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Fast Replanning for Navigation in Unknown Terrain
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Abstract— Mobile robots often operate in domains that are
only incompletely known, for example, when they have to
move from given start coordinates to given goal coordinates
in unknown terrain. In this case, they need to be able to
replan quickly as their knowledge of the terrain changes. Stentz’
Focussed Dynamic A* (D*) is a heuristic search method that
repeatedly determines a shortest path from the current robot
coordinates to the goal coordinates while the robot moves along
the path. It is able to replan faster than planning from scratch
since it modifies its previous search results locally. Consequently,
it has been extensively used in mobile robotics. In this article, we
introduce an alternative to D* that determines the same paths
and thus moves the robot in the same way but is algorithmically
different. D* Lite is simple, can be rigorously analyzed, extendible
in multiple ways, and is at least as efficient as D*. We believe
that our results will make D*-like replanning methods even
more popular and enable robotics researchers to adapt them
to additional applications.

Index Terms— Sensor-Based Path Planning, Replanning, Nav-
igation in Unknown Terrain, D* (Dynamic A*), A*, Search,
Planning with the Freespace Assumption

I. INTRODUCTION

Mobile robots often operate in domains that are only in-
completely known. In this article, we study a goal-directed
navigation problem in unknown terrain where a mobile robot
has to move from its current coordinates to given goal
coordinates. Robotics researchers have investigated various
navigation strategies to solve it, including the well-known
bug algorithms [1]. In this paper, we study the following
navigation strategy: The robot always plans a shortest path
from its current coordinates to the goal coordinates under the
assumption that unknown terrain is traversable. (It can utilize
initial knowledge of the terrain in case it is available.) If it
observes obstacles as it follows this path, it enters them into its
map and then repeats the procedure, until it eventually reaches
the goal coordinates or all paths to them are untraversable.
This navigation strategy is an example of sensor-based motion
planning [2] [3]. If we model the navigation problem as a
graph-traversal problem on an eight-connected grid with edges
that are either traversable (with cost one) or untraversable, it
must terminate because the robot either follows the planned
path to the goal vertex or increases its knowledge about the
true edge costs, which can happen only once for each edge.

To implement the navigation strategy, the robot needs to
replan a shortest path from its current vertex to the goal vertex
whenever it detects that its current path is untraversable. The
robot could use conventional graph-search methods but this
is inefficient since most edge costs do not change between
replanning episodes [4]. The most popular solution to this
problem is Focussed Dynamic A* (D*) [5] since it combines
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Fig. 1. Illustration of the Navigation Strategy.

the efficiency of heuristic and incremental searches, yet — dif-
ferent from real-time heuristic search methods [6] — still finds
shortest paths. It achieves a large speedup over repeated A*
[7] searches by modifying previous search results locally. D*
has been extensively used on real robots. This includes indoor
Nomad robots [8] as well as outdoor HMMWYVs and the UGV
Demo Il vehicles as part of the DARPA Unmanned Ground
Vehicle program [9]. It is currently also being integrated into
Mars Rover prototypes and tactical mobile robot prototypes for
urban reconnaissance [10] [11] [12]. D* is also used as part
of other software, including the GRAMMPS mission planner
for multiple robots [13]. Finally, versions of D* have been
used to implement greedy mapping [14], a particular mapping
method [8], and the parti-game method [15], a particular
reinforcement-learning method for control [16].

However, D* is complex and thus hard to understand,
analyze, and extend. For example, while D* has been widely
used as a black-box method, it has not been extended by other
researchers. Building on our Lifelong Planning A* (LPA*)
method [17], we therefore present D* Lite, a novel replanning
method that determines the same paths as D* and thus moves
the robot in the same way but is algorithmically different.
LPA* is an incremental version of A* that has well-understood
properties. For example, we can prove theorems about its
similarity to A* and its efficiency. These properties allow us
to extend it easily, for example, to use inadmissible heuristics
and different tie-breaking criteria to gain efficiency. We apply
LPA* to a new domain in this paper, namely to goal-directed
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(Grey cells are cells with changed goal distances.)

Fig. 2. Simple Example (Part 1).

navigation in unknown terrain. To this end, we introduce D*
Lite. D* Lite extends LPA* to the case where the goal of
the search changes between replanning episodes. Since D*
Lite is based on LPA*, it inherits all of the properties of
LPA* and can be extended in the same way as LPA*. It is
shorter than D*, uses only one tie-breaking criterion when
comparing priorities which simplifies the maintenance of the
priorities, and does not need nested if-statements with complex
conditions that occupy up to three lines each which simplifies
the analysis of the program flow. Yet, our experiments show
that D* Lite is at least as efficient as D*. We also provide a
mathematically rigorous analysis of D* Lite, probably the most
rigorous analysis of any incremental heuristic search method
that has been applied to robot navigation in unknown terrain.
In Section Il, we motivate the ideas behind D* Lite. In
Section 111, we introduce LPA* and describe how it works. In
Section IV, we use LPA* to develop two versions of D* Lite
and describe how they can be optimized. In Section V, we
illustrate the operation of the two versions of D* Lite with an
example. In Section VI, we present experimental results that
compare D* Lite against several other search methods.

Il. MOTIVATION

Consider a robot-navigation task in unknown terrain, where
the robot always observes which of its eight adjacent cells are
traversable and then moves with cost one to one of them.
The robot starts at the start cell and has to move to the
goal cell. It always computes a shortest path from its current
cell to the goal cell under the assumption that cells with
unknown traversability status are traversable. It then follows
this path until it either reaches the goal cell, in which case it
stops successfully, or observes additional untraversable cells,
in which case it recomputes a shortest path from its current cell
to the goal cell. Figure 1 illustrates this navigation strategy.

Figure 1 (top) shows the terrain in which the robot has to
move from cell B1 to cell E3, and Figure 1 (bottom) shows,
before each movement of the robot, the untraversable cells
that it knows about together with the path that it attempts to
follow. White cells are known to be traversable, black cells
are known to be untraversable, and grey cells have unknown
traversability. The robot starts in cell B1. Since all costs are
one, the shortest path from its current cell B1 to the goal cell
E3 seems to be via cells C1 and D2. The robot then moves
to cell C1 and discovers that cell D2 is untraversable. Now,
the shortest path from the current cell C1 to the goal cell E3
seems to be via cells D1 and E2. The robot then follows this
path to the goal cell.

Figure 2 shows the beginning of a larger example. It shows
the goal distances of all traversable cells and the shortest paths
both before and after the robot has moved along the path
and discovered the first untraversable cell it did not know
about. The goal distances of grey cells have changed. The
goal distances are important because one can easily determine
a shortest path from the current cell of the robot to the goal
cell by greedily decreasing the goal distances once the goal
distances have been computed. Notice that the goal distances
of only about 15 percent of the cells have changed, and most
of the changed goal distances are irrelevant for recalculating a
shortest path from the current cell of the robot to the goal cell.
Thus, one can efficiently recalculate a shortest path from the
current cell of the robot to the goal cell by recalculating only
those goal distances that have changed or not been calculated
before and are relevant for recalculating the shortest path. This
is what D* Lite does. The challenge is to identify these cells
efficiently.

I11. LIFELONG PLANNING A*

Lifelong Planning A* (LPA*) [17] generalizes both A* [7]
and a version of DynamicSWSF-FP [18]. It is an incremental
heuristic search method that repeatedly determines shortest
paths between two given vertices as the edge costs of a graph
change. An incremental search tends to recalculate only those
start distances (that is, distances from the start vertex to a
vertex) that have changed or have not been calculated before
[19], and a heuristic search tends to recalculate only those start
distances that are relevant for recalculating a shortest path from
the start vertex to the goal vertex [7]. LPA* thus recalculates
only very few start distances. In the following, we describe
LPA* briefly. A more detailed and formal description can be
found in [20].

A. Lifelong Planning A*: Notation

We use the following notation to describe LPA*: S denotes
the finite set of vertices of the graph. Suce(s) C S denotes
the set of successors of vertex s € S in the graph. Similarly,
Pred(s) C S denotes the set of predecessors of vertex s € S
in the graph. 0 < ¢(s,s’) < oo denotes the cost of moving
from vertex s to vertex s’ € Succ(s). LPA* always determines
a shortest path from a given start vertex s, € S to a given
goal vertex sgoq: € S, knowing both the topology of the graph
and the current edge costs.
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The pseudocode uses the following functions to manage the priority queue: U.Top()
returns a vertex with the smallest priority of all vertices in priority queue U. U.TopKey()
returns the smallest priority of all vertices in priority queue U. (If U is empty, then
U.TopKey() returns [oo; oo].) U.Pop() deletes the vertex with the smallest priority in
priority queue U and returns the vertex. U.Insert(s, k) inserts vertex s into priority
queue U with priority k. U.Update(s, k) changes the priority of vertex s in priority
queue U to k. (It does nothing if the current priority of vertex s already equals k.)
Finally, U.Remove(s) removes vertex s from priority queue U.

procedure CalcKey(s)

{01} return [min(g(s), rhs(s)) + h(s, Sgoar); min(g(s), rhs(s))];
procedure Initialize()

{02} U = 0;

{03} for all s € S rhs(s) = g(s) = oo;

{04} rhs(sstart) = 0;

{05} U.Insert(ss¢art, CalcKey(sstart));

procedure UpdateVertex(u)

{06} if (u # Ssta'r't) rhs(“) = mins’ePred(u) (g(‘s’) + 5(5/7 u)),
{07} if (u € U) U.Remove(u);

{08} if (g(u) # rhs(u)) U.Insert(u, CalcKey(u));

procedure ComputeShortestPath ()

{09} while (U.TopKey()<CalcKey(sgoar) OR 7hs(Sgoar) # 9(Sgoat))

{10}  w = U.Pop();

{11}  if (g(u) > rhs(u))

{12} g(u) = rhs(u);

{13} for all s € Succ(u) UpdateVertex(s);

{14}  else

{15} g(u) = oo;

{16} for all s € Succ(u) U {u} UpdateVertex(s);

procedure Main()
{17} Initialize();
{18} forever

{19}  ComputeShortestPath();

{20}  Wait for changes in edge costs;

{21}  for all directed edges (u, v) with changed edge costs
{22} Update the edge cost c(u, v);

{23} UpdateVertex(v);

Fig. 3. Lifelong Planning A*.

B. Lifelong Planning A*: Local Consistency

LPA* maintains two Kinds of estimates of the start distance
g*(s) of each vertex s: a g-value g(s) and an rhs-value (that
is, right-hand side value, a term borrowed from [18]) rhs(s).
The rhs-value of a vertex is based on the g-values of its
predecessors and thus potentially better informed than them.
It always satisfies the following relationship (Invariant 1) [21]:

if s = Sstart
otherwise. @

rhs(s) = { 0

mins’ePred(s) (g(s,) + 0(8,7 5))

A vertex s is called locally consistent if g(s) = rhs(s),
otherwise it is called locally inconsistent. If all vertices are
locally consistent then all of their g-values are equal to their
respective start distances, which allows one to find shortest
paths from the start vertex to any vertex. However, LPA* does
not make every vertex locally consistent after some of the edge
costs have changed. Instead, it uses heuristics h(s, Sgoa1) tO
focus the search and updates only the g-values that are relevant
for computing a shortest path from the start to the goal vertex.
h(s,s") approximates the distance between vertex s and s’.
The heuristics need to be nonnegative and (forward) consistent
[7], that is, obey the triangle inequality A (sgoal; Sgoai) = 0 and
h(s, Sgoal) < c(s,8") + h(s', sgoar) Tor all vertices s € S and
s" € Succ(s). LPA* computes these heuristics as needed. It
only needs the heuristics h(s, sgoat).

C. Lifedlong Planning A*: The Priority Queue

LPA* maintains a priority queue that always contains ex-
actly the locally inconsistent vertices (Invariant 2) [21]. These
are the vertices whose g-values LPA* potentially needs to
change to make them locally consistent. The key k(s) of
vertex s in the priority queue is a vector with two components:
k(s) = [ki(s); ka(s)], where k1(s) = min(g(s), rhs(s)) +
h(s, Sgoar) and ka(s) = min(g(s),rhs(s)) {1} (Invariant
3). (Numbers in curly brackets refer to line numbers in the
pseudo code.) Keys are compared according to a lexicographic
ordering.

D. Lifelong Planning A*: The Method

LPA* is shown in Figure 3. Its main function Main()
first calls Initialize() to initialize the search problem {17}.
Initialize() sets the initial g-values of all vertices to infinity and
sets their rhs-values according to Equation 1 {03-04}. Thus,
initially the start vertex is the only locally inconsistent vertex
and is inserted into the otherwise empty priority queue {05}.
Note that, in an actual implementation, Initialize() only needs
to initialize a vertex when it encounters it during the search
and thus does not need to initialize all vertices up front.

After calling Initialize(), Main() calls ComputeShortest-
Path() to find a shortest path from the start to the goal vertex.
ComputeShortestPath() repeatedly recalculates the g-values of
locally inconsistent vertices (“expands the vertices”) in non-
decreasing order of their keys {10-16}. A locally inconsistent
vertex s is called locally overconsistent iff g(s) > rhs(s).
When ComputeShortestPath() expands a locally overconsistent
vertex {12-13}, then it holds that rhs(s) = g¢*(s), which
implies that k(s) = [f(s);g*(s)], where f(s) = g*(s) +
h(s, sgoal). During the expansion of the vertex, ComputeShort-
estPath() sets the g-value of the vertex to its rhs-value and
thus its start distance {12}, which is the desired value and
also makes the vertex locally consistent. Its g-value then no
longer changes until ComputeShortestPath() terminates [21]. A
locally inconsistent vertex s is called locally underconsistent
iff g(s) < rhs(s). When ComputeShortestPath() expands a
locally underconsistent vertex {15-16}, then it simply sets the
g-value of the vertex to infinity {15}. This makes the vertex
either locally consistent or overconsistent. If the expanded
vertex was locally overconsistent, then the change of its g-
value can affect the local consistency of its successors {13}.
Similarly, if the expanded vertex was locally underconsistent,
then it and its successors can be affected {16}. To maintain
Invariants 1-3, ComputeShortestPath() therefore updates the
rhs-values of these vertices, checks their local consistency,
and adds them to or removes them from the priority queue as
needed {06-08}. LPA* expands vertices until the goal vertex
is locally consistent and the key of the vertex to expand next
is no smaller than the key of the goal vertex. If g(sgoar) = 00
after the search, then there is no finite-cost path from the start
to the goal vertex. Otherwise, one can find a shortest path
from the start to the goal vertex as follows: One always moves
from the current vertex s, starting at the goal vertex, to any
predecessor s’ that minimizes g(s") + ¢(s’,s) until the start
vertex is reached (ties can be broken arbitrarily) [21]. This
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way, one traverses a shortest path from the start to the goal
vertex backward.

After calling ComputeShortestPath(), Main() waits for
changes in edge costs {20}. To maintain Invariants 1-3 if
some edge costs have changed, it calls UpdateVertex() {23}
to update the rhs-values and keys of the vertices potentially
affected by the changed edge costs as well as their membership
in the priority queue if they become locally consistent or
inconsistent, and finally recalculates a shortest path {19} by
calling ComputeShortestPath() again, and iterates.

IV. D* LITE

So far, we have described our LPA*, that repeatedly de-
termines shortest paths between the start vertex and the goal
vertex as the edge costs of a graph change. Its first search
is identical to an A* search but subsequent searches reuse
information from previous searches. We now use LPA* to
develop D* Lite [22], that repeatedly determines shortest
paths between the current vertex of the robot and the goal
vertex as the edge costs of a graph change while the robot
moves towards the goal vertex. D* Lite does not make any
assumptions about how the edge costs change, whether they
go up or down, whether they change close to the current vertex
of the robot or far away from it, or whether they change
in the world or only because the knowledge of the robot
changes. The goal-directed navigation problem in unknown
terrain then is a special case of this problem, where the graph is
an eight-connected grid whose edge costs are initially one and
change to infinity when the robot discovers that they cannot
be traversed. We first describe a simple version of D* Lite and
then a more sophisticated version.

A. The First Version of D* Lite

We have already argued that many goal distances remain
unchanged as the robot moves to the goal vertex and observes
obstacles in the process. Thus, we can use a version of LPA*
for the goal-directed navigation problem in unknown terrain.
The version presented in Figure 3 searches from the start
vertex to the goal vertex. Its g-values are estimates of the start
distances. We thus need to switch the search direction of LPA*
so that the g-values are estimates of the goal distances. Such
a version of LPA* searches from the goal vertex to the start
vertex and can be derived by reversing all edges of the original
graph and exchanging its start and goal vertex. The heuristics
h(s,s") now need to be nonnegative and backward consis-
tentv that iS, Obey h(sstartasstart> =0 and h(sstartas) S
h(Sstart, s') + c(s', s) for all vertices s € S and s" € Pred(s).
More generally, since the robot moves and thus changes the
start vertex, the heuristics needs to satisfy this property for all
Sstart € S. If g(Sstart) = 0o after the search, then there is no
finite-cost path from the start to the goal vertex. Otherwise,
one can follow a shortest path from the start to the goal vertex
by always moving from the current vertex s, starting at the
start vertex, to any successor s’ that minimizes c(s,s’) +
g(s") until the goal vertex is reached (ties can be broken
arbitrarily). To solve the goal-directed navigation problem in
unknown terrain, the CalcKey(), Initialize(), UpdateVertex(),

procedure CalcKey(s)

{01’} return [min(g(s), rhs(s)) + h(Sstart,s); min(g(s), rhs(s))];
procedure Initialize()

{02’} U = 0;

{03’} forall s € S rhs(s) = g(s) = oo;

{04’} rhs(sgoar) = 0;

{05’} U.lnsert(sgoa1, CalcKey(sgoat));

procedure UpdateVertex(u)

{06'} if (u # 5g0a1) Ths(u) = min s gyec(y (€, s) + g(s");
{07’} if (u € U) U.Remove(u);

{08’} if (g(u) # rhs(u)) U.Insert(u, CalcKey(u));

procedure ComputeShortestPath ()

{09’} while (U.TopKey()<CalcKey(sstart) OR Ths(sstart) 7 g(Sstart))

{10’}  w = U.Pop();

{11’} if (g(u) > rhs(u))

{12} g(u) = rhs(u);

{13} for all s € Pred(w) UpdateVertex(s);

{14’}  else

{15} g(u) = oo;

{167} for all s € Pred(u) U {u} UpdateVertex(s);

procedure Main()

{17’} Initialize();

{18’} ComputeShortestPath();
{19:} while (sstart # Sgoat)

{20’} /*if (g(sstart) = oo) then there is no known path */
{20} satare = argming cguec(s, ;o) (C(Sstart; s) + 9(s");
{22’}  Move t0 ssiart;

{23’}  Scan graph for changed edge costs;

{24’}  if any edge costs changed

{25} for all directed edges (u, v) with changed edge costs
{26°} Update the edge cost c(u, v);

{27} UpdateVertex (u);

{28’} foralls e U

{29} U.Update( s, CalcKey(s));

{30} ComputeShortestPath();

Fig. 4. D* Lite: First Version.

and ComputeShortestPath() functions can remain unchanged.
However, the Main() function needs to get extended so that it
moves the robot and then recalculates the keys of the vertices
in the priority queue appropriately. This is necessary because
the heuristics change when the robot moves, since they are
computed with respect to the current vertex of the robot. This
only changes the keys of the vertices in the priority queue
but not which vertices are locally consistent and thus in the
priority queue. Figure 4 shows the resulting search method,
called the first version of D* Lite.

The main function Main() of the first version of D* Lite
first calls Initialize() to initialize the search problem {17°}.
Initialize() sets the initial g-values of all vertices to infinity
and sets their rhs-values according to the equivalent of Equa-
tion 1 {03’-04’}. Thus, initially the goal vertex is the only
locally inconsistent vertex and is inserted into the otherwise
empty priority queue with a key calculated according to the
equivalent of the formula given earlier {05’}. Note that, in
an actual implementation, Initialize() only needs to initialize
a vertex when it encounters it during the search and thus does
not need to initialize all vertices up front. This is important
because the number of vertices can be large and only a few of
them might be reached during the search. The first version of
D* Lite then computes a shortest path from the current vertex
of the robot sg.+ to the goal vertex {18’}. If the robot has
not reached the goal vertex yet {19}, it makes one transition
along the shortest path and updates s+ to reflect the current
vertex of the robot {21°-22"}. (In the pseudocode, we have
included a comment on how the robot can detect that there is
no path but do not prescribe what it should do in this case.
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procedure CalcKey(s)

{01”} return [min(g(s), 7hs(s)) + h(Sstart, s) + km; min(g(s), rhs(s))];
procedure Initialize()

{02"} U = 0;

{03"} k = 0;

{04} for all s € S rhs(s) = g(s) = oo;

{05”} rhs(sgoar) = 0;

{06”} U.Insert(sgoq1, CalcKey(sgoai));

procedure UpdateVertex(u)

{077} if (u # Sgoar) rhs(u) = mins/eSUCC(u)(C(“v s') + g(s"));

{08”} if (v € U) U.Remove(u);

{09"} if (g(w) # rhs(w)) U.Insert(u, CalcKey(w));

procedure ComputeShortestPath ()

{10”} while (U.TopKey() <CalcKey(sstart) OR Ths(sstart) # g(Sstart))

{11}  koia = U.TopKey();

{12"}  w = U.Pop();

{13"}  if (koia <CalcKey(u))

{147} U.Insert(u, CalcKey(u));

{15”}  elseif (g(u) > rhs(u))

{16} g(u) = rhs(u);

{177} for all s € Pred(u) UpdateVertex(s);

{18”} else

{19 g(u) = oo}

{20} for all s € Pred(u) U {u} UpdateVertex(s);

procedure Main()

{21"} sjast = Sstart;

{22} Initialize();

{23”} ComputeShortestPath();
{24::} while (sstart # Sgoal)

{25”}  /*if (g(sstart) = 00) then there is no known path */
{26"}  Sstart = arg mins’eSUCC(sSm,,t)(C(Ssm7‘t= s’) + g(s"));
{277} Move t0 sstart;

{28”}  Scan graph for changed edge costs;

{29”} if any edge costs changed

{307} km = km + h(Slast; Sstart);

{31"} Slast = Sstart;

{327} for all directed edges (u, v) with changed edge costs
{33"} Update the edge cost c(u, v);

{34} UpdateVertex(u);

{35} ComputeShortestPath();

Fig. 5. D* Lite: Second Version.

For the goal-directed navigation problem in unknown static
terrain, for example, it should stop and announce that there
is no path since obstacles do not disappear.) It then scans for
changes in edge costs {23’}. To maintain Invariants 1-3 if
some edge costs have changed, it calls UpdateVertex() {27’}
to update the rhs-values and keys of the vertices potentially
affected by the changed edge costs as well as their membership
in the priority queue if they become locally consistent or
inconsistent. Finally, it updates the keys of all vertices in the
priority queue {28°-29’}, recalculates a shortest path {30},
and iterates. We can prove the following theorem:

Theorem 1: ComputeShortestPath() of the first version of
D* Lite expands a vertex at most twice, namely at most once
when it is locally underconsistent and at most once when it
is locally overconsistent, and thus terminates. One can then
follow a shortest path from the start to the goal vertex by
always moving from the current vertex s, starting at the start
vertex, to any successor s’ that minimizes c¢(s, s') +g(s’) until
the goal vertex is reached (ties can be broken arbitrarily).

The proofs of all theorems and other properties mentioned
in the text are given in [21].

B. The Second \ersion of D* Lite

The first version of D* Lite has the disadvantage that
the repeated reordering of the priority queue {28’-29’} can
be expensive since the priority queue often contains a large

number of vertices. The second version of D* Lite, shown
in Figure 5, uses a search method derived from D* [5] to
avoid having to reorder the priority queue. Differences to the
first version of D* Lite are shown in bold. The heuristics
h(s,s") now need to be nonnegative and forward-backward
consistent, that is, obey h(s,s”) < h(s,s’) + h(s’,s"”) for
all vertices s, s’,s” € S. They also need to be admissible no
matter what the goal vertex is, that is, obey h(s, s’) < ¢*(s, s’)
for all vertices s, s’ € S, where ¢*(s, s’) denotes the cost of
a shortest path from vertex s € S to vertex s’ € S. Heuristics
with these properties also satisfy the property that heuristics
need to satisfy for the first version of D* Lite [21]. Yet, they
are not overly restrictive since they are guaranteed to hold
if the heuristics were derived by relaxing the search problem
[21], which will almost always be the case and holds for the
heuristics used in this article.

The second version of D* Lite uses keys that are lower
bounds on the keys that the first version of D* Lite uses for
the corresponding vertices. It initializes them in the same way
as the first version of D* Lite. After the robot has moved from
vertex s to some vertex s’ where it detects changes in edge
costs, the first component of the keys can have decreased by
at most h(s, s’). (The second component does not depend on
the heuristics and thus remains unchanged.) Thus, in order to
maintain lower bounds, D* Lite needs to subtract i(s, s") from
the first component of the keys of all vertices in the priority
queue. However, since h(s, s’) is the same for all vertices in
the priority queue, the order of the vertices in the priority
queue does not change if the subtraction is not performed.
Then, when new keys are computed, their first components are
by h(s, s’) too small relative to the keys in the priority queue.
Thus, h(s,s’) has to be added to their first components. If
the robot moves again and then detects cost changes again,
then the constants need to get added up. We do this in the
variable k,, (that is, key modifier) {30”}. Thus, whenever new
keys are computed, the variable k,,, has to be added to their
first components, as done in {01”}. Then, the order of the
vertices in the priority queue does not change after the robot
moves and the priority queue does not need to get reordered.
The keys, on the other hand, are always lower bounds on
the corresponding keys of the first version of D* Lite after
the first component of the keys of the first version of D*
Lite has been increased by the current value of %,,, that is,
lower bounds on the values calculated by CalcKey() {01”}.
We exploit this property by changing ComputeShortestPath()
as follows. After ComputeShortestPath() has removed a vertex
u with the smallest key k. = U.TopKey() from the priority
queue {12”}, it now uses CalcKey() to compute the key that
it should have had. If k,q<CalcKey(u) then it reinserts the
removed vertex with the key calculated by CalcKey() into
the priority queue {13”-14”}. Thus, it remains true that the
keys of all vertices in the priority queue are lower bounds
on the corresponding keys of the first version of D* Lite
after the first components of the keys of the first version
of D* Lite have been increased by the current value of
. If koq>CalcKey(u), then it holds that k,;q=CalcKey(u)
since k,q was a lower bound on the value returned by
CalcKey(). In this case, ComputeShortestPath() performs the
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First Call to ComputeShortestPath

heuristics
1 2 3

h:l h:2

start/robot —»

Initidization
1 2 3

g=0 |g=0 |g=
A [ rhs= ©|rhs= o [rhs= o

o= 0= o

B Wrhs= rhs= oo
o= 0= o
C @rhs=« rhs= oo

Fw Jo-o J=®
D Prhs= o frhs=1 Jrhs= 1
k= [3;1)k=[3;1]
g:oo g:oo =

E Qrhs= o rhs=1 |rhs=0

ths=2
k=[4;2]

Fig. 6. Operation of the Second Version of D* Lite (Part 1).

same operations for vertex u as ComputeShortestPath() of the
first version of D* Lite {15”-20”}. ComputeShortestPath()
performs these operations for vertices in the exact same order
as ComputeShortestPath() of the first version of D* Lite,
which implies that the second version of D* Lite shares many
properties with the first version of D* Lite, including its
correctness. Formally, we can prove the following theorem:
Theorem 2: ComputeShortestPath() of the second version
of D* Lite expands a vertex at most twice, namely at most
once when it is locally underconsistent and at most once when
it is locally overconsistent, and thus terminates. One can then
follow a shortest path from the start to the goal vertex by
always moving from the current vertex s, starting at the start
vertex, to any successor s’ that minimizes c(s, s’) +g(s’) until
the goal vertex is reached (ties can be broken arbitrarily).

V. AN EXAMPLE

We now step through the example from Figure 1 to show
the operation of the second version of D* Lite. Figure 6
(top) shows the untraversable cells that the robot knows
about initially. It also shows the heuristics of the traversable
cells, which approximate the distance from the start cell to

Second Call to ComputeShortesti)

heuristics
1 2 3

A

start —» B

robot —» C

1 2 3

Fig. 7.

Operation of the Second Version of D* Lite (Part 2).

a cell with the maximum of the absolute differences of the
x and y coordinates of both cells. Figure 6 (bottom) shows
the g-values and rhs-values of the traversable cells and, for
locally inconsistent cells, also their keys. At every point in
time exactly the locally inconsistent cells are in the priority
queue according to Invariant 2. The locally inconsistent cell
with the smallest key has a bold border to indicate that
it will be expanded next. The grid labeled “Initialization”
shows the values directly before ComputeShortestPath() is
called for the first time. The next grids show the values after
each iteration of the first call to ComputeShortestPath(). If
the g-value of an expanded cell is larger than its rhs-value,
ComputeShortestPath() sets the g-value of the cell to its rhs-
value. Otherwise, ComputeShortestPath() sets the g-value to
infinity. To maintain Invariants 1-3, ComputeShortestPath()
then recalculates the rhs-values of the cells potentially affected
by this assignment, checks whether the cells become locally
consistent or inconsistent, and (if necessary) removes them
from or adds them to the priority queue. It then repeats this
process until it is sure that it has found a shortest path, which
requires it to recalculate some g-values but not all of them. The
last grid shows the values after ComputeShortestPath() returns.
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Knowledge in Start Situation

uninformed search heuristic search

breadth-first search A*

complete search

DynamicSWSF-FP (with early termination)

incremental search

Knowledge after the Discovery of an Additional Obstacle

uninformed search heuristic search

breadth-first search A*

complete search

DynamicSWSF-FP (with early termination)
o
I
N I -
I
I

incremental search

(Grey cells are cells that were expanded.)

Fig. 8. Simple Example (Part 2).

Note that an A* search can expand exactly the same cells in
exactly the same order. One can then follow a shortest path
from the current cell of the robot to the goal cell by starting
at the current cell and always greedily decreasing the goal
distance. Any way of doing this results in a shortest path from
the current cell to the goal cell. Since all costs are one, this
means that the shortest path from the current cell B1 to goal
cell E3 is via cells C1 and D2. The robot then moves to cell
C1 and discovers that cell D2 is untraversable. Figure 7 (top)
shows the grid as it is now perceived by the robot. The figure
also shows the new heuristics of the traversable cells. The grid
labeled “Edge Cost Changes” shows the values directly before
ComputeShortestPath() is called for the second time. The next
grids show the values after each iteration of the second call to
ComputeShortestPath(). Finally, the last grid shows the values
after ComputeShortestPath() returns. The shortest path from
the current cell C1 to goal cell E3 is via cells D1 and E2. The
robot then follows this path from its current cell to the goal
cell without observing additional untraversable cells and thus
without further calls to ComputeShortestPath().

We now use the two eight-connected grids from Figure 2 to
compare the second version of D* Lite against several alter-
natives: complete (that is, nonincremental) uninformed search
(breadth-first search), complete heuristic search (A*), and
incremental uninformed search (DynamicSWSF-FP, modified
to terminate immediately after it has identified a shortest path
from the current cell of the robot to the goal cell). To make the
search methods comparable, their search always starts at the

goal cell and proceeds towards the current cell of the robot.
Furthermore, we consider the current cell of the robot to be
expanded by all search methods. We use the maximum of the
absolute differences of the x and y coordinates of two cells
as a heuristic estimate of their distance. Cells expanded by
the methods are shaded grey in Figure 8. In our example,
we broke ties in the most advantageous way for A* and thus
D* Lite and A* expand not exactly the same cells during the
first search. The second search of D* Lite expands only a
subset of those cells whose goal distances changed or have
not been calculated before. Thus, it is more efficient than an
A* search that replicates most of its previous search. More
generally, the heuristic searches outperform the uninformed
searches during the first and second searches, the incremental
searches outperform the complete ones during the second
search (where previous search results are available), and the
incremental heuristic search decreases the number of expanded
cells even more than either a heuristic search or an incremental
search individually.

V1. EXPERIMENTAL RESULTS

There are several ways of optimizing both versions of D*
Lite without changing their overall operation. These optimiza-
tions are similar to the optimizations for LPA* [20]. Figure 9
shows the optimized second version of D* Lite, which we
compared against several alternatives: complete uninformed
search (breadth-first search), complete heuristic search (A*
[7]), incremental uninformed search (DynamicSWSF-FP [18]
with early termination, as described earlier), and a different
kind of incremental heuristic search (D* [5]). We implemented
all priority queues using standard binary heaps, although using
more complex data structures (such as Fibonacci heaps) could
possibly make U.Update() more efficient. A* broke ties among
cells with the same f-value in favor of cells with larger g-
values, which tends to be more efficient than the opposite
way of breaking ties. In previous work, D* was compared to
a version of A* that, like D*, searched from the goal vertex to
the current vertex of the robot [5]. It is equally easy, however,
to implement a version of A* that searches in the opposite
direction. In fact, such forward A* searches can be noticeably
faster than backward A* searches, for the following reason:
In practice, changes in edge costs are caused by untraversable
cells discovered by the robot and thus occur close to the
current vertex of the robot. Thus, if the robot has no initial
knowledge about which cells are traversable and assumes that
all of them are, then its assumption is correct around the goal
vertex during the initial searches but not around its current
vertex. Thus, the heuristics of most vertices around the goal
vertex are totally informed for a forward A* search, which
then expands only the vertices on a shortest path to the goal
vertex in this region. On the other hand, the heuristics of a
backward A* search are not as informed as the heuristics of a
forward A* search, and a backward A* search can therefore
be expected to expand more vertices than a forward A* search
during the initial searches. We therefore present experimental
results for both forward and backward A* searches.

Since all search methods studied in this article move the
robot in the same way and D* has already been demonstrated



IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. XX, NO. Y, MONTH 2002 8

procedure CalcKey(s)

{01} return [min(g(s), 7hs(s)) + h(sstart, s) + km;min(g(s), rhs(s))];
procedure Initialize()

{027} U = 0

{03”} kp, = 0;

{04} forall s € S rhs(s) = g(s) = oo;

{05} rhs(sgoar) = 0;

{067} UInsert(s goat [A(sstarts Sgoar); O]);

procedure UpdateVertex(u)

{077} if (g(u) # rhs(u) AND u € U) U.Update(u, CalcKey(u));
{08} else if (g(u) # rhs(u) AND u ¢ U) U.Insert(u, CalcKey(u));
{09} else if (g(u) = rhs(u) AND u € U) U.Remove(u);

procedure ComputeShortestPath ()

{10’} while (U.TopKey() <CalcKey(sstart) OR Ths(sstart) > g(Sstart))
{11}  w = U.Top();

{127} kora = U.TopKey();

{13"}  Knew = CalcKey(u));

{14} if(kora<Eknew)

{157} U.Update(w, knew);

{167} elseif (g(u) > rhs(u))

{17y g(u) = rhs(u);

{18} U.Remove(u);

{19} for all s € Pred(u)

{20} rhs(s) = min(rhs(s), c(s,u) + g(u));
{217} UpdateVertex(s);

{227} else

{23} ot = g(u);

{24} g(u) = oo;

{257} for all s € Pred(w) U {u}

{26} if <rhs(s) = c(s,u) + goid)

{277} it (s # 5goar) Ths(s) = min s csyec(s)(e(s, s") + g(s"));
{28} UpdateVertex(s);

procedure Main()

{29} siast = Sstart;
{307} Initialize();

{31} ComputeShortestPath();
{32} while (sstart # Sgoal)

{33}  I*if (rhs(sstart) = oo) then there is no known path */
{347} sstart = argmings cgucc(s, ) (C(Sstart, s") 4+ g(s"));
{35”}  Move t0 sstart;

{36™}  Scan graph for changed edge costs;

{37’} if any edge costs changed

{38} km = km + h(siast, Sstart);

{39} Slast = Sstart;

{40} for all directed edges (u, v) with changed edge costs
{417} Cota = c(u,v);

{427} Update the edge cost c(u, v);

{43"'} if (corq > c(u, U))

{44} rhs(u) = min(rhs(u), c(u, v) + g(v));

{45} else if (rhs(u) = cora + g(v))

{467} if (u# Sgoal) rhs(u) = mins’ESUCC(u)(C(uf 5/) + 9(51));
{477} UpdateVertex (u);

{48} ComputeShortestPath();

Fig. 9. D* Lite: Second Version (optimized version).

with great success on real robots [9], we only need to perform
a simulation study in which we compare the total planning
times of the search methods. Since the actual planning times
are implementation and machine dependent, we also use
two measures that both correspond to common operations
performed by the search methods and thus heavily influence
their planning times, yet are implementation and machine
independent: the total number of cell expansions and the total
number of heap percolates (exchanges of a parent and child
in the heap). We performed experiments on eight-connected
grids of size 129 x 129, where the start cell of the robot was
(x = 12,y = 12) and the goal cell was (z = 116,y = 116).
We report the averages over 500 runs on randomly generated
grids. All experiments were run on a 1.9 GHz PC under Linux.

In one set of experiments, we used grids whose cells
were either traversable or, with forty percent probability,
untraversable, where untraversable cells were modeled as cells
with no incoming or outgoing edges. The robot initially

TABLE |
EXPERIMENTAL RESULTS — TERRAIN WITH RANDOM OBSTACLES.

Search Algorithm | Planning Time | Cell Expansions | Heap Percolates
Breadth-First Search 302.30 msecs 845,433 4,116,516
Backward A* 10.55 msecs 17,096 276,287
Forward A* 7.29 msecs 8,722 177,476
DynamicSWSF-FP 6.41 msecs 13,962 75,738
(Focussed) D* 4.28 msecs 2,138 79,214
D* Lite 2.82 msecs 2,856 32,988
TABLE Il

EXPERIMENTAL RESULTS— FRACTAL TERRAIN.

Search Algorithm | Planning Time | Cell Expansions | Heap Percolates

Breadth-First Search 194.13 msecs 543,408 2,643,916
Backward A* 5.49 msecs 8,680 156,801
Forward A* 4.78 msecs 5,459 124,814
DynamicSWSF-FP 6.26 msecs 13,931 76,703
(Focussed) D* 1.18 msecs 596 19,066
D* Lite 0.97 msecs 393 5316

assumed that all edges were present with cost one. The robot
always deleted those edges entering its neighboring cells that
did not exist in the true model and then replanned a shortest
path from its current cell to the goal cell. We used the max-
imum of the absolute differences of the x and y coordinates
of any two cells as a heuristic estimate of their distances.
Table | compares D* Lite against the other search methods.
It shows that incremental heuristic searches outperform both
incremental and heuristic searches individually, and that D*
Lite is competitive with D*. It is interesting to note that
incremental heuristic search is faster than complete search
even though each cell expansion takes longer, which confirms
earlier experimental results [5].

In a second set of experiments, we used fractal terrain,
similar to the one used in [23]. All edges existed but their cost
varied from 5 to 14 according to traversal difficulty of the cell
they were entering. The robot initially assumed that all edges
were present with cost 5. The robot always updated the cost
of the edges entering its neighboring cells to correspond to
the traversal difficulty of the corresponding neighboring cell
and then replanned a shortest path from its current cell to the
goal cell. We used five times of the maximum of the absolute
differences of the x and y coordinates of any two cells as a
heuristic estimate of their distances. Table Il presents the same
comparison as in the previous experiment. The conclusions of
the previous experiment continue to hold in these grids, that
might be more realistic models of outdoor terrain.

VIl. RELATED WORK

Path planning for goal-directed navigation in known terrain
has been studied extensively [24]. Path planning for robot
navigation in unknown terrain has been studied less frequently.
We are interested in those navigation methods that repeatedly
determine a shortest path from the current robot coordinates
to the goal coordinates while the robot moves along the path.
Most navigation methods do not fit this description, including
the bug algorithms [1]. Those navigation methods that do
fit this description face the problem that they have to find
shortest paths repeatedly, and researchers have studied how
results from previous searches can be used to speed up the
current search. Some of the approaches to this problem are
based on minimum cost flow problems solved by the network
simplex method [25]. Other approaches are based on graph



IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. XX, NO. Y, MONTH 2002 9

search problems solved with either massively parallel search
methods [26] or incremental search methods.

Incremental search methods typically solve dynamic short-
est path problems, that is, path problems where shortest paths
between a given start and goal vertex have to be determined
repeatedly as the topology of a graph or its edge costs change
[27]. Examples include [28], [29], [30], [31], [32], [33], [34],
[35], [36], [37], [38], and [39]. They often differ in their
assumptions, for example, whether they solve single-source or
all-pairs shortest path problems, which performance measure
they use, when they update the shortest paths, which kinds
of graph topology and edge costs they apply to, and how the
graph topology and edge costs are allowed to change over
time [40]. If arbitrary sequences of edge insertions, deletions,
or weight changes are allowed, then the dynamic shortest path
problems are called fully dynamic shortest path problems [19],
[41], [42]. An example of an incremental search method for
fully dynamic shortest path problems is DynamicSWSF-FP
[18], a variant of which has been applied to hierarchical motion
planning [43]. [44] demonstrates experimentally the benefits
of incremental searches over complete ones for repetitive
planning tasks. Incremental search methods are typically un-
informed, however, including all incremental search methods
cited so far.

There exist only very few incremental heuristic search
methods that have been applied to navigation in unknown
terrain, that is, take into account that the start vertex changes
because the robot moves in the terrain. Some of these search
methods first identify the perimeter of areas in which the
previous movement decisions need to get updated and restart
the search from there [45] [46]. Other search methods discover
these areas while updating previous movement decisions. To
the best of our knowledge, the only search methods that fit
this description are (Focussed) D* [4] and the first and second
versions of D* Lite.

It is important to understand that D* and the second version
of D* Lite share some similarities but work differently. Both
search methods search from the destination of the robot to its
current vertex. Both search methods use heuristics to focus
their search and use the same mechanism to take into account
that the heuristics change when the robot moves and the goal
of the search thus changes. Both search methods propagate
cost changes in two waves: D* uses RAISE and LOWER
vertices, whereas D* Lite uses locally underconsistent and
overconsistent vertices for similar purposes. Both search meth-
ods stop as soon as the smallest key of all vertices in the
priority queue is no longer smaller than the key of the current
vertex of the robot. Finally, both search methods are often
more efficient than A* because the edge costs change around
the current vertex of the robot and thus close to the goal of the
search, a consequence of the property that sensors on-board
of robots sense the terrain in the neighborhood of the robots.
However, the two search methods work differently despite
these similarities. For example, D* can expand a vertex more
than twice during the same replanning episode whereas D*
Lite guarantees that every vertex is expanded at most twice.
This explains why the two search methods differ in their
number of vertex expansions and heap percolates in the exact

same terrain.

VIIlI. CONCLUSIONS

In this article, we have presented D* Lite, a novel fast
replanning method for goal-directed navigation in unknown
terrain that determines the same paths as (Focussed) D* and
thus moves the robot in the same way. Both search methods
search from the goal vertex towards the current vertex of the
robot, use heuristics to focus the search, and use similar ways
to minimize having to reorder the priority queue. However,
D* Lite is algorithmically different from D*. It builds on
our LPA*, that has a solid theoretical foundation, a strong
similarity to A*, is efficient (since it does not expand any
vertices whose g-values were already equal to their respective
goal distances) and has been extended in a number of ways.
We showed that D* Lite can be rigorously analyzed and
experimentally appears to be even slightly more efficient than
D*. We believe that our results will make D*-like replanning
methods even more popular and enable robotics researchers
to adapt them to additional applications. More generally, we
believe that our experimental and analytical results provide
a strong algorithmic foundation for further research on fast
replanning methods for mobile robots.
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