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Localization: Approximation and Performance
Bounds to Minimize Travel Distance

Craig Tovey and Sven Koenig

Abstract—Localization, which is the determination of one’s lo-
cation in a known terrain, is a fundamental task for autonomous
robots. This paper presents several new basic theoretical results
about localization. We show that, even under the idealized assump-
tions of accurate sensing and perfect actuation, it is intrinsically
difficult to localize a robot with a travel distance that is close to
minimal. Our result helps to theoretically justify the common use
of fast localization heuristics, such as greedy localization, which
always moves the robot to a closest informative location (where
the robot makes an observation that decreases the number of its
possible locations). We show that the travel distance of greedy lo-
calization is much larger than minimal in some terrains because the
closest informative location can distract greedy localization from
a slightly farther, but much more informative, location. However,
we also show that the travel distance of greedy localization can
be larger, but not much larger, than the terrain size n. Thus, the
travel distance of greedy localization scales well with the terrain
size and is much larger than minimal in some terrains, not because
it is large with respect to the terrain size, but because the min-
imal travel distance is exceptionally small in these terrains. As a
corollary to our analysis, we show that the travel distance of greedy
mapping (which always moves the robot to a closest location, where
it makes an observation that increases its knowledge of the terrain)
cannot be much larger than the terrain size. In theoretical terms,
we prove the NP-hardness of minimization of travel distance for
localization to within a logarithmic factor of the terrain size. We
prove that the travel distance of greedy localization is at least order
n/ log2 n larger than minimal in some terrains and that it is at
least order n log n/ log log n in the worst case. Finally, we prove
that the travel distance of both greedy localization and greedy map-
ping is at most order n log n. Previously, it was only known that
it is NP-hard to localize with minimal travel distance and that the
travel distances of greedy localization and greedy mapping are at
most order n3/2 .

Index Terms—Greedy localization, greedy mapping, heuristic
algorithms, NP-hardness, worst-case analysis.

I. INTRODUCTION

THIS PAPER presents several new basic theoretical results
about localization. The localization problem (sometimes
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also called the kidnapped-robot problem) is used to determine
the unknown location of a robot when a map of the terrain is
given. We show that, even under the idealized assumptions of
accurate sensing and perfect actuation, it is intrinsically diffi-
cult (NP-hard) to localize a robot with an execution time (i.e.,
worst-case travel distance with respect to all possible starting
locations) that is close to minimal. We prove our result for
both tactile (short-distance) and long-distance terrain sensors
in both polygonal regions and grid graphs. It, thus, applies to
localization in any terrain that is more complex or general than
polygonal regions and grid graphs and, thus, to virtually all
terrains of interest in robotics. To gain an intuitive understand-
ing of our result, note that a terrain, such as an office building,
can have many similar areas. Hence, the robot might have to
move to several locations to gather sufficient information to be
able to localize. Choosing a small set of locations that, taken
together, allow the robot to localize is a form of the set-cover
problem, which is known to be NP-hard to approximate within
a logarithmic factor.

Our result helps to justify theoretically the common use of
fast localization heuristics. Therefore, it is important to under-
stand the behavior of these heuristics. Greedy localization al-
ways moves the robot (with minimal travel distance) to a closest
informative location (where the robot makes an observation that
decreases the number of its possible locations). It has several
attractive features. For example, it is simple to integrate into
complete robot architectures because it is conceptually simple
and does not need to have control of the robot at all times. This is
important because planning methods should only provide advice
on how to act, and work robustly even if this advice is ignored
from time to time [1]. We show that the execution time of greedy
localization can be much larger than minimal in some terrains
because the closest informative location can distract greedy lo-
calization from a slightly farther, but much more informative,
location, thus suggesting that improvements need to take into
account the clustering of informative locations. However, we
also show that the execution time of greedy localization can be
larger, but not much larger, than the terrain size. Thus, the ex-
ecution time of greedy localization scales well with the terrain
size and can be much larger than minimal in some terrains, not
because it is large with respect to the terrain size, but because the
minimal execution time is exceptionally small in these terrains.
In theoretical terms, we prove NP-hardness of minimization of
execution time for localization to within a logarithmic factor of
the terrain size. We also prove that the worst-case execution time
of greedy localization (with respect to all possible terrains of a
given terrain size n) is Ω(n/ log2 n) larger than minimal and that
it is Ω(n log n/ log log n) and O(n log n) in grid graphs, which
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implies nearly sharp bounds. Previously, it was only known that
it is NP-hard to localize with minimal execution time and that
the worst-case execution time of greedy localization is O(n3/2)
in grid graphs.

Our analysis of the upper bound on the execution time of
greedy localization is quite general, since it applies to any greedy
graph traversal algorithm of the form “always move the robot to
a closest informative location” provided that, when a location
is visited, it, and possibly other locations, become uninforma-
tive, but uninformative locations cannot become informative.
This generality allows us to apply our result to mapping. The
mapping problem is to determine a map of the terrain. Greedy
mapping always moves the robot (with minimal travel distance)
to a closest location where it makes an observation that in-
creases its knowledge of the terrain. Our result implies that
the execution time of greedy mapping cannot be much larger
than the terrain size n. In theoretical terms, we prove that the
worst-case execution time of greedy mapping is O(n log n) in
grid graphs. This result, together with our previous result that
it is Ω(n log n/ log log n) in grid graphs, implies nearly sharp
bounds. Previously, it was only known that the worst-case exe-
cution time is O(n3/2) in grid graphs.

II. ASSUMPTIONS

The localization problem is to determine the unknown lo-
cation of a robot when a map of the terrain is given. We as-
sume a point robot with accurate sensing, perfect actuation, and
knowledge of its orientation from an onboard compass. Our as-
sumptions are realistic in some cases. Greedy localization, for
example, has been used on Nomad 150 mobile robots. The suc-
cess rate of moving was at least 99.57%, and the success rate
of sensing was at least 99.38% [2]. These large success rates
enable one to ignore actuator and sensor noise, especially since
the rare failures are usually quickly noticed when the number
of possible locations drops to zero, in which case the robot sim-
ply reinitializes its belief state to all possible locations and then
continues to use the localization algorithm unchanged. How-
ever, our assumptions are idealized in many cases. In general,
we expect that that all of our lower bound results should continue
to hold under less ideal conditions and our upper bound results
can only get worse. Our results, therefore, remain informative
under more real-world conditions.

We consider both (continuous) polygonal regions and (dis-
crete) grid graphs as models of 2-D terrain. A polygonal region
is a polygon that can contain obstacle polygons. The polygon
and obstacle polygons consist of finite sets of line segments [3].
The robot moves continuously in the polygonal region, but can-
not pass through line segments. The terrain size of polygonal
regions is the length of the encoding of all line segments, where
each line segment is encoded by two pairs of integer coordinates,
one for each of its two endpoints. A grid graph corresponds to
a gridworld, which discretizes terrain into unit square cells that
are either traversable or untraversable. The cells beyond the
perimeter of the gridworld are considered untraversable. The
robot is in exactly one traversable cell and can move in one of
the four main compass directions to an adjacent traversable cell

Fig. 1. Terrain models.

with travel distance 1. (A gridworld can be modeled as a polyg-
onal region, but the robot moves differently.) A grid graph has
a vertex for every cell in the gridworld. The traversability of the
vertex is the same as the traversability of the cell. Two vertices
are connected by an edge iff they correspond to adjacent cells.
The terrain size of a grid graph is the number of traversable
vertices of its largest connected component.

We consider both tactile (short-distance) and long-distance
sensors. Tactile sensors model bump sensors. In polygonal re-
gions, they detect whether the current location of the robot is on
a line segment [4]. In grid graphs, they detect the traversability
of all vertices adjacent to the current vertex. Long-distance sen-
sors model laser range finders. In polygonal regions, they detect
the distances to all visible line segments [5]. They operate in all
360◦ directions for unlimited distances but cannot see through
line segments. In grid graphs, they operate in the same way if
the robot is considered positioned in the center of its current
cell in the polygonal region that represents the corresponding
gridworld. Assume, for example, that a robot in cell [0, 0] is
directly below an untraversable cell [0, 1] and that all other cells
are traversable. Then, the robot observes the traversability of
cells [1, 1], [2, 2], etc., but not of cells [1, 2], [2, 3], etc., because
it cannot see through the lower line segment of the untraversable
cell.

Fig. 1 illustrates the terrain models and sensors. The left
column shows a gridworld (illustrating the assumptions of grid
graphs), the center column shows the corresponding grid graph,
and the right column shows the corresponding polygonal region.
Different from the example, polygonal regions can consist of
arbitrary polygons. The top row shows the terrain, the center
row shows in black and white what a robot with tactile sensors
observes in the given starting location (marked with an X for
gridworlds and grid graphs and a dot for polygonal regions),
and the bottom row shows what a robot with long-distance
sensors observes. The gray shadow shows the unobservable part
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TABLE I
SUMMARY OF LOWER BOUNDS ON WORST-CASE PERFORMANCE RATIOS

of the terrain. The traversability of a partially observed cell is
completely known for long-distance sensors in grid graphs.

III. DEFINITIONS

Solving a localization problem requires a reconnaissance plan
in which the robot moves to gather sufficient information to be
able to localize. A (valid) localization plan P for terrain M is a
deterministic reconnaissance plan that always specifies the next
move of the robot, when its sensor and movement history are
given, and terminates with either the correct current location of
the robot or the correct conclusion that the location of the robot
cannot be uniquely determined. Also, the algorithm is not re-
quired to localize correctly if its map is not correct. The location
cannot be determined if there are two connected components of
the terrain that are identical and the robot is located in one of
them. The execution time v(P,M) of localization plan P for
terrain M is the resulting worst-case travel distance with respect
to all possible starting locations. (Technically speaking, the ex-
ecution time for polygonal regions is defined as the supremum
rather than the maximum, because the maximum might not ex-
ist.) The objective is to find a localization plan with a small
execution time for a given terrain M . Localization plan P ∗ is
optimal for terrain M iff v(P ∗,M) ≤ v(P,M) for all localiza-
tion plans P , i.e., if its execution time in terrain M is minimal.
We refer to this execution time as the minimal execution time
v∗(M) = v(P ∗,M) for map M . The performance ratio of local-
ization plan P for terrain M is v(P,M)/v∗(M). The worst-case
travel distance is with respect to all possible starting locations,
while the worst-case execution time and performance ratio are
with respect to all possible terrains of a given size.

IV. OVERVIEW OF RESULTS

Dudek et al. [5] proved, for long-distance sensors in polygo-
nal regions, that it is NP-hard to find localization plans that are
optimal, i.e., whose execution time is minimal. In other words,
given a polygonal region M and value T , it is NP-hard to de-
termine if v∗(M) ≤ T . Tovey and Koenig [6] proved the same
result for tactile sensors in grid graphs. These results extend
readily to the cases of tactile sensors in polygonal regions and
long-distance sensors in grid graphs. In this paper, we prove a
stronger result. In Section VI, we show that there exists a con-
stant c > 0, such that it is NP-hard to find localization plans with
performance ratio at most c log n in terrains with terrain size n
for both tactile and long-distance sensors in both polygonal re-
gions and grid graphs. Thus, under the assumption that P �= NP,
one cannot find a localization plan in polynomial time whose
execution time is at most a factor of c log n larger than minimal.
Koenig et al. [7] used a modification of our construction for
this proof, which is detailed in this paper, to prove, under the

stronger assumption that NP �⊆ ZTIME(npolylog(n)), that one
cannot find a localization plan in polynomial time whose execu-
tion time is at most a factor of c log2−ε(n) larger than minimal
for both tactile and long-distance sensors in grid graphs. We
extend this result to both tactile and long-distance sensors in
polygonal regions as a corollary.

In Section VII, we assess the performance ratios of two fast lo-
calization heuristics, namely, a simple depth-first search (DFS)
algorithm and greedy localization, and we find that they are, in
a word, terrible. Table I summarizes our results. We find that
greedy localization has a poor worst-case performance ratio of
Ω(n/ log2 n) for both tactile and long-distance sensors in both
polygonal regions and grid graphs, i.e., its worst-case execu-
tion time is much larger than minimal. The results in polygonal
regions differ by a logarithmic factor from the results in grid
graphs because the terrain size n must be calculated differently
in both kinds of terrains. The DFS algorithm has a similarly poor
worst-case performance ratio for both tactile and long-distance
sensors in grid graphs.

Finally, in Sections VIII and IX, we assess the execution time
of greedy localization for both tactile and long-distance sensors
in grid graphs. We find that the worst-case execution time is
Ω(n log n/ log log n) and O(n log n) for both tactile and long-
distance sensors in grid graphs. Our analysis is quite general,
which allows us to find that the execution time of greedy map-
ping is O(n log n) for both tactile and long-distance sensors in
grid graphs as well. We have not been able to develop satis-
factory analogous results for greedy localization in polygonal
regions. In Section X, we discuss the scaling problems encoun-
tered in our attempts to find a suitable definition of the terrain
size for this purpose.

V. RELATED WORK

Localization algorithms have been studied for some time.
Passive-localization algorithms track the set of possible loca-
tions of the robot as it moves. We are interested in active lo-
calization algorithms, which move the robot so that it reduces
the set of possible locations to one with small execution time.
A variety of geometric algorithms can form the basis of pas-
sive and active localization algorithms. Guibas et al. [3] gave a
polynomial-time algorithm for long-distance sensors in polygo-
nal regions to determine the set H of locations that are consistent
with the current sensor scan. Brown and Donald [8] gave an al-
ternative algorithm in the case where the long-distance sensors
are point-and-shoot sensors. Aronov et al. [9], Zarei and Gh-
odsi [10], and Bose et al. [11] have performed related work on
computing visibility polygons.

Several results subsequently appeared that study active local-
ization algorithms from the standpoint of competitive analysis
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[12], which were applied to navigation problems first by Baeza-
Yates et al. [13], [14]. Dudek et al. [5] gave a best possible
competitive ratio of |H| − 1 for long-distance sensors in polyg-
onal regions, where H is computed from the starting location.
Both Schuierer [15] and Karch et al. [16] provided a further
analysis of the time and space complexity. Kleinberg [17], who
was followed by Fleischer et al. [18], analyzed the competi-
tive ratio in specific graphs, namely, geometric trees. An online
competitive analysis compares the travel distance of a localiza-
tion algorithm to the travel distance of an omniscient robot that
knows its location at the outset and seeks only to verify that
location. Minimizing the ratio of these quantities minimizes re-
gret in the sense that it minimizes the value of k such that the
robot could have localized k times faster. We, on the other hand,
analyze two other measures that are of at least equal concern in
practice. The first measure is the performance ratio, which is the
classical measure of algorithm analysis applied to localization
problems. It compares the execution time of a localization al-
gorithm, namely, the worst-case travel distance with respect to
all starting locations, to the execution time of an optimal local-
ization algorithm that does not know the location of the robot
at the outset. A small measure guarantees that the execution
time is close to minimal. The second measure is the worst-case
execution time. A small measure guarantees that the execution
time scales well with the terrain size.

Localization algorithms can also be based on next-best-view
algorithms, which determine the location where the robot makes
an observation that adds the most information to the one that
has already been gathered. The resulting localization algorithms
ignore the travel distance and attempt to minimize the number
of observations. We, on the other hand, analyze greedy localiza-
tion, which ignores the cost of the observations and attempts to
minimize the travel distance. Gonzalez-Banos and Latombe [19]
and Murta et al. [20] proposed hybrid-localization algorithms
that always move the robot to a most informative location within
a region around the current location that is guaranteed to be
traversable. Rao et al. [21] proposed a similar localization al-
gorithm, except that it samples locations with the traversable
region randomly and moves the robot to a location that trades
off between its informativeness and the travel distance needed to
reach it. Koenig et al. [7] proposed a localization algorithm that
identifies a “majority-rule” region around the starting location
that, if untraversable when expected to be traversable or vice
versa, at least halves the number of possible locations, and then
attempts to visit informative locations within that region. It finds
a localization plan in polynomial time whose execution time is
at most a factor of O(log3(n)) larger than minimal. However,
its runtime is Ω(n12), which is not close to practical.

VI. COMPLEXITY OF APPROXIMATELY MINIMIZING

EXECUTION TIME

We now use a connected-grid-graph construction, which is a
simplification of the one presented in [6], to prove NP-hardness
of the minimization of execution time for localization to within
a logarithmic factor of the terrain size for both tactile and long-
distance sensors in both polygonal regions and grid graphs.

Fig. 2. Conceptual block for Theorem 6.1

Theorem 6.1: There exists a constant c > 0, such that it is NP-
hard to find a localization plan with performance ratio at most
c log n for both tactile and long-distance sensors in connected
grid graphs of terrain size n.

Proof: We reduce from set cover. An instance of set cover
consists of the base set S = {1, . . . , t} and a collection of sets
S1 , . . . , Sy ⊆ S. A set cover is a subcollection of these sets,
whose union is S. Let y∗ denote the minimum cardinality of a
set cover of the given instance. For c′ < 1, to find a set cover of
cardinality at most c′y∗ log t is NP-hard [22]. Moreover, y can
be used to satisfy log y ≤ c′′ log t for some c′′ > 0 (equivalent
to y being polynomially bounded in t) [22]. We reduce this
problem to that of finding a localization plan in a grid graph M
that corresponds to a connected gridworld of size n1 × n2 with
n1 = 4y + 2t + O(1) and n2 = t2y + O(t), whose execution
time is within factor c log(n1n2) of minimal. The traversable
cells in the gridworld are not sparse, i.e., n = Θ(n1n2), which
proves the result.

We construct the gridworld for a given instance of set
cover as follows. It consists of a column of t blocks of size
(4y + O(1)) × (ty + O(1)) each, one for each base element
i = 1, . . . , t. The right side of Fig. 2 shows a conceptual ex-
ample of a block. The second to lowest row of each block
contains a left-right corridor. There are y “hooking” corridors
connected to the left-right corridor, each running up for ty − 2
cells, right for two cells, and then down for t cells. The hooking
corridors are spaced four cells apart. The jth hooking corridor
represents the set Sj . If i ∈ Sj , then the last i cells of hook-
ing corridor j are untraversable, and we say that the corridor is
revelatory. The key idea is that the length of a revelatory hook-
ing corridor identifies the block, but the robot needs to move
almost to its end to explore it for both tactile and long-distance
sensors. The robot then basically needs to explore a group of
hooking corridors that correspond to a set cover to guarantee
that it explores a revelatory hooking corridor, which localizes
the robot. The blocks would suffice for the construction, ex-
cept that the grid graph would not be connected. Therefore, to
the left of each block, append an up-down corridor connected
to the left-right corridor and attach to it a maze of t twisty
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left-right passages. Each twisty passage fits in a region of size
(2t + O(1)) × (y + O(1)) and has length ty + O(1). The ith
twisty passage of block i = 1, . . . , t, has a left exit. All other
twisty passages of block i are dead ends. Connect the exit twisty
passages with an up-down hallway. The left side of Fig. 2 shows
a conceptual example of a maze with twisty passages. The grid
graph can be constructed in polynomial time in the size of the
set cover. The hooking corridors and twisty passages ensure
that at least 25% of the cells are traversable. Thus, we have
n = Θ(n1n2), as required.

We now calculate an upper bound z on the minimal execution
time v∗(M). Consider the following localization plan: If the
robot starts in the hallway, it localizes within travel distance
4ty + O(1) by moving up and identifying either the end of the
hallway or an exit twisty passage, which it can then follow.
Otherwise, the robot moves within travel distance 4ty + O(1)
to the lower left corner of a block. The robot then moves right
and explores, in turn, each of the y∗ hooking corridors that
correspond to a minimal set cover. The robot must eventually
explore a revelatory hooking corridor, which localizes the robot.
The execution time of this (valid) localization plan is at most
4ty + 2(ty + t)y∗ + O(1) ≤ 2.01tyy∗ = z.

Finally, we show that a localization plan with a small execu-
tion time corresponds to a small set cover. Suppose localization
plan P is a (valid) localization plan with execution time at
most 0.99 log t times the minimal execution time. Its execution
time can thus be at most 0.99z log t < 1.99tyy∗ log t. We ana-
lyze how it localizes the robot from the lower left corner of a
block: It obtains new information only at the end of a hooking
corridor or twisty passage, since the blocks and mazes differ
only in those places. It does not move to any other block be-
cause it localizes immediately when it explores an exit twisty
passage. It also localizes immediately when it explores a reve-
latory hooking corridor. The twisty passages provide the same
information as would hooking corridors that represented sin-
gleton sets {i}, for i = 1, . . . , t. Therefore, we may think of
localization plan P as exploring hooking corridors until it finds
a revelatory one or has eliminated all but one block. Choose
a block i for which it explores the most hooking corridors.
The hooking corridors that it explores must correspond to a set
cover with the possible exception of i, since it would other-
wise need to explore additional hooking corridors. Therefore,
it finds a subcollection of hooking corridors that is either a set
cover or one set short of a set cover. Any singleton set {i}
that corresponds to a twisty passage may trivially be replaced
by any other set containing i. It takes travel distance at least
2ty to explore a nonrevelatory hooking corridor. Consequently,
localization plan P can sample at most (1.99tyy∗ log t)/(2ty)
hooking corridors and provides a set cover of cardinality at most
1 + 0.995y∗ log t < y∗ log t. �

Next, we show that any hardness result for grid graphs applies
to polygonal regions, within constant factors, which enables us
to prove hardness of localization in polygonal regions without
having to construct a lengthy proof similar to that of Theo-
rem 6.1.

Proposition 6.2: For any grid graph G, one can construct a
polygonal region H in linear time, such that any localization plan

Fig. 3. Converting gridworlds to polygonal regions.

for either tactile or long-range sensors on H can be transformed
in linear time to a localization plan for tactile sensors in G
so that the execution time of the latter is at most

√
2 times the

execution time of the former. Moreover, the optimal localization
execution time and size of H are at most a constant multiple of
the optimal localization execution time and size, respectively,
of G.

Proof: Given a grid graph G, construct the polygonal region
H by replacing each boundary between a traversable cell in
the grid graph and any of its adjacent cells with a wall through
which a twisty tunnel passes. The tunnel is blocked at the cross-
ing point iff the boundary is untraversable. Fig. 3 shows an
example. This construction requires linear time because each
twisty tunnel is θ(1) in size and precision. It follows that the
size of H is not more than a constant multiple of the size
of G.

Consider a robot that localizes in H . Each time the robot in H
moves in order to gain information, it travels at least 1/

√
2. The

corresponding robot in G either already has this information or,
if the robot in H had moved to an adjacent cell, it (the robot in
G) can travel a distance 1 to the corresponding cell, from which
it acquires this information. Each of these movements can be
computed in constant time. The robot in the grid graph always
has at least as much information as the robot in the polygonal
terrain. Therefore, we have a localization plan for G, which
costs at most

√
2 times the cost of the plan in H .

Now consider a robot that localizes optimally in G. When it
moves from a cell to an adjacent cell in G (with travel distance
1), the corresponding robot in the polygonal region then moves
to the corresponding cell and then immediately moves into each
tunnel of its new cell to check the crossing point, thus incur-
ring travel distance at most 1 + 4/

√
2. Both robots always have

identical information about the traversability of cells, since the
twisty tunnels render long-distance sensors no more useful than
tactile sensors. Therefore, there is a localization plan for H that
costs at most 1 + 2

√
2 times the optimal cost of localization

in G. �
Proposition 6.2 allows us to extend Theorem 6.1 to polygonal

regions.
Corollary 6.3: There exists a constant c > 0, such that it is NP-

hard to find a localization plan with performance ratio at most
c log n for both tactile and long-distance sensors in polygonal
regions of size n.
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Thus, under the assumption that P �= NP, one cannot find a
localization plan in polynomial time whose execution time is at
most a factor of c log n larger than minimal for both tactile and
long-distance sensors in both polygonal regions and grid graphs.
Under the stronger assumption that NP �⊆ ZTIME(npolylog(n)),
one cannot find a localization plan in polynomial time whose
execution time is at most a factor of c log2−ε(n) larger than
minimal for tactile sensors in grid graphs [7]. Proposition 6.2
allows us to extend this theorem to polygonal regions.

Corollary 6.4: There exists c > 0, such that, if NP �⊆
ZTIME(npolylog(n)), one cannot find a localization plan in
polynomial time whose execution time is at most a factor of
c log2−ε(n) larger than minimal, where n is the size of the poly-
gon. The result holds for both tactile and long-range sensors.

As noted earlier, it was already known that it is NP-hard to
find localization plans that are optimal for both tactile and long-
distance sensors in both polygonal regions and grid graphs, i.e.,
whose execution time is minimal. Our results provide stronger
guarantees for both tactile and long-distance sensors in both
polygonal regions and grid graphs, namely, that it is NP-hard
(and, thus, likely impossible with polynomial planning time)
to find localization plans that are close to optimal, i.e., whose
execution time is close to minimal. They, as with all lower bound
results in this paper, can be interpreted pessimistically. Since
they hold under our idealized assumptions, they should continue
to hold under less ideal conditions and in virtually all terrains
of interest in robotics, thus confirming earlier empirical results
that performing complete AND–OR searches in belief space to
determine optimal-localization plans is often infeasible [23].

VII. PERFORMANCE RATIOS

We now describe two fast-localization heuristics, namely, a
simple DFS algorithm and greedy localization. DFS is a straw-
man localization algorithm. Greedy localization has been used
by the delayed planning architecture with the viable-plan heuris-
tic [24]. Nourbakhsh pioneered the delayed planning architec-
ture in robot programming classes, where Nomad 150 mobile
robots had to navigate in gridworlds that were built with 3-ft-
high and 40-in-long cardboard walls [2]. Subsequently, it was
generalized in [25] and [26].

1) DFS operates in grid graphs. First, it determines the con-
nected components Mi of the given map of the grid graph.
Second, it acquires a map M ′ of the component that the
robot is in by moving the robot in a DFS manner. Third, it
determines which of the components Mi are identical to
map M ′ using a DFS for every component, starting from
the leftmost vertex of all uppermost traversable vertices. If
exactly one component Mi matches map M ′, it has local-
ized the robot. Otherwise, it can conclude that the robot
cannot localize. It is unclear how to generalize DFS to
operate in polygonal regions.

2) Greedy localization, on the other hand, operates in both
polygonal regions and grid graphs. It always moves the
robot (with minimal travel distance) to a closest informa-
tive location (where the robot makes an observation that
decreases the number of its possible locations) [15]. The

Fig. 4. Gridworld for Theorem 7.2.

algorithm by Guibas et al. [3] can be used to determine
the locations where the robot makes an observation that
decreases the number of its possible locations.

The planning and execution times of DFS and greedy local-
ization are polynomial, and thus imply two properties, since
Theorem 6.1 and Corollary 6.3 suggest that it is impossible
with polynomial planning time to find localization plans that
are close to optimal: First, DFS and greedy localization substan-
tially reduce the sum of planning and execution time compared
with localization algorithms that find localization plans that are
optimal or close to optimal. Second, DFS and greedy localiza-
tion can find localization plans that are not close to optimal.
Their worst-case performance ratios are Ω(log n) according to
Theorem 6.1 and Corollary 6.3. In the following, we prove much
larger lower bounds on their worst-case performance ratios.

The worst-case performance ratios of DFS and greedy lo-
calization could be argued to be arbitrarily poor, for a trivial
reason. Consider, for example, the performance ratios of DFS
and greedy localization in a polygonal region or grid graph that
consists of two identical copies of the polygonal region or grid
graph from Theorem 6.1 or Corollary 6.3. The minimal exe-
cution time is zero, since the robot cannot localize. However,
DFS and greedy localization move the robot for both tactile and
long-distance sensors, thus resulting in an infinite performance
ratio. We, therefore, assume in the following that the robot can
localize from all starting locations.

Theorem 7.1: The worst-case performance ratio of greedy lo-
calization is Ω(n/ log2 n) for tactile sensors in connected polyg-
onal regions of terrain size n.

Proof: Consider the following gridworld that consists of a
row of x blocks of size (log x + 1) × 5 each, where x ≥ 8 is
a power of two. The uppermost row of each block contains
a “signature.” For block k = 1, . . . , x, this signature encodes
k − 1 in binary form, which needs log x bits. The signature is
in the form of a pattern of traversable and untraversable cells,
which is followed by a separator that consists of a column of
two untraversable cells. The remainder of the block consists
of traversable cells. Fig. 4 shows an example with the signature
0 1 1 circled. The gridworld has Θ(x log x) traversable cells and
is connected. A robot with tactile sensors can localize from any-
where by moving up until it reaches a signature, and then along
the signature to read it. Now consider the polygonal region that
corresponds to the gridworld. Its terrain size is n = Θ(x log2 x),
since the representation of the integer coordinates needs, on av-
erage, Θ(log x) bits. The minimal execution time is O(log x),
since the robot can localize from anywhere within this time.
Assume that the robot starts approximately in the center cell
of the lowest row of the gridworld. DFS and greedy localiza-
tion can then move the robot right. The robot does not localize



TOVEY AND KOENIG: LOCALIZATION: APPROXIMATION AND PERFORMANCE BOUNDS TO MINIMIZE TRAVEL DISTANCE 7

Fig. 5. Gridworld for theorem 7.3.

before it reaches the rightmost wall. Consequently, the execu-
tion time is Ω(x log x) and thus results in a performance ratio
of Ω(x log x/ log x) = Ω(x) = Ω(n/ log2 n). �

Corollary 7.2: The worst-case performance ratio of DFS and
greedy localization is Ω(n/ log n) for tactile sensors in con-
nected grid graphs of terrain size n.

Proof: Consider the grid graph that corresponds to the
gridworld from the proof of Theorem 7.1. Its terrain size is
n = Θ(x log x) (due to the different calculation of the terrain
size), and the minimal execution time is O(log x). DFS and
greedy localization can exhibit the behavior outlined in that
proof (except that the robot does not localize before it reaches
the second to rightmost cell), thus resulting in a performance
ratio of Ω(x log x/ log x) = Ω(x) = Ω(n/ log n). �

The lower bound of Corollary 7.2 cannot be improved for
DFS if the robot can localize from all starting cells, for the
following reason: If the robot can localize with execution time
x, then it can experience at most 16 × 8x different sequences
of observations and, thus, can distinguish at most among these
many cells. (Initially, it observes the traversability of the four
cells adjacent to its starting cell, thus resulting in one of 16
possible observations. After each move to an adjacent cell, it
observes one of at most eight possible observations, since the
cell it came from is traversable.) Thus, it must be the case
that n ≤ 16 × 8x , and thus, x = Ω(log n) in grid graphs of
terrain size n. The minimal execution time is thus Ω(log n).
The execution time of DFS is O(n) in connected grid graphs,
thus resulting in a worst-case performance ratio of O(n/ log n)
and, thus, Θ(n/ log n).

Theorem 7.3: The worst-case performance ratio of greedy lo-
calization is Ω(n/ log n) for long-distance sensors in connected
polygonal regions of terrain size n.

Proof: Consider the following gridworld of size (8x + 3) ×
12, where x > 0. It contains 4x + 1 up-down walls that al-
ternate with 4x + 2 up-down corridors. The uppermost cell of
every wall is traversable, thus forming a left-right corridor in the
uppermost row. One cell near the bottom of every wall is also
traversable. It is called the chink cell. The chink cells alternate
between the lowest cell (type-1 walls) and the cell 2 above the
lowest cell (type-2 walls), and thus form a zigzag corridor. The
leftmost, center, and rightmost walls are type-1 walls. Fig. 5
shows an example. The gridworld has Θ(x) traversable cells
and is connected. A robot with long-distance sensors can local-
ize from anywhere by moving up until it reaches the left-right
corridor. Now consider the polygonal region that corresponds

to the gridworld. Its terrain size is n = Θ(x log x), since the
representation of the integer coordinates needs on average order
log x bits. The minimal execution time is O(1), since the dis-
tance to the left-right corridor is O(1). Assume that the robot
starts in the center of the chink cell of the center wall. Greedy lo-
calization observes the chink cells of the adjacent type-2 walls,
and therefore, it knows that it is not in the rightmost or leftmost
type-1 wall but cannot distinguish among the other possible
type-1 walls. It then moves diagonally to the center of the chink
cell of the adjacent wall to its left or right because this travel
direction is perpendicular to the line of sight to the next chink
and, thus, eliminates one wall with minimal travel distance. If
the robot moves to the right, then it does not localize before it
reaches the chink in the rightmost wall. Consequently, the exe-
cution time is Ω(x) and, thus, results in a performance ratio of
Ω(x/1) = Ω(n/ log n). �

Corollary 7.4: The worst-case performance ratio of DFS and
greedy localization is Ω(n) for long-distance sensors in con-
nected grid graphs of terrain size n.

Proof: Consider the grid graph that corresponds to the
gridworld from the proof of Theorem 7.3. Its terrain size is
n = Θ(x), and the minimal execution time is O(1). DFS and
greedy localization can exhibit a behavior similar to the one
outlined in that proof (except that they move in a step pattern
rather than diagonally), thus resulting in a performance ratio of
Ω(x/1) = Ω(n). �

To summarize, our results show that DFS has a poor worst-
case performance ratio for both tactile and long-distance sensors
in grid graphs, even if the robot can localize from all start-
ing locations. Similarly, greedy localization has a poor worst-
case performance ratio for both tactile and long-distance sen-
sors in both polygonal regions and grid graphs under the same
assumption. Thus, their worst-case execution times are much
larger than minimal. In particular, the closest informative loca-
tion can distract greedy localization from a slightly farther, but
much more informative, location, such as a unique signature
of length log n. For tactile sensors, the robot needs to move
along the signature to read it for a travel distance of O(log n).
For long-distance sensors, the robot could observe it from one
well-chosen location for a travel distance of O(1), which ex-
plains, in essence, why the lower bounds for tactile sensors
differ from the lower bounds for long-distance sensors by a
factor of log n. The terrain sizes of polygonal regions and grid
graphs are calculated differently, which explains, in essence,
why the lower bounds (for greedy localization) in polygonal
regions differ from the lower bounds in grid graphs by a factor
of log n.

VIII. LOWER BOUND ON EXECUTION TIME

We now prove a lower bound on the execution time of greedy
localization for both tactile and long-distance sensors in grid
graphs.

Theorem 8.1: The worst-case execution time of greedy lo-
calization is Ω((n log n/(log log n)) for both tactile and long-
distance sensors in grid graphs of terrain size n.
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Fig. 6. Gridworld for Theorem 8.1.

Proof: Consider a gridworld that consists of a column of
unconnected blocks that are variations of those presented in [27].
The second to lowest row of block 0 contains a left-right corridor
with cells i = 0, . . . , dd − d, where d ≥ 12. There are “towers”
connected to the left-right corridor. A tower of height x runs up
for x cells, right for one cell (reaching the “zigzag cell”), and
then up again for two cells (reaching the “tip cell”). For each k =
0, . . . , 
d/4�, there is a tower of height 2 +

∑k
j=1 dj connected

to the left-right corridor at cell i + 3k, for i ≡ 0 (mod dk+1).
Thus, the leftmost tower of any height is to the left of the leftmost
tower of any larger height, and the rightmost tower of any height
is to the right of the rightmost tower of any larger height. The
number of blocks is equal to the number of towers plus one.
All blocks are identical to block 0, except that each additional
block makes the tip cell of a different tower untraversable. Fig. 6
shows part of such a gridworld. Now consider the grid graph that
corresponds to the gridworld. Its terrain size is n = Θ(dd), since
each block contains one corridor with Θ(dd) traversable cells
and Θ(dd−k−1) towers with Θ(dk ) traversable cells each for
each of the Θ(d) different heights. Assume that the robot starts
in the leftmost corridor vertex of block 0. The key idea is that

greedy localization determines that it is in the leftmost corridor
vertex of some block but needs to observe the tip vertices of all
towers to determine the block and localize the robot. It needs to
move to the zigzag vertex of a tower for long-distance sensors
and one cell further for tactile sensors to observe its tip vertex.
The travel distance from the attachment point of a tower of
height h = 2 +

∑k
j=1 dj to the zigzag vertex of the nearest other

tower of the same height is dk+1 + h + 1 = 3 +
∑k+1

j=1 dj and
is, thus, smaller than the travel distance from the attachment
point of the tower to the zigzag vertex of the nearest tower of
any larger height. Therefore, greedy localization traverses the
corridor from left to right, visiting the zigzag vertices of all
towers of the smallest height, traverses the corridor from right
to left, visiting the zigzag vertices of all towers of the next largest
height, etc. It traverses the corridor Ω(d) times at travel distance
Ω(dd) each. Consequently, its execution time is Ω(dd+1) and,
thus, results in a performance ratio of

Ω(dd+1) = Ω
(

ddd log d

log d

)

= Ω
(

n log n

log log n

)

. (1)

�
To summarize, our results show that the execution time of

greedy localization can be larger than the terrain size for both
tactile and long-distance sensors in grid graphs.

IX. UPPER BOUND ON EXECUTION TIME IN GRID GRAPHS

We now prove an upper bound on the execution time of any
greedy graph traversal algorithm, which then also applies to
greedy localization and greedy mapping for both tactile and
long-distance sensors in arbitrary graphs, including grid graphs.
Initially, all vertices are untagged. Let the starting vertex be x0 .
The greedy-graph traversal algorithm always tags the current
vertex xi−1 of the robot and possibly other vertices. (We make
no assumptions whether it tags other vertices and, if so, which
ones it tags.) It then moves the robot (with minimal travel dis-
tance) to a closest untagged vertex xi . We make no assumptions
about how it breaks ties. If all vertices are tagged, the algorithm
terminates. Let d(x, v) denote the travel distance from vertex
x to vertex v. Let Bi denote the set of vertices that have been
tagged when the robot reaches untagged vertex xi . (B0 is the
empty set.) If d(xi−1 , v) < d(xi−1 , xi), then v ∈ Bi , because
otherwise, v would be a closer untagged vertex than xi . This
intuitively suggests that the execution time of a greedy-graph
traversal algorithm is small, since large values of d(xi−1 , xi)
force many vertices to be tagged. We now analyze the execution
time of greedy-graph traversal algorithms by defining marking
sequences that abstract some of their properties away.

A marking sequence for graph G = (V,E) is a sequence
of triples {vi, ri ,Mi}, for i = 0, 1, . . . ,m, where ri ≥ 0 is an
integer, vi ∈ V , and Mi ⊆ V satisfy the following properties.
Property 1: vi �∈ Mi .
Property 2: Mi ⊆ Mi+1 .
Property 3: d(vi, v) ≤ ri implies v ∈ Mi+1 .

The cost of the marking sequence is
∑m−1

i=0 (1 + ri).
Any greedy graph traversal algorithm forms an associated

marking sequence on the same graph with vi = xi , ri =
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d(xi, xi+1) − 1 < |V | − 1 (rm can be set to zero) and Mi = Bi .
The cost of this marking sequence equals the travel distance
of the graph traversal algorithm, since 1 + ri = d(xi, xi+1).
In general, marking sequences are less restrictive than greedy-
graph traversal algorithms, since vi+1 need not be within travel
distance 1 + ri of vi . Marking sequences consist of a sequence
of choices of an untagged vertex vi (i.e., one not in Mi) and
a radius ri . All vertices within travel distance ri from vi (and
possibly others) are tagged and the sequence continues.

Lemma 9.1: The cost of any marking sequence is at most
|V | + 2|V | ln |V | on connected graphs G = (V,E).

Proof: Let {vi, ri ,Mi}, for i = 1, 2, . . . ,m, be a marking se-
quence on connected graph G = (V,E). Define St = {vi |ri ≥
t, 0 ≤ i < m}. We first prove that |St | ≤ 2|V |/t. If d(vi, vj ) ≤
ri , then j ≤ i because vj �∈ Mj according to Property 1, but
vj ∈ Mi+1 according to Property 3, and thus, vj ∈ Mk for all
k > i according to Property 2. Therefore, no distinct vertices
vi, vj ∈ St may have d(vi, vj ) ≤ t because otherwise, j ≤ i and
i ≤ j, and the vertices could not be distinct. For each x ∈ St ,
consider the ball B(x) of radius t/2 around x, i.e., all vertices
within travel distance t/2 of x. These balls are pairwise disjoint,
because a nonempty intersection of B(vi) and B(vj ) would
imply d(vi, vj ) ≤ t by the triangle inequality. Each ball must
contain at least 1 + 
t/2� vertices, since G is connected. Conse-
quently, there can be at most 
|V |/(1 + 
t/2�)� ≤ |V |/(t/2) =
2|V |/t such balls and, thus, at most this many vertices in St ,
which implies that |St | ≤ 2|V |/t. Then, the cost of the marking
sequence is given as follows:

m−1∑

i=0

(1 + ri) = m +
m−1∑

i=0

ri = m +
|V |−1∑

t=0

t(|St | − |St+1 |)

= m +
|V |−1∑

t=1

|St | ≤ m +
|V |−1∑

t=1

2|V |/t ≤ |V | + 2|V | ln |V |.

Note that this is a natural log. This proves the lemma. �
Corollary 9.2: The worst-case execution time of any greedy-

graph traversal algorithm is O(|V | log |V |) in connected graphs
G = (V,E).

Proof: The execution time of any greedy-graph traversal al-
gorithm is at most |V | + 2|V | ln |V |, since this is the cost of the
corresponding marking sequence according to Lemma 9.1. �

Corollary 9.3: The worst-case execution time of greedy local-
ization is O(n log n) in graphs, including grid graphs, of terrain
size n.

Proof: Greedy localization always moves the robot to a closest
informative vertex (where the robot makes an observation that
decreases the number of its possible vertices). Define a vertex
to be tagged iff it is uninformative. Then, greedy localization is
a greedy-graph traversal algorithm in the connected component
of the graph that contains the robot. Therefore, Corollary 9.2
applies. �

Previously, it was only known that the execution time of
greedy localization is O(n3/2) in grid graphs of terrain size
n [6]. Our upper bound, on the other hand, is quite close to the
lower bound of the previous section. It shows that the execution
time of greedy localization cannot be much larger than the terrain

size. Thus, the execution time of greedy localization scales well
with the terrain size and can be much larger than minimal in
some terrains, not because it is large with respect to the terrain
size, but because the minimal execution time is exceptionally
small in these terrains.

Our analysis is quite general and also applies to mapping.
The mapping problem is to determine a map of the terrain.
Greedy mapping is a mapping algorithm that always moves the
robot (with minimal travel distance) to a closest location where it
makes an observation that increases its knowledge of the terrain.
It has been used on a nomad-class tour-guide robot that offered
tours to museum visitors [28] and Super Scouts [29].

Corollary 9.4: The worst-case execution time of greedy map-
ping is O(n log n) in graphs, including grid graphs, of terrain
size n.

Proof: Greedy mapping always moves the robot to a clos-
est informative vertex (where the robot makes an observation
that increases its knowledge of the terrain). Define a vertex to
be tagged iff it is uninformative. Then, greedy mapping is a
greedy-graph traversal algorithm in the connected component
of the graph that contains the robot. Therefore, Corollary 9.2
applies. �

The same upper bound and proof also hold unchanged for
a version of greedy mapping that always moves the robot to a
closest unvisited location. Previously, it was only known that the
execution time of greedy mapping is O(n3/2) in grid graphs of
terrain size n [30]. Our upper bound, on the other hand, is quite
close to our previous lower bound Ω(n log n/ log log n) [30]. It
shows that the execution time of greedy mapping for both tactile
and long-distance sensors in grid graphs cannot be much larger
than the terrain size and, thus, scales well with the terrain size.

X. EXECUTION TIME IN POLYGONAL REGIONS

So far, we have proved bounds on the execution time of greedy
localization in grid graphs as a function of the terrain size. We
now explain why we have not been able to prove analogous
bounds in polygonal regions. Let P be a polygonal region. We
consider possible definitions for its terrain size and explain why
each one suffers from unacceptable scaling problems because,
in all cases, the ratio of the execution time and the terrain size
can be made arbitrarily large. For cases 3) and 4), as shown
next, for example, the execution time can be made arbitrarily
large for a given terrain size, which means that it is meaningless
to express the execution time as a function of the terrain size.
Define the terrain size of polygonal region M as follows.

1) By the largest connected area n1(M), which is similar to
the number of traversable vertices of the largest connected
component of grid graphs. If a polygonal region is scaled
by ε, then the execution time changes by factor ε, and the
terrain size n1(M) changes by factor ε2 .

2) By the length of its encoding n2(M), where each line
segment is encoded by two pairs of integer coordinates.
Consider a polygonal region with two unconnected hook-
ing corridors, as used in the proof of Theorem 6.1. The
first one runs up for m cells, which is right for two cells
and down for two cells. The second one is identical to the
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Fig. 7. Gridworld for terrain sizes n2 (M ) and n3 (M ).

Fig. 8. Gridworld for terrain sizes n4 (M ) and n5 (M ).

first one, except that it runs down for three cells. Fig. 7
shows an example. If the starting location is far away from
the hook in one of the hooking corridors, then the robot
needs travel distance Θ(m) to determine which corridor
it is in. Thus, the execution time is Θ(m), and the terrain
size n2(M) is Θ(log m).

3) By the number of line segments of the polygonal region
n3(M). The execution time for the example in the context
of n2(M) is Θ(m), and the terrain size n3(M) is Θ(1).

4) By the length of all line segments in the reachable region
n4(M). There exist instances of the traveling-salesman
problem in the unit square with tour length Ω(

√
m), where

m is the number of cities [31]. Pick such an instance and
construct a polygonal region by replacing all cities with
identical small hooking corridors. Make m copies of the
instance, slightly shortening the hook of the hooking corri-
dor of the ith city in the ith copy. Fig. 8 shows an example.
Choose the size of the hooking corridors so that the length
of all line segments remains constant, as the number m
of cities increases, i.e., make each hooking-corridor size
1/m. Then, a robot needs travel distance Ω(

√
m) in the

worst case to visit all but one hooking corridor and de-
termine which copy it is in. Thus, the execution time is
Ω(

√
m), and the terrain size n4(M) is Θ(1).

5) By the square root of the reachable area of its interior
n5(M). The execution time for the example in the context
of n4(M) is Ω(

√
m), and the terrain size n5(M) is at

most 1.
Thus, several natural definitions of the terrain size of polyg-

onal regions suffer from scaling problems.

XI. CONCLUSION AND FUTURE WORK

We showed that it is NP-hard to localize a robot with an
execution time that is close to minimal. We proved our result
for both tactile (short-distance) and long-distance terrain sen-
sors in both grid graphs and polygonal regions. It, thus, applies

to virtually all terrains of interest in robotics. Therefore, it is
important to understand the behavior of fast-localization heuris-
tics. We showed that the execution time of greedy localization
in grid graphs can be much larger than minimal but cannot be
much larger than the terrain size. Thus, the execution time of
greedy localization scales well with the terrain size and can be
much larger than minimal in some terrains, not because it is
large with respect to the terrain size but because the minimal ex-
ecution time is exceptionally small in these terrains. The upper
bound on the worst-case execution time of greedy localization
is so general that it applies to greedy mapping as well. Finding
results analogous to Theorem 8.1 and Corollary 9.3 for polyg-
onal regions remains as future work, although we have shown
in Section X that several natural definitions of the terrain size
of polygonal regions suffer from scaling problems. Taking ac-
tuator and sensor noise into account, for example, to analyze
a generalization of greedy localization that deals with actuator
and sensor noise by always moving the robot so that it quickly
decreases the entropy of the probability distribution over the
possible locations [26], [32] also remains as future work.
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