ∈ S ∧ a′ ∈ A(s′) ∧
succ(s′, a′) = s}| for all s ∈ S, i.e. there are as many actions that leave a state as
there are actions that enter the (same) state.

Since an undirected edge is equivalent to one incoming edge and one outgoing edge, all
undirected state spaces are Eulerian. Many state spaces of typical AI search domains
are undirected (and thus Eulerian), see Figure 9. Examples include sliding tile puzzles
and typical gridworlds, i.e. the state spaces that are commonly used as testbeds for
LRTA*, edge counting, and other real-time search algorithms. Gridworlds, for example,
are very popular abstractions of robot navigation domains. They discretize 2-d space
into square cells, see Figure 10. A robot can move from any square to each of its
four neighboring squares as long as it stays on the grid and the target square does not
contain an obstacle.

There also exist state spaces that are Eulerian, but not undirected, for example the
state spaces of racetrack domains [Gardner, 1973]. They correspond to gridworlds,
but a state of the state space is not only characterized by the x and y coordinates
of the square that the robot currently occupies. Instead, it is described by two pairs
of integers: the square that the robot occupies, and its speed in both the x and y
direction. Actions correspond to adjusting both the x and y speed components by -1,
0, or 1. Given an action (speed change), the successor state is determined by computing
the new speed components (one can impose a limit that the absolute speeds are not

4Eulerian state spaces correspond to directed Euler(ian) graphs as defined by the Swiss mathemati-
cian Leonhard Euler when he considered whether the seven Königsberg bridges could be traversed
without recrossing any of them [Newman, 1953].
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Figure 11: Racetrack domain

allowed to exceed) and then determining the new location of the robot by adding each
speed component to its corresponding location component. An example is shown in
Figure 11. Racetrack domains are robot navigation domains that are more realistic
than gridworlds – for instance, they model acceleration and take into account that the
turn radius of the robot gets larger at higher speeds. The state spaces of racetrack
domains are Eulerian except around obstacles or at boundaries. In particular, the
state spaces of obstacle free racetrack domains on a torus are truly Eulerian, but
not undirected. Race track domains have been used as testbeds for real-time search
algorithms by [Barto et al., 1995].

The complexity of real-time search algorithms in a subset of state spaces can potentially
be smaller than their complexity in general. This is the case if all state spaces on
which the real-time search algorithms do not perform well do not belong to the subset.
Thus, Eulerian state spaces could be easier to search than state spaces in general, and
undirected state spaces could be even easier to search. We now show that Eulerian
state spaces are indeed easier to search with the studied real-time search algorithms
than state spaces in general, but undirected state spaces do not simplify the search
any further. Since there are some search problems that are of Type 2, they must be
non-Eulerian. Examples include reset state spaces and quicksand state spaces.

5.2.1 LRTA*-Type Real-Time Search

The complexity of min-LRTA* does not decrease in undirected or Eulerian state spaces.
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Theorem 5 Min-LRTA* has a tight complexity of O(n3) action executions in undi-
rected or Eulerian state spaces.

Proof Sketch: Theorem 1 implies that the complexity of min-LRTA*
is at most O(n3) action executions. Figure 12 shows an example of an
undirected (and thus Eulerian) state space for which min-LRTA* needs at
least O(n3) action executions in the worst case in order to reach the goal
state. In particular, it traverses the state sequence that is printed by the
following program in pseudo code.

for i := n-1 downto (3n+1)/4

print (n+1)/2

for j := 1 to (n-1)/2

for k := j+1 to (n+1)/2

print j

print k

for j := (n+3)/2 to i-1

print j

for j := i downto (n+3)/2

print j

print (n+1)/2

for j := 1 to (n-1)/2

for k := j+1 to (n+1)/2

print j

print k

for j := (n+3)/2 to n

print j

In this case, min-LRTA* executes 1/16×n3 +3/8×n2− 3/16×n− 1/4
actions before it reaches the goal state (for n ≥ 1 with n mod 4 = 1).
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5.2.2 Efficient Search Algorithms

For Eulerian state spaces, real-time search algorithms exist that have a lower com-
plexity than min-LRTA*. One example, called BETA5 (“Building a Eulerian Tour”
Algorithm), informally acts as follows:

Take unexplored edges whenever possible. If stuck [i.e. if all actions
in the current state have already been executed at least once], retrace the
closed walk of unexplored edges just completed, stopping at nodes that have
unexplored edges, and apply this algorithm recursively from each such node.

This algorithm is similar to depth-first search, with the following difference: Since
chronological backtracking is not always possible in directed graphs, BETA repeats its
first actions when it gets stuck instead of backtracking its latest actions.

BETA fits our real-time search skeleton, as we show in the following. We encode the
values V (s, a) as triples of integers. (Such a triple is then encoded as one integer,
which we don’t show here.) The first component (the “cycle number”) has index one
and corresponds to the level of recursion of the recursive version of BETA as stated
above. The second component has index two and counts the number of times action
a has already been executed, and the third component remembers when action a was
executed first (using a counter that is incremented after every action execution). The
variable memory is also treated as a triple: its first two components remember the
first two components of the previously executed action and its third component is the
counter. All values are initialized to (0, 0, 0) instead of 0. (There are more concise
ways of representing the necessary information, but they tend to be more difficult to
comprehend.)

BETA

action selection step (line 3) a := one-of arg mina′∈X V (s, a′)[3]
where X = arg maxa′∈Y V (s, a′)[1] and
Y = argmina′∈A(s) V (s, a′)[2]

value update step (line 4) if V(s,a)[2] = 0 then
V(s,a)[3] := memory[3]+1
if memory[2] = 1 then

V(s,a)[1] := memory[1]
else then

V(s,a)[1] := memory[1]+1
V(s,a)[2] := V(s,a)[2] + 1
memory[1] := V(s,a)[1]
memory[2] := V(s,a)[2]
memory[3] := memory[3] + 1

5The exact origin of the algorithm is unclear. [Deng and Papadimitriou, 1990] and [Korach et al.,
1990] stated it explicitly as a search algorithm, but it has been used much earlier as part of proofs
about properties of Eulerian graphs [Hierholzer, 1873].
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The action selection step always chooses an action that has never been executed before.
(We do not care how ties are resolved.) If no such action exists in the current state,
it considers all actions that have been executed exactly once and selects the action
that belongs to the latest cycle. Such an action always exists. If there is more than
one such action, ties are broken in favor of the action whose first execution preceded
the executions of the other actions. When an action is executed for the first time, the
value update step remembers when it was executed and decides which cycle number
it should get. If the action executed previously was executed for the first time too,
then the new action inherits its cycle number, otherwise a new cycle starts and the
cycle number of the new action is one larger than the cycle number of the previously
executed action. For every action, the value update step also increments the number
of times it has been executed. Finally, the value update step remembers the first two
components of the current action (so that it has them available after the action has
been executed) and increments the system clock.

BETA always reaches a goal state with a finite number of action executions and,
moreover, executes every action at most twice. Furthermore, every real-time search
algorithm that fits our real-time search skeleton needs asymptotically at least this
many action executions [Deng and Papadimitriou, 1990]. These two statements remain
true if only undirected state spaces are considered [Koenig and Smirnov, 1996]. The
following theorem follows.

Theorem 6 The complexity of every real-time search algorithm that fits our real-time
search skeleton is at least O(n2) action executions in undirected or Eulerian state
spaces, and BETA has a tight complexity of O(n2) action executions in these state
spaces.

Proof Sketch: According to [Deng and Papadimitriou, 1990], BETA
executes every action at most twice in Eulerian state spaces. Since e ≤ n2,
its complexity is at most O(n2) in undirected or Eulerian state spaces.
On the other hand, it is easy to construct undirected (and thus Eulerian)
state spaces with O(n2) actions most of which BETA or any other real-time
search algorithm that fits our framework has to traverse at least once in
the worst-case before it reaches a goal state.

5.2.3 Inefficient Search Algorithms

In the following, we analyze the real-time search algorithms again that we have shown
to be very inefficient in general, namely random walks and edge counting.

5.2.3.1 Random Walks The (worst-case) complexity of random walks remains
infinite in undirected or Eulerian state spaces, but their average-case complexity de-
creases dramatically from being exponential in n to being a small polynomial in n.
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Theorem 7 Random walks have infinite (worst-case) complexity in undirected or Eu-
lerian state spaces. Their average-case complexity is tight at O(n3) action executions
in these state spaces.

Proof Sketch: It is easy to show that random walks have infinite
(worst-case) complexity, but finite average-case complexity (proof trivial).
According to [Aleliunas et al., 1979], a random walk needs at most e action
executions on average in Eulerian state spaces in order to reach a specified
successor state of the state it started in. Now consider a shortest path from
the start state to the closest goal state. Since its length is at most d, a
random walk needs at most e× d action executions on average to reach the
goal state. Since e ≤ n2 and d ≤ n − 1, the average-case complexity of
random walks is at most O(n3) action executions.

Figure 12 shows an example of an undirected (and thus Eulerian) state
space for which random walks need O(n3) action executions on average in
order to reach the goal state. As in the proof of Theorem 3, we can solve
a system of linear equations to calculate the average-case complexity of
random walks in this state space. The result is that random walks execute
1/8 × n3 + 1/8 × n2 − 5/8 × n + 3/8 actions on average before they reach
the goal state (for odd n ≥ 1).

5.2.3.2 Edge Counting Since the average-case complexity of random walks de-
creases in undirected or Eulerian state spaces from being exponential in n to being a
small polynomial in n, so does the complexity of edge counting.

Theorem 8 Edge counting has a tight complexity of O(n3) action executions in undi-
rected or Eulerian state spaces.

Proof Sketch: According to Theorem 9 in the appendix, the complex-
ity of edge counting is at most e×gd(sstart)−gd(sstart)

2 action executions in
undirected or Eulerian state spaces. Since e ≤ n2 and gd(sstart) ≤ d ≤ n−1,
it follows that its complexity is at most O(n3).

Figure 12 shows an example of an undirected (and thus Eulerian) state
space for which edge counting needs at least O(n3) action executions in the
worst case in order to reach the goal state. In particular, it traverses the
state sequence that is printed by the following program in pseudo code if
ties are broken in favor of successor states with smaller numbers.

for i := (n+3)/2 to n

for j := i-2 downto (n+1)/2

print j

for j := 1 to (n-1)/2

for k := j+1 to (n+1)/2
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print j

print k

for j := (n+3)/2 to i

print j

In this case, edge counting executes e × gd(sstart) − gd(sstart)
2 = 1/8 ×

n3 + 1/8 × n2 − 5/8 × n + 3/8 actions before it reaches the goal state (for
odd n ≥ 1).

6 Average-Case Results

So far, we have only been concerned with the (worst-case) complexity of real-time
search algorithms. However, their average-case complexity is equally important for
practical purposes, and worst-case performance guarantees do not necessarily reflect
average-case performance. To show that the average-case performance follows a similar
trend, we present a simple case study that demonstrates that Eulerian state spaces are
not only simpler to search than reset state spaces in the worst case, but also on average.

Figures 13 and 14 show how many actions four real-time search algorithms execute
in the two blocksworld domains from Figures 3 (Domain 1) and 4 (Domain 2). We
compare min-LRTA*, random walks, edge counting, and – for the Eulerian state space
of Domain 1 – also BETA. All graphs are scaled in the same proportions. Their
horizontal axes show the size of the state space (measured by the number of blocks)
and their vertical axes the number of action executions until a goal state was reached
from the start state, averaged over 5000 runs with randomly broken ties. Note that
all real-time search algorithms were uninformed – in particular, they initially had no
knowledge that putting blocks on the stack is the best way to achieve the goal state.

The experiments show that the relationship of the average-case performances are similar
to those in the worst case. Every algorithm does better in Domain 1 than in Domain 2.
Random walks perform worst in both state spaces. This is to be expected since they
do not remember any information. However, edge counting performs almost as poorly
as random walks in Domain 2, and both algorithms quickly become intractable. With
50 blocks, for example, a random walk needs about 3.4 × 1015 action executions on
average in order to reach the goal state and performs about 500,000,000,000 (500
billion) times worse than min-LRTA*, that needs only 6838.3 action executions on
average. On the other hand, all algorithms do quite well in Domain 1. Even the ones
that perform poorly in Domain 2 perform almost as well as min-LRTA*, the real-time
search algorithm that performs well in both state spaces. With 50 blocks, for example,
min-LRTA* performs 2.2 times worse than BETA (that needs 292.0 action executions
on average), edge counting performs 8.7 times worse, and even random walks perform
only 17.1 times worse. Thus, the interval spanned by the average-case complexity of
efficient and inefficient real-time search algorithms is much smaller in Domain 1 than
in Domain 2. This difference is to be expected, since Domain 1 is Eulerian (and thus
of Type 1b), whereas Domain 2 resembles a simple reset state space of Type 2.
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Figure 13: Performance results for Domain 1
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Figure 14: Performance results for Domain 2

7 Another Search Problem

Our study does not imply that min-LRTA* has a smaller complexity than edge counting
in every state space of a given size. A simple counterexample is given in Figure 15.
(Another example is the state space shown in Figure 12 with start state n − 2.) Min-
LRTA* can traverse the state sequence printed by the following program in pseudo code

22



start state

...

goal state

1 2 3 n-3 n-2 n-1 n

Figure 15: A linear state space

if ties are broken in favor of successor states with smaller numbers on the (undirected)
line except for the first action execution in which the tie is broken in the opposite way.

print n-2

for i := n-1 to 1

print i

for i := n-2 downto 2

for j := 2 to i

print j

for j := i-1 downto 1

print j

for i := 2 to n

print i

In this case, min-LRTA* executes n2 − 3n + 4 actions before it reaches the goal state
(for n ≥ 3). On the other hand, we have shown that edge counting is guaranteed not to
need more than e× gd(sstart)− gd(sstart)

2 = 4n− 8 action executions in order to reach
a goal state (this bound turns out to be tight for this particular state space if ties are
broken in favor of successor states with smaller numbers). Since n2−3n+4 > 4n−8 for
n > 4, the complexity of edge counting for this particular search problem is guaranteed
to be smaller than that of min-LRTA* for n > 4. Experiments show that the same
relationship holds, even more pronounced, in the average case.

Consider again the two blocksworld domains from Figures 3 (Domain 1) and 4 (Do-
main 2). If we change the start state in both domains so that all but four blocks are
already stacked initially, then both domains become easier to solve. However, Fig-
ure 17 shows that the performance relationships of the real-time search algorithms
studied in Section 6 remain similar in Domain 2 (min-LRTA*, for example, now needs
6414.1 action executions on average in order to reach the goal state). Figure 16, on
the other hand, shows that the performance relationships in Domain 1 change dra-
matically. (Figures 16 and 17 are scaled differently than Figures 13 and 14.) With 50
blocks, for example, min-LRTA* now performs 1.3 times worse than BETA and ran-
dom walks perform 4.2 times worse, but edge counting performs 3.8 times better than
BETA. Thus, for this particular search problem in Domain 1 (a Eulerian state space),
a real-time search algorithm that can be intractable (edge counting) outperforms a
real-time search algorithm that is always efficient (min-LRTA*).
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Figure 16: Performance results for Domain 1
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Figure 17: Performance results for Domain 2

8 Summary of the Results

When comparing the complexity of min-LRTA* to the complexity of efficient and in-
efficient real-time search algorithms, we derived the following results. In general, no
real-time search algorithm can beat the complexity of min-LRTA*, which is a small
polynomial in n. In contrast, the deterministic real-time search algorithm (edge count-
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ing) that we derived from random walks has a complexity that is at least exponential
in n.

The picture changes in Eulerian state spaces. The complexity of edge counting de-
creases dramatically and equals the complexity of min-LRTA*, which remains un-
changed (it even beats min-LRTA* in certain specific state spaces). In addition, there
exists a dedicated real-time search algorithm for Eulerian state spaces (BETA) that
has a smaller complexity. All complexities remain the same in undirected state spaces,
a subset of Eulerian state spaces.
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To summarize, while min-LRTA* does rather well in general when being compared to
the other real-time search algorithms, its advantage decreases in undirected or Eulerian
state spaces, in which the complexities of real-time search algorithms span a much
smaller interval than in state spaces in general, see Figure 18. In particular, the
complexities of all analyzed real-time search algorithms are small polynomials in n
for undirected or Eulerian state spaces, even the ones of real-time search algorithms
that can be intractable, and intractable algorithms can even outperform min-LRTA*,
a real-time search algorithm that is always efficient. Thus, undirected and Eulerian
state spaces are easier to search with the studied real-time search algorithms than some
non-Eulerian state spaces such as, for example, reset state spaces and quicksand state
spaces, see Figure 19. Consequently, neither undirected nor Eulerian state spaces are
ideal testbeds for comparing (some) real-time search algorithms across a wide range of
state spaces.

While it is important to understand what our study implies, it is equally important
to understand what its limitations are. For example, one cannot compare real-time
search algorithms with each other or with off-line (traditional) search algorithms solely
on the basis of our study. This is due to the fact that we limited our investigation to
uninformed real-time search algorithms with minimal lookahead. It would be unfair to
compare real-time search algorithms with each other solely on the basis of our study,
since some algorithms are better than others in incorporating initial knowledge of the
state space (for example, in the form of heuristic values for the goal distances) or
allowing for larger lookaheads. LRTA*, for example, allows one easily to do both and,
in addition, determines shortest paths if it is run repeatedly. It would be equally unfair
to compare real-time search algorithms with off-line search algorithms on the basis of
our study, since uninformed real-time search algorithms with minimal lookahead are the
most inefficient real-time search algorithms possible. In the next section, we relax some
of our assumptions when we discuss real-time search algorithms with larger lookaheads.

9 Real-Time Search with Larger Lookaheads

Although we have limited ourselves in this report to comparing real-time search algo-
rithms with minimal lookahead, we would like to point out briefly that some of our
results also transfer to real-time search algorithms with larger lookaheads. In the fol-
lowing, we discuss both node counting, a variant of edge counting, and the original
1-step LRTA* algorithm, a variant of min-LRTA*. Both algorithms have been used in
the literature and have a larger lookahead than their relatives.

Node counting differs from edge counting in that it looks at the successor states of its
current state when choosing actions.

Node Counting

action selection step (line 3) a := one-of argmina′∈A(s)
∑

a′′∈A(succ(s,a′)) V (succ(s, a′), a′′)

value update step (line 4) V (s, a) := 1 + V (s, a)

26



1 2 3

8 4

7 6 5

Figure 20: Eight puzzle with the American goal state

The action selection step always executes the action that leads to the successor state
that has been visited the least number of times. In an actual implementation, one
would maintain only one value V (s) for each state s with V (s) =

∑

a∈A(s) V (s, a). In
this case, initially, V (s) = 0 for all s ∈ S.

Node Counting

action selection step (line 3) a := one-of argmina′∈A(s) V (succ(s, a′))

value update step (line 4) V (s) := 1 + V (s)

We compare node counting to Korf’s original LRTA* algorithm with lookahead one
(1-step LRTA*), a variant of min-LRTA*. 1-Step LRTA* is similar to node counting
in that it looks at the successor states of its current state when choosing actions, but
it has a different value update step. Initially, V (s) = 0 for all s ∈ S and a ∈ A(s).

1-Step LRTA*

action selection step (line 3) a := one-of argmina′∈A(s) V (succ(s, a′))

value update step (line 4) V (s) := 1 + V (succ(s, a))

The state values V (s) are lower bounds on gd(s). Korf showed that 1-step LRTA*
always reaches a goal state with a finite number of action executions. According to
[Koenig and Simmons, 1995], its complexity is tight at n2 − n and remains tight at
O(n2) for undirected or Eulerian state spaces.

Although we do not know of any complexity analysis for node counting in undirected
or Eulerian state spaces, it has been applied in the literature to state spaces with these
properties. For example, variations of node counting have been used independently by
[Pirzadeh and Snyder, 1990] and [Thrun, 1992] to explore unknown gridworlds (either
on their own or to accelerate reinforcement-learning methods), in both cases with great
success. Our experiments confirm these results.

• In one experiment, we compared 1-step LRTA* and node counting on an empty
gridworld of size 50 times 50. We counted the number of action executions until
the algorithms reached the upper left square, averaged over 25000 runs with
randomly broken ties. The same 25000 randomly selected start states were used
in both cases. Node counting needed, on average, 2874 action executions to reach

27



the goal state, compared to 2830 action executions needed by 1-step LRTA*. Out
of the 25000 runs, node counting outperformed 1-step LRTA* 12345 times, was
beaten 12621 times, and tied 34 times.

• We performed the same experiment on the eight puzzle with the American goal
state (a state space with 181440 states), see Figure 20. Node counting needed,
on average, 85579 action executions to reach the goal state, compared to 85746
action executions needed by 1-step LRTA*. Out of the 25000 runs, node counting
outperformed 1-step LRTA* 12512 times and was beaten 12488 times.

In both experiments, the performance differences between node counting and 1-step
LRTA* prove to be statistically insignificant for any reasonable level of significance (no
matter whether one uses a sign test or a t test). However, we can show that node count-
ing is similar to edge counting in that there exist state spaces for which its complexity
is at least exponential in n. In particular, we engineered our blocksworld domains from
Figures 3 and 4 so that node counting and edge counting behave identically. This is
the only reason why we used two-stage operators in the blocksworld domain instead of
one-stage operators. The appearance of the intermediate “pickup” operators makes it
so that a 1-step lookahead is insufficient to avoid reset traps. In particular, all theorems
for edge counting in Eulerian state spaces also apply to node counting in state spaces
that have been derived from Eulerian state spaces by replacing every directed edge with
two directed edges that are connected with an intermediate vertex. Thus, for these
search problems node counting has the same worst-case and average-case complexity
than edge counting. For example, both algorithms are efficient in Domain 1 and ex-
ponential in Domain 2 if ties are broken appropriately. This means that the variant of
the simple reset state space that is shown in Figure 4 is an example of a state space
for which node counting needs a number of action executions in order to reach the goal
state that is exponential in n if ties are broken in favor of actions that lead “upward.”
Since the complexity of 1-step LRTA* is always at most O(n3), variants of reset state
spaces and quicksand state spaces again separate real-time search algorithms that are
always efficient (here: 1-step LRTA*) from ones that can be intractable (here: node
counting).

To summarize, 1-step LRTA* and node counting are almost equally efficient on both
gridworlds and sliding tile puzzles, but reset and quicksand state spaces are able to
differentiate between them. Similar reset state spaces and quicksand state spaces can
also be constructed for real-time search algorithms with even larger lookaheads.

10 Conclusion

This report investigated whether there are properties of state spaces that make them
bad testbeds for real-time search algorithms, in an attempt to separate the inherent
complexity of a given search problem from the performance of individual real-time
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search algorithms. We made a first step in this direction by comparing several un-
informed real-time search algorithms with minimal lookahead that solve suboptimal
search problems – all algorithms had previously been used by different researchers in
different contexts. More precisely, we compared variants of LRTA* to both efficient
real-time search algorithms such as BETA, and – equally importantly – inefficient real-
time search algorithms such as edge counting (a deterministic algorithm that we showed
to share many properties with random walks). Our analysis demonstrated that one
can learn not only from comparing search algorithms to the best known ones – as it is
usually done – but also from comparing them to inefficient ones.

We demonstrated, both theoretically and experimentally, that the performance char-
acteristics of the studied real-time search algorithms can differ significantly in Eulerian
and non-Eulerian state spaces (real-time search algorithms differ in this respect from
traditional search algorithms such as the A* algorithm). We have shown that real-time
search algorithms that can be intractable in non-Eulerian state spaces (such as edge
counting) have a small complexity in Eulerian state spaces (a superset of undirected
state spaces) and can even outperform those algorithm that are tractable in all state
spaces (such as min-LRTA*, a variant of LRTA*). A more detailed summary of the
results was given in Section 8.

Our results help to explain why the reported performance of some real-time search
algorithms has been so good: they tended to be tested in Eulerian state spaces such
as traditional AI search domains (sliding tile puzzles and gridworlds, for example).
Many state spaces, however, are not undirected or Eulerian (examples include most
state spaces of applications in the field of control theory). One way to avoid uncritical
generalizations of performance figures for real-time search algorithms by non-experts
is to report experimental results not only for Eulerian state spaces, but also for non-
Eulerian state spaces. In particular, one has to use non-Eulerian state spaces to show
the superiority of a particular real-time search algorithm across a wide range of do-
mains. To this end, we presented two classes of state spaces (“reset state spaces” and
“quicksand state spaces”) that are able to separate some intractable real-time search
algorithms with minimal lookahead from tractable ones and, thus, do not suffer from
(all of) the problems of the standard test domains. Furthermore, minor variations
of these domains can also separate real-time search algorithms with larger lookaheads.
Thus, while we cannot expect any single domain to be sufficient for comparing real-time
search algorithms6, we do suggest that variations of reset state spaces and quicksand
state spaces be included in test suites for real-time search algorithms.

To summarize, our study provides a first step in the direction of understanding how
properties of state spaces influence the performance of real-time search algorithms.
In this report, we reported results for one particular property: being Eulerian. Our
current work concentrates on studying additional properties that occur in more realistic
applications, such as real-time control.

6In “quicksand state spaces,” for example, all actions have only local effects and some inefficient
real-time search algorithms might be able to perform efficiently in them.
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A The Complexity of Edge Counting

Before we can determine the complexity of edge counting in Eulerian state spaces, we
have to introduce some definitions and preliminary results. A time superscript of t
in the following theorems refers to the values of the variables immediately before the
(t+1)st value update step (line 4) of edge counting, e.g. s(t=)0 = sstart or V (t=)0(s, a) = 0
for all s ∈ S and a ∈ A(s).

Lemma 1 For all times t, s ∈ S, and a ∈ A(s), V t(s, a) ≤ mina′∈A(s) V t(s, a′) + 1.

Thus, the values of any two actions leaving a state differ by at most one.

Proof Sketch by induction on t: The theorem holds at time t = 0,
since V 0(s, a) = 0 for all s ∈ S and a ∈ A(s). Assume that the the-
orem holds at an arbitrary time t, and consider arbitrary s ∈ S and
a ∈ A(s). The only value that changes between t and t + 1 is V (st, at).
We distinguish two cases: First, s 6= st or a 6= at. Then, V t+1(s, a) =

V t(s, a)
assumption

≤ mina′∈A(s) V t(s, a′) + 1
monotonicity

≤ mina′∈A(s) V t+1(s, a′) + 1.

Second, s = st and a = at. Then, V t+1(s, a) = V t(s, a) + 1
action selection

=

mina′∈A(s) V t(s, a′) + 1
monotonicity

≤ mina′∈A(s) V t+1(s, a′) + 1. Put together,
V t+1(s, a) ≤ mina′∈A(s) V t+1(s, a′) + 1 for all s ∈ S and a ∈ A(s), and the
theorem holds at time t + 1 as well.

Lemma 2 For all times t, maxa∈A(st) V t+1(st, a) = V t+1(st, at).

Thus, the action executed last in a state has a largest value of all actions leaving the
state (after the action execution).

Proof Sketch: Consider an arbitrary time t and an arbitrary ac-
tion a ∈ A(st). We distinguish two cases: First, a 6= at. Thus,

V t+1(st, a) = V t(st, a)
Lemma 1

≤ mina′∈A(st) V t(st, a′) + 1
action selection

= V t(st, at) +
1 = V t+1(st, at). Second, a = at. Then, V t+1(st, a) = V t+1(st, at) (triv-
ially). Put together, V t+1(st, a) ≤ V t+1(st, at) for all a ∈ A(st), but equality
holds for at least one action (namely at), and the theorem follows.
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In the following, we use sets that can contain duplicate elements (bags). To distinguish
operators on bags from operators on sets, we use an additional dot. We use the following

operators: construction (description) of bags
.

{
.

}, membership of an element in a bag
.
∈ (or

.
3), equality of bags

.
=, non-strict inclusion of bags

.
⊆ (or

.
⊇), union of bags

.
∪,

intersection of bags
.
∩, and difference of bags

.

\. The operators
.
∪,

.
∩, and

.

\ have the
same precedence and are left-associative. Furthermore, we always denote a bag with
one element by the element itself.

We define the bags IN1t(s), OUT1t(s), IN2t(s), and OUT2t(s) inductively as follows
for all times t and s ∈ S:

IN10(s) :=
.

{ V 0(s′, a′) : s′ ∈ S, a′ ∈ A(s′), succ(s′, a′) = s
.

}

OUT10(s) :=
.

{ V 0(s, a) : a ∈ A(s)
.

}

IN2t(s) := IN1t(s)

OUT2t(s) :=

{

OUT1t(s)
.

\ V t(st, at)
.
∪ V t+1(st, at) for s = st

OUT1t(s) otherwise

IN1t+1(s) :=

{

IN2t(s)
.

\ V t(st, at)
.
∪ V t+1(st, at) for s = st+1

IN2t(s) otherwise

OUT1t+1(s) := OUT2t(s)

Lemma 3 For all times t and s ∈ S,

IN1t(s)
.
=

.

{ V t(s′, a′) : s′ ∈ S, a′ ∈ A(s′), succ(s′, a′) = s
.

}

OUT1t(s)
.
=

.

{ V t(s, a) : a ∈ A(s)
.

}

Thus, IN1t(s) is the bag of values of all incoming actions into state s at time t, and
OUT1t(s) is the bag of values of all outgoing actions from state s at time t. Similarly,
IN2t(s)

.
= IN1t(s) and OUT2t(s)

.
= OUT1t+1(s) for all times t and s ∈ S.

Proof Sketch by induction on t: The lemma holds at time t = 0 (by
definition). Assume that it holds at an arbitrary time t. Then, for all s ∈ S,

IN1t+1(s)
.
=

{

IN2t(s)
.

\ V t(st, at)
.
∪ V t+1(st, at) for s = st+1

IN2t(s) otherwise

.
=

{

IN1t(s)
.

\ V t(st, at)
.
∪ V t+1(st, at) for s = st+1

IN1t(s) otherwise

.
=







.

{ V t(s′, a′) : s′ ∈ S, a′ ∈ A(s′), succ(s′, a′) = s
.

} . . .
.

{ V t(s′, a′) : s′ ∈ S, a′ ∈ A(s′), succ(s′, a′) = s
.

} . . .

. . .
.

\ V t(st, at)
.
∪ V t+1(st, at) for s = st+1

. . . otherwise
.
=

.

{ V t+1(s′, a′) : s′ ∈ S, a′ ∈ A(s′), succ(s′, a′) = s
.

}
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OUT1t+1(s)
.
= OUT2t(s)

.
=

{

OUT1t(s)
.

\ V t(st, at)
.
∪ V t+1(st, at) for s = st

OUT1t(s) otherwise

.
=







.

{ V t(s, a) : a ∈ A(s)
.

}
.

\ V t(st, at)
.
∪ V t+1(st, at) for s = st

.

{ V t(s, a) : a ∈ A(s)
.

} otherwise

.
=

.

{ V t+1(s, a) : a ∈ A(s)
.

}

Thus, the theorem holds at time t + 1 as well.

To be able to keep our notation concise, we also define the bags IND1t(s), OUTD1t(s),
IND2t(s), and OUTD2t(s) for all times t and s ∈ S:

IND1t(s) := IN1t(s)
.

\ OUT1t(s)

OUTD1t(s) := OUT1t(s)
.

\ IN1t(s)

IND2t(s) := IN2t(s)
.

\ OUT2t(s)

OUTD2t(s) := OUT2t(s)
.

\ IN2t(s)

Note that IND1t(s)
.
= OUTD1t(s)

.
= ∅ iff IN1t(s)

.
= OUT1t(s), and IND2t(s)

.
=

OUTD2t(s)
.
= ∅ iff IN2t(s)

.
= OUT2t(s). We call a state s ∈ S balanced at time

t if IND1t(s)
.
= OUTD1t(s)

.
= ∅. This means that, for every state, the number of

incoming actions with value n equals the number of outgoing actions with value n for
all values n.

Lemma 4 For all times t, (A) and (B) hold, where

(A) either

(a) st = sstart, and IND1t(s)
.
= OUTD1t(s)

.
= ∅ for all s ∈ S (i.e. all states are

balanced)

or

(b) there exist states s1, s2, . . . , sk ∈ S and an integer y with y ≥ k− 1 ≥ 1, s1 = sstart,

sk = st, IND1t(s1)
.
= y− 1 and OUTD1t(s1)

.
= y, IND1t(si)

.
=

.

{ y− i, y− i+2
.

} and

OUTD1t(si)
.
=

.

{ y − i + 1, y − i + 1
.

} for i = 2, 3, . . . , k − 1, IND1t(sk)
.
= y − k + 2

and OUTD1t(sk)
.
= y − k + 1, and finally IND1t(s)

.
= OUTD1t(s)

.
= ∅ for s 6∈

{s1, s2, . . . , sk}. (Note that case (b) implies that k ≥ 2 and s1, s2, . . . , sk are pairwise
different, e.g. st = sk 6= sstart.)

(B) there exist states s̄1, s̄2, . . . , s̄k̄ ∈ S and an integer ȳ with ȳ ≥ k̄ ≥ 1, V t(st, at) =

ȳ − k̄, s̄1 = sstart, IND2t(s̄1)
.
= ȳ − 1 and OUTD2t(s̄1)

.
= ȳ, IND2t(s̄i)

.
=

.

{ ȳ −

i, ȳ − i + 2
.

} and OUTD2t(s̄i)
.
=

.

{ ȳ − i + 1, ȳ − i + 1
.

} for i = 2, 3, . . . , k̄, and finally
IND2t(s)

.
= OUTD2t(s)

.
= ∅ for s 6∈ {s̄1, s̄2, . . . , s̄k̄}. (Note that case (B) implies that

s̄1, s̄2, . . . , s̄k are pairwise different.)
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Proof Sketch by induction on t:

• (A) holds at time t = 0: s0 = sstart, and V 0(s, a) = 0 for all s ∈ S and
a ∈ A(s). Since the graph is Eulerian, (a) holds.

• Assume that (A) holds at an arbitrary time t. We show that (B)
holds at time t as well. Note that, if s 6= st, then IN2t(s)

.
= IN1t(s)

and OUT2t(s)
.
= OUT1t(s) and therefore IND2t(s)

.
= IN2t(s)

.

\

OUT2t(s)
.
= IN1t(s)

.

\ OUT1t(s)
.
= IND1t(s) and OUTD2t(s)

.
=

OUT2t(s)
.

\ IN2t(s)
.
= OUT1t(s)

.

\ IN1t(s)
.
= OUTD1t(s). We

distinguish two cases to determine IND2t(s) and OUTD2t(s) for s =
st:

– First, (a) holds at time t. We show that (B) holds at time t with
k̄ = 1, ȳ = V t(st, at) + 1, and s̄1 = sstart = st. Obviously, ȳ ≥
k̄ ≥ 1 and V t(st, at) = ȳ − k̄. Define X := IN1t(st)

.
∩ OUT1t(st).

Then, IN2t(st)
.
= IN1t(st)

.
= X

.
∪ IND1t(st)

.
= X

.
∪ ∅

.
= X

and OUT2t(st)
.
= OUT1t(st)

.

\ V t(st, at)
.
∪ V t+1(st, at)

.
= X

.
∪

OUTD1t(st)
.

\ V t(st, at)
.
∪ V t+1(st, at)

.
= X

.
∪ ∅

.

\ V t(st, at)
.
∪

V t+1(st, at)
.
= X

.

\ V t(st, at)
.
∪ V t+1(st, at). Since V t(st, at)

.
∈

OUT1t(st)
.
= X

.
∪ OUTD1t(st)

.
= X

.
∪ ∅

.
= X and V t+1(st, at) 6=

V t(st, at), it follows that IND2t(s̄1)
.
= IND2t(st)

.
= IN2t(st)

.

\

OUT2t(st)
.
= X

.

\ (X
.

\ V t(st, at)
.
∪ V t+1(st, at))

.
= V t(st, at)

.
=

ȳ − k̄
.
= ȳ − 1. Also, OUTD2t(s̄1)

.
= OUTD2t(st)

.
= OUT2t(st)

.

\

IN2t(st)
.
= (X

.

\ V t(st, at)
.
∪ V t+1(st, at))

.

\ X
.
= V t+1(st, at)

.
=

V t(st, at)+1
.
= ȳ− k̄+1

.
= ȳ. For s 6= s̄1 (i.e. s 6= st), IND2t(s)

.
=

IND1t(s)
.
= ∅ and OUTD2t(s)

.
= OUTD1t(s)

.
= ∅.

– Second, (b) holds at time t. Then, there exists an action
a ∈ A(st) with V t(st, a) = y − k + 1, because OUT1t(st)

.
=

OUT1t(sk)
.
⊇ OUTD1t(sk)

.
= y−k +1. Then, y−k = V t(st, a)−

1
Lemma 1

≤ mina′∈A(st) V t(st, a′)
action selection

= V t(st, at)
action selection

=
mina′∈A(st) V t(st, a′) ≤ V t(st, a) = y − k + 1. Thus, either
V t(st, at) = y − k or V t(st, at) = y − k + 1. Consequently, we
distinguish two subcases:

∗ First, V t(st, at) = y − k. We show that (B) holds at time t
with k̄ = k, ȳ = y, and s̄i = si for 1 ≤ i ≤ k̄ = k. Obviously,
0 ≤ V t(st, at)

assumption
= y − k = ȳ − k̄ and thus ȳ ≥ k̄ = k ≥

2 ≥ 1, which implies ȳ ≥ k̄ ≥ 1. Furthermore, s̄1 = s1 =
sstart. Define X := IN1t(st)

.
∩ OUT1t(st). Then, IN2t(st)

.
=

IN1t(st)
.
= X

.
∪ IND1t(st)

.
= X

.
∪ IND1t(sk)

.
= X

.
∪ y−k+

2 and OUT2t(st)
.
= OUT1t(st)

.

\ V t(st, at)
.
∪ V t+1(st, at)

.
=

X
.
∪ OUTD1t(st)

.

\ y − k
.
∪ y − k + 1

.
= X

.
∪ OUTD1t(sk)

.

\

y − k
.
∪ y − k + 1

.
= X

.
∪ y − k + 1

.

\ y − k
.
∪ y − k + 1

.
=

X
.

\ y − k
.
∪

.

{ y − k + 1, y − k + 1
.

}. Note that y − k
.
∈ X,
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because V t(st, at)
assumption

= y−k and thus y−k
.
∈ OUT1t(st)

.
=

X
.
∪ OUTD1t(st)

.
= X

.
∪ OUTD1t(sk)

.
= X

.
∪ y − k +

1. Consequently, IND2t(st)
.
= IN2t(st)

.

\ OUT2t(st)
.
=

.

{

y − k, y − k + 2
.

}
.
=

.

{ ȳ − k̄, ȳ − k̄ + 2
.

} and OUTD2t(st)
.
=

OUT2t(st)
.

\ IN2t(st)
.
=

.

{ y − k + 1, y − k + 1
.

}
.
=

.

{ ȳ − k̄ +

1, ȳ − k̄ + 1
.

} for st = sk = s̄k̄. It is easy to show that the
theorem also holds for s 6= st, using IND2t(s)

.
= IND1t(s)

and OUTD2t(s)
.
= OUTD1t(s) together with ȳ = y.

∗ Second, V t(st, at) = y − k + 1. We show that (B) holds at
time t with k̄ = k − 1, ȳ = y, and s̄i = si for 1 ≤ i ≤
k̄ = k − 1. Obviously, ȳ ≥ k̄ ≥ 1 (since y ≥ k − 1 ≥ 1),

V t(st, at)
assumption

= y−k+1 = ȳ−k̄, and s̄1 = s1 = sstart. Define
X := IN1t(st)

.
∩ OUT1t(st). Then, IN2t(st)

.
= IN1t(st)

.
=

X
.
∪ IND1t(st)

.
= X

.
∪ IND1t(sk)

.
= X

.
∪ y − k + 2

and OUT2t(st)
.
= OUT1t(st)

.

\ V t(st, at)
.
∪ V t+1(st, at)

.
=

OUT1t(sk)
.

\ y − k + 1
.
∪ y − k + 2

.
= X

.
∪ OUTD1t(sk)

.

\

y − k + 1
.
∪ y − k + 2

.
= X

.
∪ y − k + 1

.

\ y − k + 1
.
∪

y − k + 2
.
= X

.
∪ y − k + 2. Consequently, IND2t(st)

.
=

IN2t(st)
.

\ OUT2t(st)
.
= ∅ and OUTD2t(st)

.
= OUT2t(st)

.

\
IN2t(st)

.
= ∅ for st = sk 6∈ {s1, . . . , sk−1} = {s̄1, . . . , s̄k̄}. It

is easy to show that the theorem also holds for s 6= st, us-
ing IND2t(s)

.
= IND1t(s) and OUTD2t(s)

.
= OUTD1t(s)

together with ȳ = y.

• Assume that (B) holds at an arbitrary time t. We show that (A)
holds at time t + 1. Note that, if s 6= st+1, then IN1t+1(s)

.
=

IN2t(s) and OUT1t+1(s)
.
= OUT2t(s) and therefore IND1t+1(s)

.
=

IN1t+1(s)
.

\ OUT1t+1(s)
.
= IN2t(s)

.

\ OUT2t(s)
.
= IND2t(s) and

OUTD1t+1(s)
.
= OUT1t+1(s)

.

\ IN1t+1(s)
.
= OUT2t(s)

.

\ IN2t(s)
.
=

OUTD2t(s). We distinguish two cases to determine IND1t+1(s) and
OUTD1t+1(s) for s = st+1:

– First, st+1 6∈ {s̄1, s̄2, . . . , s̄k̄}. We show that (b) holds at time t+1
with k = k̄+1, y = ȳ, si = s̄i for 1 ≤ i ≤ k−1 = k̄, and sk = st+1.
Obviously, y ≥ k − 1 ≥ 1 (since y = ȳ ≥ k̄ = k − 1 = k̄ ≥ 1)
and s1 = s̄1 = sstart. Define X := IN2t(st+1)

.
∩ OUT2t(st+1).

Then, IN1t+1(st+1)
.
= IN2t(st+1)

.

\ V t(st, at)
.
∪ V t+1(st, at)

.
=

IN2t(st+1)
.

\ ȳ − k̄
.
∪ ȳ − k̄ + 1

.
= X

.
∪ IND2t(st+1)

.

\ ȳ − k̄
.
∪

ȳ− k̄ +1
.
= X

.
∪ ∅

.

\ ȳ− k̄
.
∪ ȳ− k̄ +1

.
= X

.

\ ȳ− k̄
.
∪ ȳ− k̄ +1 and

OUT1t+1(st+1)
.
= OUT2t(st+1)

.
= X

.
∪ OUTD2t(st+1)

.
= X

.
∪

∅
.
= X. Note that ȳ − k̄

.
∈ X, because V t(st, at) = ȳ − k̄ and

thus ȳ − k̄
.
∈ IN1t(st+1)

.
= IN2t(st+1)

.
= X

.
∪ IND2t(st+1)

.
=

X
.
∪ ∅

.
= X. Consequently, IND1t+1(st+1)

.
= IN1t+1(st+1)

.

\
OUT1t+1(st+1)

.
= ȳ − k̄ + 1

.
= y − k + 2 and OUTD1t+1(st+1)

.
=
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OUT1t+1(st+1)
.

\ IN1t+1(st+1)
.
= ȳ − k̄

.
= y − k + 1 for st+1 =

sk. It is easy to show that the theorem also holds for s 6= st+1,
using IND1t+1(s)

.
= IND2t(s) and OUTD1t+1(s)

.
= OUTD2t(s)

together with y = ȳ.

– Second, st+1 ∈ {s̄1, s̄2, . . . , s̄k̄}. We show that st+1 = s̄k̄ by con-
tradiction. Assume that st+1 = s̄i for some i < k̄ and define
X := IN2t(st+1)

.
∩ OUT2t(st+1). Then, there exists an action

a ∈ A(st+1) with V t+1(st+1, a) = ȳ − k̄, because V t(st, at) = ȳ − k̄
and thus ȳ − k̄

.
∈ IN1t(st+1)

.
= IN2t(st+1)

.
= X

.
∪ IND2t(st+1);

it must be that ȳ − k̄
.
∈ X

.
⊆ OUT2t(st+1)

.
= OUT1t+1(st+1),

since ȳ − k̄ 6
.
∈ IND2t(s̄i) = IND2t(st+1). There also ex-

ists an action a′ ∈ A(st+1) with V t+1(st+1, a′) = ȳ − i + 1,

because OUT1t+1(st+1)
.
= OUT2t(st+1)

.
⊇ OUTD2t(st+1)

.
=

OUTD2t(s̄i)
.
3 ȳ− i+1. Put together, V t+1(st+1, a′) = ȳ− i+1 >

ȳ − k̄ + 1 = V t+1(st+1, a) + 1 (since i < k̄). This, however, is
a contradiction to Lemma 1, which asserts that V t+1(st+1, a′) ≤
mina′′∈A(st+1) V t+1(st+1, a′′)+1 ≤ V t+1(st+1, a)+1. It follows that
st+1 = s̄k̄. We distinguish two subcases:

∗ First, k̄ = 1. We show that (a) holds at time t + 1. Ob-
viously, st+1 = s̄k̄ = s̄1 = sstart. Define X := IN2t(st+1)

.
∩

OUT2t(st+1). Then, IN1t+1(st+1)
.
= IN2t(st+1)

.

\ V t(st, at)
.
∪

V t+1(st, at)
.
= IN2t(st+1)

.

\ ȳ − k̄
.
∪ ȳ − k̄ + 1

.
= X ∪

IND2t(st+1)
.

\ ȳ − 1
.
∪ ȳ

.
= X ∪ IND2t(s̄1)

.

\ ȳ − 1
.
∪ ȳ

.
=

X
.
∪ ȳ − 1

.

\ ȳ − 1
.
∪ ȳ

.
= X

.
∪ ȳ and OUT1t+1(st+1)

.
=

OUT2t(st+1)
.
= X

.
∪ OUTD2t(st+1)

.
= X

.
∪ OUTD2t(s̄1)

.
=

X
.
∪ ȳ. Consequently, IND1t+1(st+1)

.
= IN1t+1(st+1)

.

\

OUT1t+1(st+1)
.
= ∅ and OUTD1t+1(st+1)

.
= OUT1t+1(st+1)

.

\
IN1t+1(st+1)

.
= ∅ for st+1 = s̄1. For s 6= st+1, IND1t+1(s)

.
=

IND2t(s)
.
= ∅ and OUTD1t+1(s)

.
= OUTD2t(s)

.
= ∅.

∗ Second, k̄ > 1. We show that (b) holds at time t + 1 with
k = k̄, y = ȳ, and si = s̄i for 1 ≤ i ≤ k = k̄. Obviously,
y ≥ k− 1 ≥ 1 (since y = ȳ ≥ k̄ = k = k̄ > 1), s1 = s̄1 = sstart,
and sk = s̄k̄ = st+1. Define X := IN2t(st+1)

.
∩ OUT2t(st+1).

Then, IN1t+1(st+1)
.
= IN2t(st+1)

.

\ V t(st, at)
.
∪ V t+1(st, at)

.
=

IN2t(st+1)
.

\ ȳ − k̄
.
∪ ȳ − k̄ + 1

.
= X

.
∪ IND2t(st+1)

.

\ ȳ − k̄
.
∪

ȳ − k̄ + 1
.
= X

.
∪ IND2t(s̄k̄)

.

\ ȳ − k̄
.
∪ ȳ − k̄ + 1

.
= X

.
∪

.

{

ȳ− k̄, ȳ− k̄+2
.

}
.

\ ȳ− k̄
.
∪ ȳ− k̄+1

.
= X

.
∪

.

{ ȳ− k̄+1, ȳ− k̄+2
.

}
and OUT1t+1(st+1)

.
= OUT2t(st+1)

.
= X

.
∪ OUTD2t(st+1)

.
=

X
.
∪ OUTD2t(s̄k̄)

.
= X

.
∪

.

{ ȳ − k̄ + 1, ȳ − k̄ + 1
.

}. Conse-

quently, IND1t+1(st+1)
.
= IN1t+1(st+1)

.

\ OUT1t+1(st+1)
.
=

ȳ− k̄−2
.
= y−k+2 and OUTD1t+1(st+1)

.
= OUT1t+1(st+1)

.

\
IN1t+1(st+1)

.
= ȳ − k̄ + 1

.
= y − k + 1 for st+1 = s̄k̄ (note
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that st+1 6= s̄1). It is easy to show that the theorem also
holds for s 6= st+1, using IND1t+1(s)

.
= IND2t(s) and

OUTD1t+1(s)
.
= OUTD2t(s) together with y = ȳ.

Lemma 5 For all times t, s ∈ S, and a ∈ A(s), V t(s, a) ≤ maxa′∈A(sstart) V t(sstart, a
′).

Thus, there is always an action that leaves the start state and has a largest value of all
actions.

Proof Sketch by induction on t: The lemma holds at time t = 0, since
V 0(s, a) = 0 for all s ∈ S and a ∈ A(s). Assume that the lemma holds at
an arbitrary time t, and consider arbitrary s ∈ S and a ∈ A(s). We distin-

guish two cases: First, s 6= st or a 6= at. Then, V t+1(s, a) = V t(s, a)
assumption

≤

maxa′∈A(sstart) V t(sstart, a
′)

monotonicity

≤ maxa′∈A(sstart) V t+1(sstart, a
′). Second,

s = st and a = at. We distinguish two subcases: First, s = sstart. Then,
V t+1(s, a) = V t+1(sstart, a) ≤ maxa′∈A(sstart) V t+1(sstart, a

′) (trivially). Sec-
ond, s 6= sstart. Then, consider the variables from Lemma 4(B) at time
t. There exists an action a′ ∈ A(sstart) with V t+1(sstart, a

′) = ȳ, be-

cause OUT1t+1(sstart)
.
= OUT2t(sstart)

.
= OUT2t(s̄1)

.
⊇ OUTD2t(s̄1)

.
= ȳ.

Then, V t+1(s, a) = V t+1(st, at) = V t(st, at) + 1 = (ȳ − k̄) + 1
k̄ ≥ 1

≤ ȳ =
V t+1(sstart, a

′) ≤ maxa′′∈A(sstart) V t+1(sstart, a
′′), and the lemma holds at

time t + 1 as well.

Theorem 9 The complexity of edge counting is at most e × gd(sstart) − gd(sstart)
2

action executions in undirected or Eulerian state spaces.

Comment: The proof of Theorem 8 shows that this bound is tight.

Proof Sketch: If sstart ∈ G, then gd(sstart) = 0 and the theorem holds,
since the goal state is reached without any action executions. Assume that
sstart 6∈ G. According to Theorem 4, edge counting does reach a goal state
eventually. In the following, we analyze how many action executions it
requires at most.

Consider the latest time t with st = sstart. According to Lemma 4(a), all
states (including sstart) are balanced at time t. Now consider a shortest path
from sstart to a closest goal state. The last action on that path has never
been executed and thus has value 0 at time t. Consequently, the largest
value of any action that leaves the last non-goal state s on the path is 0 if no
other action leaves s, otherwise – according to Lemma 1 – the largest value
of any action leaving s is at most 1. Since s is balanced at time t, the largest
value of any action entering s is 0 in the former case and at most 1 in the
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latter case. Thus, the value of the action that precedes the last action on the
path is 0 or at most 1, respectively, etc. Finally, the value V t(sstart, a) of the
first action a on the path is at most x where x is the number of intermediate
states on the path (i.e. not including the start and goal state) that have
two or more outgoing actions. V t(sstart, a) ≤ x ≤ gd(sstart)−1, because the
path has length gd(sstart) and therefore gd(sstart) − 1 intermediate states.
V t(sstart, a) ≤ x ≤ e − gd(sstart) − 1, because each of the gd(sstart) + 1
states on the path (including the start and goal state) has at least one
outgoing action. Each state with two or more outgoing actions needs at
least one more action of the remaining e − gd(sstart) − 1 actions. Put
together, mina′∈A(sstart) V t(sstart, a

′) ≤ V t(sstart, a) ≤ x ≤ min(gd(sstart) −
1, e − gd(sstart) − 1).

Now consider the time t′ > t when edge counting reaches a goal state
for the first time. According to Lemma 4(b), there exist pairwise different
states s1, s2, . . . , sk ∈ S with s1 = sstart, sk = st′ , OUTD1t′(s1)

.
= y,

OUTD1t′(si)
.
=

.

{ y − i + 1, y − i + 1
.

} for i = 2, 3, . . . , k − 1, and
OUTD1t′(sk)

.
= y − k + 1. The values k (with k > 1) and y are cal-

culated as follows: At time t′, all actions entering and leaving the reached
goal state st′ have value 0, with the exception of the action with which it was
entered, which has value 1. Thus, 0

.
= OUTD1t′(st′)

.
= OUTD1t′(sk)

.
=

y − k + 1 and consequently k = y + 1. Similarly, y
.
= OUTD1t′(s1)

.
=

OUTD1t′(sstart)
.
= OUTD1t+1(sstart)

.
= V t+1(sstart, a

t) and consequently
y = V t+1(sstart, a

t), since sstart was balanced at time t and edge counting
never entered sstart again after time t. y = V t+1(sstart, a

t) = V t+1(st, at) =

V t(st, at)+1 = V t(sstart, a
t)+1 ≤ mina′∈A(sstart) V t(sstart, a

′)+1
previous paragraph

≤
min(gd(sstart) − 1, e − gd(sstart) − 1) + 1 = min(gd(sstart), e − gd(sstart)).

To summarize, at time t′, there is one action (in state s1) with value y,
there are two actions (in state si) with value y−i+1 for i = 2, 3, . . . , k−1 =
y, and there is one action (in state sk = sy+1) with value y-k+1=0. Since the
states s1, s2, . . . , sk are pairwise different, this accounts for 2(y−1)+2 = 2y
actions. The values of the remaining e − 2y actions can be at most (see
Lemma 5) maxa′∈A(sstart) V t′(sstart, a

′) = maxa′∈A(sstart) V t+1(sstart, a
′) =

maxa′∈A(st) V t+1(st, a′)
Lemma 2

= V t+1(st, at) = V t+1(sstart, a
t) = y at time t′,

since edge counting never entered sstart again after time t. It follows that
the sum of the values of all actions at time t′ is at most

y + 2
∑y

i=2(y − i + 1) + 0 + (e − 2y)y = e × y − y2

This expression is maximized for y = e/2. However, there is the re-
striction on y that y ≤ min(gd(sstart), e − gd(sstart)). If gd(sstart) ≤ e/2,
then gd(sstart) ≤ e/2 ≤ e − gd(sstart) and y = gd(sstart) is optimal. If
gd(sstart) ≥ e/2, then e−gd(sstart) ≤ e/2 ≤ gd(sstart) and y = e−gd(sstart)
is optimal. In both cases, the sum of the values of all actions at time t′ is at
most e× y − y2 ≤ e × gd(sstart)− gd(sstart)

2. The theorem follows because
the total number of action executions corresponds to the sum of the values
of all actions at time t′.
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