
IEEE TRANSACTIONS ON ROBOTICS 1

Multi-Robot Forest Coverage
for Weighted and Unweighted Terrain

Xiaoming Zheng, Sven Koenig,Senior Member, IEEE,David Kempe, and Sonal Jain

Abstract—One of the main applications of mobile robots is
coverage: visiting each location in known terrain. Coverage is
crucial for lawn mowing, cleaning, harvesting, search-and-rescue,
intrusion detection and mine clearing. Naturally, coverage can
be sped up with multiple robots. However, we show that solving
several versions of multi-robot coverage problems with minimal
cover times is NP-hard, which provides motivation for design-
ing polynomial-time constant-factor approximation algorithms.
We then describe Multi-Robot Forest Coverage (MFC), a new
polynomial-time multi-robot coverage algorithm based on an
algorithm by Even et al. for finding a tree cover with trees of
balanced weights. Our theoretical results show that the cover
times of MFC in weighted and unweighted terrain are at most
about a factor of 16 larger than minimal. Our simulation results
show that the cover times of MFC are close to minimal in all
tested scenarios and smaller than the cover times of an alternative
multi-robot coverage algorithm.

Index Terms—Approximation Algorithm, Cell Decomposition,
Complexity, Multi-Robot Coverage, NP-Hardness, Robot Teams,
Spanning Tree Coverage, Terrain Coverage, Tree Cover.

I. I NTRODUCTION

COVERAGE requires robots to visit each location in
known terrain once to perform some task. Examples

include lawn mowing, cleaning, harvesting, search-and-rescue,
intrusion detection and mine clearing. It is frequently desir-
able to minimize the time by which coverage is complete,
called the cover time. In recent years, robotics researchers
have investigated spanning tree-based coverage algorithms
in unweighted terrain, where the travel times of robots are
the same everywhere in the terrain. Single-robot coverage
problems are solved with minimal cover times by Spanning
Tree Coverage (STC), a polynomial-time single-robot cov-
erage algorithm that decomposes terrain into cells, finds a
spanning tree of the resulting graph, and makes the robot
circumnavigate it [13]. Naturally, coverage can be sped up
with multiple robots. We show that solving several versions
of multi-robot coverage problems with minimal cover times is
NP-hard, which provides motivation for designing polynomial-
time constant-factor approximation algorithms. Hazon and
Kaminka recently generalized STC to Multi-Robot Spanning
Tree Coverage (MSTC), a polynomial-time multi-robot cover-
age algorithm [18]. While MSTC provably improves the cover
times compared to STC, it cannot guarantee its cover times to
be small. We generalize STC to Multi-Robot Forest Coverage

Xiaoming Zheng, Sven Koenig and David Kempe are with the Computer
Science Department, University of Southern California, LosAngeles, CA
90089, USA. Their emails are{xiaominz, skoenig, dkempe}@usc.edu. Sonal
Jain is with Microsoft, US-Windows Client Platform, Redmond,WA 98052,
USA. His email is sonalja@microsoft.com.

Manuscript received August 31, 2007.

(MFC), a polynomial multi-robot coverage algorithm based on
finding tree covers with trees of balanced weights, one tree for
each robot. We then generalize MFC from unweighted terrain
to weighted terrain, where the travel times of robots are not
the same everywhere, for example, because different terrain
properties (such as rock, sand and grass) require different
speeds [35] [39]. MFC is nontrivial to generalize because it
uses a tree cover algorithm as a subroutine that is specific
to unweighted terrain. We thus first generalize the tree cover
algorithm and only then MFC. We prove that the cover times
of MFC in weighted and unweighted terrain are at most about
sixteen times larger than minimal.1 Our simulation results
show that the cover times of MFC are close to minimal in all
tested scenarios and smaller than the cover times of MSTC.
MFC has the additional benefit that it tends to return the robots
close to their initial cells, which facilitates their collection and
storage.

II. RELATED WORK

Coverage has been investigated extensively in the litera-
ture [7]. One line of research investigates ant-like robotsthat
plan locally, mostly to coverunknownterrain [33]. Ant-like
robots require only a limited amount of memory, computation
and communication, yet are able to cover terrain robustly. They
are simple to design, cheap to build and easy to program but
can result in large cover times [37]. There are three main
classes of robots, namely

• robots that leave permanent markings in the ter-
rain [9] [10]. Some of these robots use real-time search
to exploit the markings, such as [22]. Other robots use
algorithms that preserve the connectivity of the uncovered
terrain, such as [16] and [40].

• robots that leave evaporating markings in the terrain.
Some of these robots use adaptive algorithms to exploit
the markings, such as [41]. Other robots use algorithms
inspired by alarm pheromones of ants, such as [29].

• robots that do not leave any markings in the terrain. Some
of these robots mimic the behavior of gas flow, such
as [36]. Other robots divide the terrain into regions that
are covered in parallel by different robots, such as [30].

Rekleitis et al. [34] study how to reduce repeat cover-
age with ant-like robots, Noborio et al. [31] and Qutub et
al. [32] study deadlock free coverage with ant-like robots,and
Ichikawa and Hara [19] study coverage after which ant-like
robots have to return to their initial locations.

1The word “about” indicates the omission of an additive constant.

IEEE TRANSACTIONS ON ROBOTICS 2

large cells with
colors

large cells with
weights

48 32 16 32

40 56 48 16

16 40 56 32

8 24 32 48

24 8 32 40

40

small cells with
weights

12 12 8 8 4 4 8 8

12 12 8 8 4 4 8 8

10 10 14 14 12 12 4 4

10 10 14 14 12 12 4 4

4 4 10 10 14 14 8 8

4 4 10 10 14 14 8 8

2 2 6 6 8 8 12 12

2 2 6 6 8 8 12 12

6 6 2 2 8 8 10 10

6 6 2 2 8 8 10 10

10 10

10 10

Fig. 1. Model of Weighted Terrain

Another line of research investigates robots that plan glob-
ally to cover bothknownand unknownterrain. Some robots
represent known changing terrain with neural networks so that
the uncovered areas attract robots, such as [28]. Some robots
coordinate with sensor networks to cover known terrain, such
as [15]. However, most robots divide the terrain explicitlyinto
regions that are covered in parallel by different robots [25].
There are two main classes of robots, namely

• robots that useexact cellular decompositionsto model
the unblocked terrain precisely. Some of these robots use
trapezoidal decompositions [27] to divide the terrain into
regions, such as [2] in known terrain and [6] and [38]
in unknown terrain. Other robots use Boustrophedon
decompositions [8] (that use Morse functions [1] to
determine critical locations indicating changes in the
terrain connectivity), such as [24] and [42] in known
terrain and [23] and [26] in unknown terrain.

• robots that that useapproximate cellular decompositions
to model the unblocked regions only approximately, by
partitioning the terrain into cells of the same shape and
size that are either entirely blocked (that is, untraversable)
or unblocked (that is, traversable). Some of these robots
use the distance wavefront algorithm [20], such as [43]
in known terrain.

The above coverage algorithms assume unweighted terrain
and often do not provide analytical results on the resulting
cover times, which is not surprising for unknown terrain
since the cover times can be arbitrarily bad in unknown
terrain [26]. The new coverage algorithms introduced in this
article use approximate cellular decompositions where the
cells are four times the size of the robots. They are (to the
best of our knowledge) the first polynomial-time constant-
factor approximation algorithms for multi-robot coveragein
both weighted and unweighted (known) terrain.

III. PROBLEM DESCRIPTION

We discretize the given known terrain into large square cells.
Each large cell is either entirely blocked or entirely unblocked.
Robots cannot traverse blocked cells. Each unblocked large
cell has a weight that corresponds to how difficult it is to
traverse the large cell. Each unblocked large cell is evenly
divided into four small square cells. Each small cell has a
weight that is equal to one quarter of the weight of the
large cell, as shown in Figure 1. Large blocked cells are
colored black and large unblocked cells are colored grey,

large cells with weights

48 40
 R

small cells with weights

12 12 10 10

12 12 10 10

path with times

 R

12 11 10

11 12 10
10 12

Fig. 2. Single-Robot Coverage Problem with the Team Objective “Cover
with Return” in Weighted Terrain

where the levels of grey correspond to the weights. We study
two different kinds of terrain.

• Terrain isunweightedif the weight of each large cell is
four, which implies that the weight of each small cell is
one.

• Terrain isweightedif the weight of each large cell is an
arbitrary positive integer.

The robots have the same size as the small cells and start
in small cells that belong to different large cells. They always
know their current small cell and can move from their current
small cell to any adjacent small cell in the four main compass
directions without error in a time that is equal to the average
of the weights of the two small cells (although our analytical
results can easily be adapted to other definitions, such as a
time that is equal to the maximum of the weights of the two
small cells). Each move is atomic, that is, needs to be executed
in full by a robot. Thetravel timeof a robot along a path is the
sum of the times of its moves and thus equal to the number of
its moves in unweighted terrain. We assume that several robots
are able to occupy the same small cell simultaneously and thus
never block each other. This assumption avoids deadlocks and
simplifies our analytical results.

We study two different team objectives.

• The team objectiveCover requires each small cell to be
visited by at least one robot. We want to minimize the
cover time without return, which is equal to the largest
travel time of any robot.

• The team objectiveCover with Returnrequires each small
cell to be visited by at least one robot and each robot to
return to its initial small cell. We want to minimize the
cover time with return, which again is equal to the largest
travel time of any robot.

We simply use “cover time” when we mean “cover time
both with and without return.” For illustration, Figure 2 shows
both a single-robot coverage problem with the team objective
“Cover with Return” and one of its solutions, including the
large cells with their weights (left), the small cells with their
weights (center) and the path with the times of the moves
(right). The cover time with return is equal to 88, the sum of
the weights of all large cells, which is the minimal cover time
with return.

We use several symbols throughout this article.

wmax : the largest weight of any large cell
wsum : the sum of the weights of all large cells
K : the set of robots for multi-robot coverage problems

and the set of roots for rooted tree cover problems
φ : wmax/wsum

ǫ : φ|K|

IEEE TRANSACTIONS ON ROBOTICS 3

 3n-1

 R -n+1

 R -n+2

 R 0

 1
. . .

 2
. . .

. . .
 3n

. . .

6na1 large cells (tunnel)

6na2 large cells (tunnel)

6na3n-1 large cells (tunnel)

6na3n large cells (tunnel)

4

4

4

4

4 4 4

4 4

4

4 4

4

4

4 4 4 4

4 4

. . .

. . .

4

Fig. 3. Multi-Robot Coverage Problem with the Team Objective “Cover with
Return” in Unweighted Terrain

3

 n-2

 n-1

 R -1

 R 0

 1

 2

 n

4 24na1

4

4

4

4

4

4

4

24na2

24na3

24nan-2

24nan-1

24nan

16n2B

16n2B

. . .

Fig. 4. Multi-Robot Coverage Problem with the Team Objective “Cover
without Return” in Weighted Terrain

IV. COMPLEXITY OF MULTI -ROBOT COVERAGE

Multi-robot coverage typically results in smaller cover times
than single-robot coverage. Unfortunately, we show that solv-
ing several versions of multi-robot coverage problems with
minimal cover times is NP-hard, which provides motivation
for designing polynomial-time constant-factor approximation
algorithms.

Theorem 1:It is NP-hard to determine whether the follow-
ing two versions of multi-robot coverage problems can be
solved with cover times with return (for Version 1) or cover
times without return (for Version 2) that are smaller than a
given value:

• Version 1:multi-robot coverage problems with the team
objective “Cover with Return” for a number of robots
specified in the problem description in unweighted ter-
rain; and

• Version 2:multi-robot coverage problems with the team
objective “Cover without Return” for two robots in
weighted terrain.

Proof: We reduce from partitioning problems to prove
the NP-hardness of both versions of multi-robot coverage
problems.

• Version 1: We reduce from the 3-PARTITION prob-
lem: Given a positive integerB and positive inte-
gers a1, . . . , a3n strictly betweenB/4 and B/2 with∑3n

i=1
ai = nB, can they be partitioned evenly into

n sets? The 3-PARTITION problem is strongly NP-
hard [14], that is, NP-hard even if the sizes of its integers
are only polynomial inn.
For a given instance of the 3-PARTITION problem, we
construct an instance of the multi-robot coverage problem
with n robots, as shown in Figure 3. We start with a
“corridor” consisting of4n vertically adjacent unblocked
large cells, numbered from−n + 1 (bottom) to3n (top)
as indicated in the lower right corners of the corridor
cells in Figure 3. There is a “tunnel” of6nai horizontally
adjacent unblocked large cells for eachi = 1, . . . , 3n.
The ith tunnel is connected to theith corridor cell. It is
to the left of the corridor for oddi and to the right of
the corridor for eveni. One robot starts in each of the
corridor cells−n + 1,−n + 2, . . . , 0. This completes the
construction, which can be done in polynomial time. We
claim that the minimal cover time is at most24nB+16n
iff the given integers can be partitioned evenly inton sets.
“If” direction: Assume that the given integers can be
partitioned evenly inton setsS1, . . . , Sn. Then, we let
the jth robot cover theith tunnel for eachi ∈ Sj and
then return to its initial cell. It traverses its tunnels for
a travel time of at most

∑
i∈Sj

4 · 6nai = 24nB and
the corridor for a travel time of at most4 · 4n. Its total
travel time is thus at most24nB +16n, which meets the
requirement.
“Only if” direction: Assume that the travel time of each
robot is at most24nB + 16n. Then, we defineSj to be
the set of indicesi such that thejth robot is the first robot
to cover the upper small cell of theith tunnel cell that
is farthest away from the corridor. These sets partition
the given integers. Thejth robot needs to traverse its
tunnels in both directions. Moving from one tunnel cell
to an adjacent tunnel cell requires at least entering two
small cells. The total travel time of thejth robot thus
is at least 2 · 2 ·

∑
i∈Sj

6nai = 24n
∑

i∈Sj
ai. We

assumed that the total travel time of each robot is at
most 24nB + 16n, which implies that24n

∑
i∈Sj

ai ≤

24nB + 16n or, equivalently,
∑

i∈Sj
ai ≤ B + 2

3
. But

then
∑

i∈Sj
ai ≤ B since both

∑
i∈Sj

ai and B are
integers. Thus, the setsSj partition the given integers
evenly since

∑n

j=1

∑
i∈Sj

ai =
∑3n

i=1
ai = nB and thus∑

i∈Sj
ai = B.

• Version 2: The above construction has to be adapted
slightly to prove the NP-hardness of Version 2 of the
multi-robot coverage problem. We reduce from the PAR-
TITION problem: Given at least five positive integers
a1, . . . , an with

∑n

i=1
ai = 2B, can they be partitioned

evenly into two sets? The PARTITION problem is known
to be NP-hard if the integers can be exponential in

IEEE TRANSACTIONS ON ROBOTICS 4

n [14]. But then the tunnels of length6nai from the
above construction cannot necessarily be constructed in
polynomial time. Instead, weighted terrain allows us to
collapse each tunnel to a single unblocked large cell with
weight 24nai, as shown in Figure 4. Weighted terrain
also allows us to prove the NP-hardness of multi-robot
coverage problems with the team objective “Cover with-
out Return” by adding one unblocked large “destination”
cell of weight 16n2B for each robot to the left of its
initial corridor cell. This weight is so large that exiting
the destination cell results in large cover times. The
corridor consists ofn + 2 unblocked large cells with
weight four each, numbered from−1 (bottom) ton (top).
One robot starts in each of the corridor cells−1 and0.
This completes the construction, which can be done in
polynomial time. We claim that there is a schedule with
cover time of at most56n2B + 24nB + 4n + 8 iff the
given integers can be partitioned evenly into two sets.
“If” direction: Assume that the given integers can be
partitioned evenly into two setsS1 and S2. Then, we
let the jth robot cover theith tunnel for eachi ∈ Sj

and then move to its destination cell. It thus traverses its
tunnels with a travel time of at most

∑
i∈Sj

4 · 6nai =
4·6nB = 24nB, the corridor with a travel time of at most
4n + 8 and its destination cell with a travel time of at
most3.5 · 16n2B = 56n2B. (The factor of3.5 results
from the fact that the destination cell is not exited.) Its
total travel time is thus at most56n2B +24nB +4n+8,
which meets the requirement.
“Only if” direction: Assume that the travel time of each
robot is at most56n2B+24nB+4n+8. Then, we define
Sj to be the set of indicesi such that thejth robot is
the first robot to cover the upper small cell of theith

tunnel that is farthest away from the corridor. These sets
partition the given integers. Thejth robot can cover only
one destination cell and needs to traverse it with a travel
time of at least56n2B. Thus, it has to traverse the tunnels
and corridor with a travel time of at most24nB +4n+8
and also needs to cover the lower small cell of theith

tunnel that is farthest away from the corridor ifi ∈ Sj . If
it did not, then each robot would traverse theith tunnel
with a travel time of at least3 ·6nai = 18nai each. They
would traverse the other tunnels with a combined travel
time of at least

∑
i′ 6=i 24nai′ . Their combined total travel

time would thus be at least
∑

i′ 6=i 24nai′ + 2 · 18nai =
24n

∑n

i=1
ai+12nai = 48nB+12nai > 48nB+8n+16

sincen ≥ 5. Thus, at least one of them would have to
traverse the tunnels and corridor with a travel time of
more than24nB + 4n + 8, which is a contradiction.
Thus, thejth robot covers both the upper and lower
small cell of theith tunnel that is farthest away from
the corridor if i ∈ Sj . It traverses theith tunnel with a
travel time of at least24nai and all tunnels with a travel
time of at least

∑
i∈Sj

24nai. But then
∑

i∈Sj
ai ≤ B

since
∑

i∈Sj
24nai ≤ 24nB + 4n + 8 or, equivalently,∑

i∈Sj
ai ≤ B + 1/6 + 1/(3n) and, furthermore, theai

andB are integers andn ≥ 5. Thus, the setsSj partition

STC
cover time without return = 78

 R

12 11 10

11 12
10 12

Minimal
cover time without return = 77

 R

10 10

10 12

12 12
11

Fig. 5. Suboptimal Cover Time without Return of STC

STC
cover time without return= 682
cover time with return = 688

 R

Fig. 6. Example of STC

MSTC
cover time without return = 332
cover time with return = 394

 R R
 R R

Fig. 7. Example of MSTC

the given integers evenly since
∑

i∈Sj
ai = B.

It is currently open whether solving Version 1 of the multi-
robot coverage problem is NP-hard for a fixed number of
robots (that is, a number of robots that is always the same and
thus does not need to be specified in the problem description).
We conjecture that this problem is indeed NP-hard. It is
currently also on open whether the problem remains NP-hard
for the team objective “Cover without Return.”

V. EXISTING COVERAGE ALGORITHMS

We build on insights provided by the following single-robot
and multi-robot coverage algorithms from the literature.

A. Spanning Tree Coverage

Spanning Tree Coverage (STC) [13] is a single-robot cov-
erage algorithm that was originally proposed for unweighted
terrain but also applies unchanged to weighted terrain [45].
First, STC constructs a graph whose vertices correspond to
the unblocked large cells and whose edges connect adjacent
unblocked large cells. This graph needs to be connected.
Then, STC finds a spanning tree of this graph in polynomial
time. Finally, STC lets the robot move along the path that
circumnavigates this spanning tree. For the team objective
“Cover with Return,” the robot completely circumnavigatesthe
spanning tree until it returns to its initial small cell. Forthe
team objective “Cover without Return,” the robot stops once
all small cells have been covered, which is one move earlier.
Clearly, STC runs in polynomial time. The cover times of
STC in unweighted terrain are minimal [13]. The cover times
with return of STC in weighted terrain are still minimal. The
cover times without return of STC in weighted terrain are not
necessarily minimal but are larger than minimal by at most
the largest weight of any small cell [45], as shown in Figure 5
for the coverage problem from Figure 2. (The thick line shows
the spanning tree.)

IEEE TRANSACTIONS ON ROBOTICS 5

For illustration, Figure 6 shows the spanning tree and path
for the coverage problem from Figure 1. The cover time
without return of STC is 682, The robot has to make one
additional move to return to its initial small cell for the team
objective “Cover with Return,” which is shown with a dashed
line. The cover time with return of STC is 688.

B. Multi-Robot Spanning Tree Coverage

STC has been generalized to Multi-Robot Spanning Tree
Coverage (MSTC) [18] [45]. MSTC is a multi-robot coverage
algorithm for both unweighted terrain [18] and weighted
terrain [45] that computes suboptimal cover times in poly-
nomial time, as follows: MSTC computes the same spanning
tree as STC and considers the path that circumnavigates the
spanning tree. Each robot follows the segment of the path
counterclockwise ahead of it, with one exception: To improve
the cover times, the longest segment is divided evenly between
the two adjacent robots. A few small adjustments, detailed
in [18] for unweighted terrain and in [45] for weighted terrain,
then ensure that MSTC reduces the cover times without return
of STC in unweighted terrain by at least a factor of 2 for
three or more robots. For the team objective “Cover with
Return,” MSTC returns the robots to their initial small cells
on paths with minimal travel times once all small cells have
been covered.

For illustration, Figure 7 shows the spanning tree and paths
for the coverage problem from Figure 1 for four robots. The
cover time without return of MSTC is 332. The robots have to
return to their initial small cells for the team objective “Cover
with Return,” which is not shown in the figure. The cover time
with return of MSTC is 394. This example demonstrates that
the cover times of MSTC do not necessarily improve with
an increasing number of robots since MSTC makes only two
robots exit the bottom-most row of large cells through the
narrow passage. Additional robots in the center of the bottom-
most row do not shorten the travel times of these two robots.
The cover times of MSTC thus become larger than minimal
by an arbitrary factor if one expands the terrain above the
narrow passage and adds robots in the center of the bottom-
most row since then all of the robots would have to exit the
bottom-most row to minimize the cover times. Thus, MSTC
cannot guarantee that its cover times are close to minimal or
even small.

VI. M ULTI -ROBOT FORESTCOVERAGE

We now introduce Multi-Robot Forest Coverage (MFC), a
new multi-robot coverage algorithm for both unweighted and
weighted terrain that is a polynomial-time constant-factor ap-
proximation algorithm for computing suboptimal cover times
in polynomial time. Remember that MSTC determines one
spanning tree, splits the path that circumnavigates it intoone
path for each robot and lets each robot move along its path.
MSTC constructs the tree without taking into account that it
will be split afterwards, which results in unbalanced travel
times of the robots. MFC, on the other hand, determines one
tree for each robot and lets each robot move along the path
that circumnavigates its tree, as follows: First, MFC constructs

MFC
cover time without return = 15

 R R

MSTC
cover time without return = 9

 R R

Fig. 9. MFC versus MSTC in Unweighted Terrain

a graph whose vertices correspond to the unblocked large cells
and whose edges connect adjacent unblocked large cells. This
graph does not need to be connected, as long as each of its
components contains at least one vertex that corresponds to
the initial large cell of a robot. Then, MFC finds a rooted
tree cover of this graph, where the roots are the vertices that
correspond to the initial large cells of the robots. A rooted
tree cover of this graph is a forest of trees with exactly one
tree for each root. The trees can share vertices and edges.
Every vertex of the graph has to be contained in at least one
tree. Finally, MFC lets each robot move along the path that
circumnavigates its tree. For the team objective “Cover with
Return,” the robots completely circumnavigate their treesuntil
they return to their initial small cells. For the team objective
“Cover without Return,” the robots stop once all small cells
have been covered. Clearly, MFC runs in polynomial time if it
can determine a suitable rooted tree cover in polynomial time.

For illustration, Figure 8 shows the trees and paths for the
coverage problem from Figure 1 for four robots. The cover
time without return of MFC is 225. The robots have to return
to their initial small cells for the team objective “Cover with
Return,” which is shown with dashed lines. The cover time
with return of MFC is 256.

A. Unweighted Terrain

In unweighted terrain, we define the weight of a tree to be
the number of its edges and the weight of a rooted tree cover
to be the largest weight of any of its trees. Finding a weight-
minimal rooted tree cover is NP-hard [11]. MFC therefore
uses the tree-cover algorithm by Even et al. [11] to find in
polynomial time a rooted tree cover with a weight that is at
most a factor of 4 larger than minimal. For a single robot,
MFC reduces to STC and thus minimizes the cover times. For
multiple robots, remember that the cover times without return
of MSTC are at least a factor of 2 smaller than those of STC
and thus at least a factor of 2 smaller than the minimal ones
for a single robot. MFC cannot provide such a strong worst-
case guarantee about how small its cover times without return
are with respect to the minimal ones without return of a single
robot. Figure 9 shows an example of unweighted terrain where
the cover time without return of MFC is almost equal to that
of STC if the corridor is sufficiently long, even though the
cover time without return of MSTC is only half that of STC.
However, we now prove that MFC provides a more powerful
guarantee than MSTC, namely a worst-case guarantee about
how small its cover times are with respect to the minimal ones
for the number of available robots.

Theorem 2:The cover times (with and without return) of
MFC in unweighted terrain are at most about a factor of 16
larger than minimal.

IEEE TRANSACTIONS ON ROBOTICS 6

MFC (Robot 1)
travel time without return = 217
travel time with return = 256

 R

MFC (Robot 2)
travel time without return = 216
travel time with return = 256

 R

MFC (Robot 3)
travel time without return = 225
travel time with return = 256

 R

MFC (Robot 4)
travel time without return = 216

travel time with return = 256

 R

Fig. 8. Example of MFC

Proof: Consider the team objective “Cover without Re-
turn.” We defineM to be the weight of the rooted tree cover
found by the tree-cover algorithm by Even et al. [11],N
to be the weight of the weight-minimal rooted tree cover,
O to be the cover time without return of MFC,P to be
the minimal cover time without return andQ to be the
minimal cover time without return if the robots only need
to cover the upper left small cells of all unblocked large
cells. Because circumnavigating a tree of weightM requires
entering at most4M +4 small cells, we get thatO ≤ 4M +4.
The approximation guarantee proved in [11] provides that
M ≤ 4N . Because the weight-minimal rooted tree cover
(shifted slightly to the upper left) contains all upper leftsmall
cells and thus provides a lower bound on the minimal cover
time without return if the robots only need to cover the upper
left small cells, we get thatN ≤ Q. Finally, the minimal cover
time without return if the robots need to cover only the upper
left small cells is at most the minimal cover time without
return if the robots need to cover all small cells. Because of
this fact we get thatQ ≤ P . Combining all these results yields
O ≤ 4M + 4 ≤ 16N + 4 ≤ 16Q + 4 ≤ 16P + 4. The proof
continues to hold for the team objective “Cover with Return”
if each occurrence of “cover time without return” is replaced
with “cover time with return.”

Thus, MFC provides a more powerful guarantee than
MSTC. MFC also has disadvantages. For example, it makes
several robots occupy the same small cell at the same time.
Then, some robots have to wait for other robots to leave
their small cells (or move around them) if our assumption
that several robots are able to occupy the same small cell
simultaneously is unjustified.

B. Weighted Terrain

In weighted terrain, we define the weight of each vertex to
be the weight of the corresponding large cell, the weight of a
tree to be the sum of the weights of its vertices and the weight
of a rooted tree cover to be the largest weight of any of its
trees. Finding a weight-minimal rooted tree cover remains NP-
hard as proved in the appendix but the tree-cover algorithm by
Even et al. [11] no longer applies. MFC therefore uses a new
tree-cover algorithm, TREE COVER, to find in polynomial
time a rooted tree cover with a weight that is at most a factor
of 4 larger than minimal. We describe this polynomial-time
constant-factor approximation algorithm in the appendix.

Theorem 3 (= Theorem 9):TREE COVER can be used to
find aK-rooted tree cover of graphG whose weight is at most
a factor of 4(1 + ǫ) larger than minimal, whereǫ = φ|K|,
φ = wmax/wsum and |K| is the number of roots.

We now prove that MFC provides a worst-case guarantee
about how small its cover times are with respect to the minimal
ones for the number of available robots that is similar to the
one in unweighted terrain. We first relate the weight of a
weight-minimal rooted tree cover to the minimal cover time.

Lemma 4:The weight of a weight-minimal rooted tree
cover divided by four is at most the largest weight of any small
cell plus the minimal cover time (with and without return).

Proof: The proof follows the same structure as the proof
of Theorem 2. Consider the team objective “Cover without
Return.” We defineN to be the weight of a weight-minimal
rooted tree cover,P to be the minimal cover time without
return andQ to be the minimal cover time without return if
the robots need to cover only the upper left small cells of
all large cells. Assume that the robots have to cover only the
upper left small cells of all unblocked large cells and that
they cover these small cells with minimal cover time without
return. Construct a rooted tree cover where the tree of a robot
contains exactly the vertices that correspond to the large cells
that contain any small cell visited by the robot. The robot has
to enter and exit all small cells it visits except possibly for its
initial small cell (which it does not need to enter) and its final
small cell (which it does not need to exit). Thus, the weight of
the tree of a robot divided by four is at most the largest weight
of any small cell plus the travel time of the robot, implying
that the weight of the given rooted tree cover divided by four
is at most the largest weight of any small cell plus the minimal
cover time without return if the robots need to cover only the
upper left small cells of all large cells, Since the weight ofa
weight-minimal rooted tree cover is at most the weight of the
given rooted tree cover, we getN/4 ≤ Q + wmax/4. Finally,
the minimal cover time without return if the robots need to
cover only the upper left small cells is at most the minimal
cover time without return if the robots need to cover all small
cells. Because of this fact we get thatQ ≤ P . Combining all
these results yieldsN/4 ≤ Q + wmax/4 ≤ P + wmax/4. The
proof continues to hold for the team objective “Cover with
Return” if each occurrence of “cover time without return” is
replaced with “cover time with return.”

IEEE TRANSACTIONS ON ROBOTICS 7

Theorem 5:The cover times (with and without return) of
MFC in weighted terrain are at most about a factor of16(1+ǫ)
larger than minimal, whereǫ = φ|K|, φ = wmax/wsum and
|K| is the number of robots.

Proof: Consider either the team objective “Cover without
Return” or “Cover with Return.” We defineM to be the weight
of the rooted tree cover found by TREE COVER,N to be
the weight of a weight-minimal rooted tree cover,O to be
the cover time of MFC andP to be the minimal cover time.
Because circumnavigating a tree of weightM requires a travel
time of M , we get thatO ≤ M . The approximation guarantee
of Theorem 3 provides thatM ≤ 4(1 + ǫ)N . Lemma 4
provides thatN/4 ≤ P +wmax/4. Combining all these results
yields O ≤ M ≤ 4(1 + ǫ)N ≤ 16(1 + ǫ)P + 4(1 + ǫ)wmax.

The ratioφ = wmax/wsum is close to zero for terrain with
many large cells of about the same weight. For example,φ =
0.0814 for the terrain from Figure 1. Then,16(1+ǫ) = 16(1+
φK) is close to sixteen for a small number of robotsK. Thus,
the cover times of MFC are at most about sixteen times larger
than minimal.

VII. S IMULATION RESULTS

We evaluate MFC and MSTC experimentally for both team
objectives, namely “Cover without Return” and “Cover with
Return,” in different scenarios, namely different kinds of
terrain, different numbers of robots and different clustering
of the initial large cells of the robots. The terrain always
consists of49 × 49 large cells. Their weight in weighted
terrain is chosen uniformly at random from the weights 8,
16, 24, . . . , 80. Figure 10 shows the three different kinds of
terrain. The first kind of terrain is empty. The second kind isan
outdoor-like terrain where walls are randomly removed from
a random depth-first search maze until the wall density drops
to 10 percent, resulting in terrain with random obstacles. The
third kind is an indoor-like terrain with walls and doors. The
positions of the walls and doors are fixed, but doors are closed
with 20 percent probability. We vary the number of robots
from 2, 8, 14 to 20. We ensure that no two robots are placed
in the same large cell by randomly choosing different large
cells for each robot and placing the robots in their upper right
small cells. A clustering percentage parameterx determines
how strongly the initial large cells of the robots are clustered.
The initial large cell of the first robot is chosen uniformly
at random from all unblocked large cells. The initial large
cells of the other robots are then chosen uniformly at random
from all unblocked large cells in an area centered at the first
robot, whose height and width are (approximately)x% of the
height and width of the terrain. Thus, a small value ofx results
in a large clustering of initial large cells, whilex = 200 is
equivalent to no clustering at all (callednoneclustering).

For each scenario, we average the cover times of MSTC
and MFC over 50 runs with randomly generated terrain (if
applicable), randomly chosen initial large cells, randomly
generated spanning trees (for MSTC) and randomly generated

rooted tree covers (for MFC).2 All runs terminate within 30
second. A lower bound that represents idealized cover times
for each scenario can be calculated by dividing the sum of the
weights of all large cells by the number of robots and subtract
one in unweighted terrain andwmax/4 in weighted terrain.
These ideal cover times would result if no robot needed to
pass through already covered small cells. We are interestedin
the ratios of the actual cover times of MSTC or MFC and the
ideal cover times since these ratios are upper bounds on how
much the actual cover times are larger than minimal. They are
only upper bounds since the ideal might not be achievable. For
instance, several robots must visit the same small cells in the
example from Figure 8. Figures 11-14 show the relationships
of the number of robots and the ratios for each combination of
multi-robot coverage algorithm, scenario and team objective.

We make the following observations: The ratios of MFC
are smaller than those of MSTC for both team objectives.
MFC takes the team objective already into account when
finding a tree for each robot to circumnavigate, whereas MSTC
takes the team objective into account when it decides how the
robots should circumnavigate the single tree. Thus, the cover
times of MFC are smaller than those of MSTC. The ratios
increase with the number of robots for both MFC and MSTC
since the robots then need to pass more and more through
already covered cells. The ratios increase very slowly withthe
number of robots for MFC, but much faster for MSTC, which
distributes most of the travel time among two robots only.
The ratios change insignificantly with the amount of clustering
for MFC (as can be clearly seen in Figures 11-14), but a lot
for MSTC. In particular, the cover times of MFC are small
in the common situation where robots are deployed together.
Finally, the ratios change insignificantly for MFC if the team
objective is changed from “Cover without Return” to “Cover
with Return,” but noticeably for MSTC. Thus, all robots are
close to their initial small cells when coverage is completefor
MFC, which facilitates their retrieval.

Theorem 2 guarantees that the cover times of MFC in
unweighted terrain are at most a factor of about 16 larger
than minimal. Similarly, Theorem 5 guarantees that the cover
times of MFC in weighted terrain are at most a factor of
about 16 larger than minimal since the values ofφ are indeed
very small. For example,φ = 8.9 × 10−4 for empty terrain,
φ = 9.9× 10−4 for outdoor-like terrain andφ = 10.5× 10−4

for indoor-like terrain. Empirically, the ratios are significantly
smaller for all tested scenarios and both team objectives,
namely at most 1.91.

Figures 15 and 16 present examples of MSTC and MFC,
respectively, solving multi-robot coverage problems for four
robots in indoor-like terrain. The areas covered by different
robots are shown in different colors. The covered areas of
MFC are much more balanced in size than those of MSTC,
explaining both the smaller cover time with return and the
smaller ratio of MFC.

2For MSTC, we first choose the root of the spanning tree randomlyamong
the initial large cells of the robots and then use the Prim algorithm to generate
the spanning tree, breaking ties randomly. For MFC, we use thetree cover
algorithms described in this article, breaking ties randomly.

IEEE TRANSACTIONS ON ROBOTICS 8

Empty Terrain Outdoor-Like Terrain Indoor-Like Terrain

Fig. 10. Screenshots of Different Kinds of Terrain

 1

 2

 3

 4

 5

 6

 7

 8

 9

 2 4 6 8 10 12 14 16 18 20

R
at

io

Number of Robots

Empty Terrain

MSTC with 15% Clustering
MSTC with 60% Clustering

MSTC with None Clustering
MFC with 15% Clustering
MFC with 60% Clustering

MFC with None Clustering

 1

 2

 3

 4

 5

 6

 7

 8

 9

 2 4 6 8 10 12 14 16 18 20

R
at

io

Number of Robots

Outdoor-Like Terrain

MSTC with 15% Clustering
MSTC with 60% Clustering

MSTC with None Clustering
MFC with 15% Clustering
MFC with 60% Clustering

MFC with None Clustering

 1

 2

 3

 4

 5

 6

 7

 8

 9

 2 4 6 8 10 12 14 16 18 20

R
at

io
Number of Robots

Indoor-Like Terrain

MSTC with 15% Clustering
MSTC with 60% Clustering

MSTC with None Clustering
MFC with 15% Clustering
MFC with 60% Clustering

MFC with None Clustering

Fig. 11. Simulation Results for the Team Objective “Cover with Return” in Unweighted Terrain

 1

 2

 3

 4

 5

 6

 7

 8

 9

 2 4 6 8 10 12 14 16 18 20

R
at

io

Number of Robots

Empty Terrain

MSTC with 15% Clustering
MSTC with 60% Clustering

MSTC with None Clustering
MFC with 15% Clustering
MFC with 60% Clustering

MFC with None Clustering

 1

 2

 3

 4

 5

 6

 7

 8

 9

 2 4 6 8 10 12 14 16 18 20

R
at

io

Number of Robots

Outdoor-Like Terrain

MSTC with 15% Clustering
MSTC with 60% Clustering

MSTC with None Clustering
MFC with 15% Clustering
MFC with 60% Clustering

MFC with None Clustering

 1

 2

 3

 4

 5

 6

 7

 8

 9

 2 4 6 8 10 12 14 16 18 20

R
at

io

Number of Robots

Indoor-Like Terrain

MSTC with 15% Clustering
MSTC with 60% Clustering

MSTC with None Clustering
MFC with 15% Clustering
MFC with 60% Clustering

MFC with None Clustering

Fig. 12. Simulation Results for the Team Objective “Cover without Return” in Unweighted Terrain

VIII. D ISCUSSION ANDFUTURE WORK

Our main contribution is a theoretical one since we demon-
strated how difficult multi-robot coverage is under idealized
conditions. We showed that solving several versions of multi-
robot coverage problems with minimal cover times is NP-hard.
We then introduced a new multi-robot coverage algorithm,
called Multi-Robot Forest Coverage (MFC), which is (to the
best of our knowledge) the first polynomial-time constant-
factor approximation algorithm for multi-robot coverage in
both weighted and unweighted terrain. Our simulation results

showed that the cover times of MFC are smaller than the ones
of Multi-Robot Spanning-Tree Coverage (MSTC), an alter-
native multi-robot coverage algorithm, and close to minimal
in all tested scenarios. Our simulation results used randomly
generated spanning trees (for MSTC) and randomly generated
rooted tree covers (for MFC), to compare MSTC and MFC
on equal grounds. However, the cover times of MSTC can be
reduced by carefully constructing its spanning trees [3] [4]. It
is future work to determine whether the cover times of MFC
can be reduced as well by carefully constructing its rooted
tree covers and then compare MSTC and MFC using these

IEEE TRANSACTIONS ON ROBOTICS 9

 1

 2

 3

 4

 5

 6

 7

 8

 9

 2 4 6 8 10 12 14 16 18 20

R
at

io

Number of Robots

Empty Terrain

MSTC with 15% Clustering
MSTC with 60% Clustering

MSTC with None Clustering
MFC with 15% Clustering
MFC with 60% Clustering

MFC with None Clustering

 1

 2

 3

 4

 5

 6

 7

 8

 9

 2 4 6 8 10 12 14 16 18 20

R
at

io

Number of Robots

Outdoor-Like Terrain

MSTC with 15% Clustering
MSTC with 60% Clustering

MSTC with None Clustering
MFC with 15% Clustering
MFC with 60% Clustering

MFC with None Clustering

 1

 2

 3

 4

 5

 6

 7

 8

 9

 2 4 6 8 10 12 14 16 18 20

R
at

io

Number of Robots

Indoor-Like Terrain

MSTC with 15% Clustering
MSTC with 60% Clustering

MSTC with None Clustering
MFC with 15% Clustering
MFC with 60% Clustering

MFC with None Clustering

Fig. 13. Simulation Results for the Team Objective “Cover with Return” in Weighted Terrain

 1

 2

 3

 4

 5

 6

 7

 8

 9

 2 4 6 8 10 12 14 16 18 20

R
at

io

Number of Robots

Empty Terrain

MSTC with 15% Clustering
MSTC with 60% Clustering

MSTC with None Clustering
MFC with 15% Clustering
MFC with 60% Clustering

MFC with None Clustering

 1

 2

 3

 4

 5

 6

 7

 8

 9

 2 4 6 8 10 12 14 16 18 20

R
at

io

Number of Robots

Outdoor-Like Terrain

MSTC with 15% Clustering
MSTC with 60% Clustering

MSTC with None Clustering
MFC with 15% Clustering
MFC with 60% Clustering

MFC with None Clustering

 1

 2

 3

 4

 5

 6

 7

 8

 9

 2 4 6 8 10 12 14 16 18 20

R
at

io

Number of Robots

Indoor-Like Terrain

MSTC with 15% Clustering
MSTC with 60% Clustering

MSTC with None Clustering
MFC with 15% Clustering
MFC with 60% Clustering

MFC with None Clustering

Fig. 14. Simulation Results for the Team Objective “Cover without Return” in Weighted Terrain

Before Coverage (MST) During Coverage After Coverage

Fig. 15. Example of MSTC in Indoor-Like Terrain (Cover Time with Return = 3,338 and Ratio = 1.63)

spanning trees and rooted tree covers, respectively. Also,the
current version of MFC assumes ideal robots. However, robots
embedded in the real world are subject to sensor and actuator
noise and may not always be reliable [5]. It is future work
to generalize our algorithm to robots with such uncertainty
and other typical imperfections, which also includes making it
robust in the presence of failing robots, a property that MSTC
already has. It is also promising to combine the ideas behind
MSTC and MFC.

APPENDIX

We modify the tree-cover algorithm by Even et al. [11] (and
the proofs in that paper) to work on graphs with weighted ver-
tices rather than weighted edges. We present the resulting tree-
cover algorithm (called TREE COVER), prove its properties
and describe how MFC uses it.

A. Weight-Minimal Rooted Tree Cover Problem

We define the WEIGHT-M INIMAL ROOTED TREE COVER

problem as follows: LetG = (V,E) be a graph with weighted

IEEE TRANSACTIONS ON ROBOTICS 10

Before Coverage (Rooted Tree Cover) During Coverage After Coverage

Fig. 16. Example of MFC in Indoor-Like Terrain (Cover Time withReturn = 2,064 and Ratio = 1.01)

vertices, wherew(v) is the positive integer weight of vertex
v ∈ V . DefineK ⊆ V to be a set of distinguished vertices,
called roots. AK-rooted tree cover ofG is a forest of|K|
trees, which can share vertices and edges. The set of their roots
must be equal toK, and every vertex inV has to be in at least
one tree. The weight of a tree is the sum of the weights of
its vertices. The weight of aK-rooted tree cover is the largest
weight of any of its trees. Given a graphG = (V,E) with
weighted vertices and a setK ⊆ V of roots, find a weight-
minimal K-rooted tree cover of graphG.

B. Definitions

We define the weight of a path in the graph to be the sum
of the weights of the vertices in the path, except for its end
vertices. We define the distance of a vertex and a tree in the
graph to be the minimal weight of any path that connects the
vertex to some vertex in the tree. We define the distance of
two trees in the graph to be the minimal weight of any path
that connects some vertex in one of the trees to some vertex
in the other tree. We also use the notation from Section III.

C. Complexity of Finding Weight-Minimal Rooted Tree Covers

We show that finding weight-minimal rooted tree covers
is NP-hard, which provides our motivation for designing
the polynomial-time constant-factor approximation algorithm
TREE COVER.

Theorem 6:It is NP-hard to determine whether there exist
K-rooted tree covers whose weights are smaller than given
values for specified graphs and sets of roots.

Proof: To prove the NP-hardness of solving the WEIGHT-
M INIMAL ROOTED TREE COVER problem, we reduce from
the BIN-PACKING problem: Given a set of elements with given
positive integer sizes and a fixed number of bins, each with
the same given integer capacity, can each element be placed
in exactly one of the bins so that the sum of the sizes of the
elements in each bin does not exceed its capacity?

For a given instance of the BIN-PACKING problem, we
construct a completely connected graphG with one vertex for
each element (whose weight is equal to the size of the element)

and one vertex for each bin (whose weight is one). The set
of roots K contains exactly the vertices for the bins. This
completes the construction, which can be done in polynomial
time. We claim that the weight of aK-rooted tree cover of
graph G is at most the given capacity plus one iff the bin-
packing problem is solvable.

“If” direction: Assume that each element can be placed in
exactly one of the bins so that the sum of the sizes of the
elements in each bin does not exceed its capacity. We make
the tree rooted in the vertex of a bin contain the vertices of
the elements that the bin contains. Then, the weight of the
resulting K-rooted tree cover is at most the given capacity
plus one, which meets the requirement.

“Only if” direction: Assume that the weight of aK-rooted
tree cover of graphG is at most the given capacity plus one.
We place each element in one of the bins whose vertex is the
root of a tree that contains the vertex of the element. Then,
the bin-packing solution meets the capacity constraints.

D. Tree Cover Algorithm

We now describe TREE COVER, that takes as input a graph
G = (V,E), a set of rootsK and a boundB ≥ wmax. Given
any boundB ∈ [wmax, wsum], TREE COVER either reports
SUCCESS and returns aK-rooted tree cover of graphG with
weight at most4B or reports FAILURE, in which case there
does not exist aK-rooted tree cover of graphG with weight
at mostB/(1+ ǫ). In later sections, we prove these properties
and show how to find a small value ofB such that TREE
COVER reports SUCCESS and the weight of the resulting
K-rooted tree cover is at most a factor of4(1+ ǫ) larger than
minimal.

TREE COVER operates as follows:

1) Contract all roots into a new vertexk∗ by adding vertex
k∗ to the graph, removing all roots and the edges
connecting them from the graph and, for each edge
(v, k) ∈ E with v /∈ K and k ∈ K, adding edge
(v, k∗) to the graph and removing the edge(v, k) from
the graph.

2) Find any spanning tree of the resulting graph.

IEEE TRANSACTIONS ON ROBOTICS 11

…

r

w(Tr)
�

 2B

original tree

w(Tv) < B

v

r

remaining tree

v …

r

w(Tr) ∈[B, 2B)

v

non-leftover subtree

(a) Case 3a

…

r

w(Tr)
�

 2B

original tree

w(Tv) ∈[B, 2B)

v

r

remaining tree

v

non-leftover subtree

v …

(b) Case 3b

w(Tv) ∈[B, 2B)

Fig. 17. Cases 3a and 3b of the Tree Decomposition

3) Uncontract the single vertexk∗ back to the roots by
adding all roots to the spanning tree, removing vertexk∗

from the spanning tree, and, for each edge(v, k∗) with
v ∈ V in the spanning tree, adding one edge(v, k) ∈ E
with k ∈ K to the spanning tree and removing the edge
(v, k∗) from the spanning tree. This splits the spanning
tree into a forest of|K| trees.

4) Decompose each tree recursively into zero or more
non-leftover subtrees whose weights are in the interval
[B, 2B) and one leftover subtree whose weight is in the
interval (0, B). Assume that a tree is rooted inr. The
decomposition procedure repeatedly removes vertices
from the tree as it generates the non-leftover subtrees.
The leftover subtree consists of all vertices that have
not been removed after the decomposition procedure
terminates. If all vertices have been removed, then the
leftover subtree consists of onlyr. We distinguish three
cases:

• Case 1:The weight of the tree rooted inr is less
thanB. Then, the decomposition procedure simply
returns.

• Case 2:The weight of the tree rooted inr is in
the interval[B, 2B). Then, one non-leftover subtree
consists of the tree rooted inr. The decomposition
procedure removes all vertices of this non-leftover
subtree from the tree rooted inr (leaving the empty
tree) and returns.

• Case 3:The weight of the tree rooted inr is at least
2B. We distinguish three subcases:

– Case 3a: The weights of all trees rooted in
children ofr are less thanB. Then, the decompo-
sition procedure picks a number of trees rooted in
children ofr so that the weight of the tree consist-
ing of r and these trees is in the interval[B, 2B).
(This is possible sincew(r) ≤ wmax ≤ B and the
weights of all trees rooted in children ofr are less

than B but the weight of the tree rooted inr is
at least2B.) One non-leftover subtree consists of
r and these trees. The decomposition procedure
removes all vertices of this non-leftover subtree
except forr from the tree rooted inr and calls
itself recursively on the remaining tree rooted in
r in order to find the other non-leftover subtrees.
This case is illustrated in Figure 17a, whereTv

denotes the tree rooted inv and w(Tv) denotes
its weight.

– Case 3b:The weight of at least one tree rooted
in a child of r is in the interval[B, 2B). Then,
the decomposition procedure picks such a tree.
One non-leftover subtree consists of this tree. The
decomposition procedure removes all vertices of
the non-leftover subtree from the tree rooted inr
and calls itself recursively on the remaining tree
rooted inr in order to find the other non-leftover
subtrees. This case is illustrated in Figure 17b.

– Case 3c:Otherwise, the weight of at least one
tree rooted in a child ofr is at least2B. Then, the
decomposition procedure calls itself recursively
on such a tree rooted in a child ofr and then on
the remaining tree rooted inr in order to find the
non-leftover subtrees.

5) Find a maximum matching [21] of all non-leftover
subtrees to the roots, subject to the constraint that a non-
leftover subtree can only be matched to a root if the non-
leftover subtree and the leftover tree of the root are at
distance at mostB. The maximum matching problem
can be modeled as a maximal flow problem and be
solved in polynomial time, for example, with the Ford-
Fulkerson algorithm [12].

6) If one or more non-leftover subtrees cannot be matched,
report FAILURE. Otherwise, report SUCCESS and, for
each root, return the tree consisting of the leftover
subtree of the root, the single non-leftover subtree (if
any) matched to the root and a weight-minimal path
(if any) from the non-leftover subtree to the leftover
subtree.

E. Properties

Clearly, TREE COVER runs in polynomial time and either
reports SUCCESS or FAILURE. It is also easy to see that
the weights of all non-leftover subtrees (if any) returned by
the decomposition procedure in Step 4 of TREE COVER for
a given tree are in the interval[B, 2B). The weight of the
leftover subtree is in the interval(0, B). Also, the root of
the tree is in the leftover subtree. We now prove two main
properties of TREE COVER.

Theorem 7:If TREE COVER reports SUCCESS, then it
returns aK-rooted tree cover of graphG with weight at most
4B.

Proof: If TREE COVER reports SUCCESS, then it re-
turns, for each root, the tree consisting of the leftover subtree
of the root (whose weight is at mostB), the single non-leftover

IEEE TRANSACTIONS ON ROBOTICS 12

subtree (if any) matched to the root (whose weight is at most
2B) and a weight-minimal path (if any) from the non-leftover
subtree to the leftover subtree (whose weight is at mostB).
The weight of each tree is thus at most4B.

Theorem 8:If TREE COVER reports FAILURE, then there
does not exist aK-rooted tree cover of graphG with weight
at mostB/(1+ǫ), whereǫ = φ|K|, φ = wmax/wsum and|K|
is the number of roots.

Proof: Define B′ to be the weight of a weight-minimal
K-rooted tree coverT of graph G and assume thatB′ ≤
B/(1 + ǫ). Define L to be the set of non-leftover subtrees
created in Step 4 of TREE COVER andK(l) ⊆ K to be the
set of roots at a distance of at mostB from l ∈ L. We show
that |

⋃
l∈L′ K(l)| ≥ |L′| for every L′ ⊆ L. Step 5 of TREE

COVER can then match all non-leftover subtrees according
to Hall’s Marriage Theorem [17]. Therefore, TREE COVER
reports SUCCESS, which is a contradiction.

We now show that|
⋃

l∈L′ K(l)| ≥ |L′|. Consider anyL′ ⊆
L. DefineT ′ ⊆ T to be the set of trees in a weight-minimal
K-rooted tree cover of graphG which each have at least one
vertex in common with at least one of the trees inL′. Define
w(L′) =

∑
l∈L′ w(l) andw(T ′) =

∑
t∈T ′ w(t).

First, for everyt ∈ T ′, there exists anl in L′ that has at least
one vertex in common witht, per definition ofT ′. The root of
t is thus at a distance of at mostw(t) ≤ B′ ≤ B/(1+ ǫ) ≤ B
from l, which implies that the root oft is contained inK(l).⋃

l∈L′ K(l) thus contains the roots of all trees inT ′, which
implies that|

⋃
l∈L′ K(l)| ≥ |T ′|.

Second,w(L′) ≥ B|L′| andw(T ′) ≤ B′|T ′| sincew(l) ∈
[B, 2B) for all l ∈ L′ andw(t) ≤ B′ for all t ∈ T ′.

Third, every vertex in a tree inL′ is also in at least one tree
in T ′ sinceT is a tree cover. The trees inL′ can contain at
most|L′| duplicate vertices because every non-leftover subtree
created in Step 4 of TREE COVER contains at most one vertex
that has not yet been removed from all trees created in Step 3
of TREE COVER and thus could be a duplicate vertex. (The
trees created in Step 3 of TREE COVER share at most their
roots, and Step 4 of TREE COVER removes all vertices of
a non-leftover subtree from its tree when it creates the non-
leftover subtree, except possibly for the root of the non-leftover
subtree in Case 3a.) Each duplicate vertex has a weight of at
mostwmax, which implies thatw(L′) ≤ w(T ′) + wmax|L

′|.
Finally, the sum of the weights of all vertices can be split

evenly among the trees at best. Thus,B′ ≥ wsum/|K|, which
implies thatwmax = wsumφ ≤ |K|B′φ.

Combining all these observations yields

B′|T ′| ≥ w(T ′)
≥ w(L′) − wmax|L

′|
≥ B|L′| − |K|B′φ|L′|
= (B − |K|B′φ)|L′|
≥ (B′(1 + ǫ) − B′ǫ)|L′|
= B′|L′|,

and thus|
⋃

l∈L′ K(l)| ≥ |T ′| ≥ |L′|.

F. Application

Theorem 9:TREE COVER can be used to find aK-rooted
tree cover of graphG whose weight is at most a factor of4(1+

ǫ) larger than minimal, whereǫ = φ|K|, φ = wmax/wsum and
|K| is the number of roots.

Proof: Define B′ to be the weight of a weight-minimal
K-rooted tree cover ofG. B′ is an integer since the weights of
all vertices are integers, andB′ ∈ [wmax, wsum] since at least
one tree contains a vertex with weightwmax and every tree
contains at most all vertices. We perform binary search on the
interval [wmax, wsum] to find a small value ofB for which
TREE COVER reports SUCCESS. We start with the lower
boundwmax and the upper boundwsum. We then repeatedly
run TREE COVER withB set to the mean of the lower and
upper bound. If TREE COVER reports FAILURE, then we set
the lower bound toB. Otherwise, we set the upper bound to
B. We stop once the difference of the upper and lower bound
is at most1 + ǫ. Define Bl to be the lower bound andBu

to be the upper bound of the binary search after termination.
Define B̂ = ⌈Bl/(1 + ǫ)⌉. We distinguish two cases:

• Case 1:If TREE COVER reports SUCCESS withB set
to (1 + ǫ)B̂, then we output the tree cover returned by
TREE COVER for this value ofB.
If Bl = wmax (the initial lower bound), thenB′ >
Bl/(1+ǫ) sinceB′ ≥ wmax > wmax/(1+ǫ). Otherwise,
B′ > Bl/(1 + ǫ) according to Theorem 8 since TREE
COVER reports FAILURE withB set toBl according to
the binary search used. In both cases,B′ > Bl/(1 + ǫ).
But then,B′ ≥ ⌈Bl/(1 + ǫ)⌉ = B̂ sinceB′ is an integer.
TREE COVER reports SUCCESS withB set to(1+ǫ)B̂
according to the assumption. It returns a tree cover whose
weight is at most4(1 + ǫ)B̂ according to Theorem 7,
which is at most a factor of4(1+ ǫ) larger than minimal
since4(1 + ǫ)B′ ≥ 4(1 + ǫ)B̂.

• Case 2:If TREE COVER reports FAILURE withB set
to (1 + ǫ)B̂, then we output the tree cover returned by
TREE COVER withB set toBu.
B′ > (1+ǫ)B̂/(1+ǫ) = B̂ according to Theorem 8 since
TREE COVER reports FAILURE with B set to(1+ǫ)B̂.
ThenB′ ≥ B̂ + 1 sinceB′ andB̂ are integers.̂B + 1 ≥
Bl/(1 + ǫ) + 1 ≥ Bu/(1 + ǫ) since(Bu −Bl)/(1 + ǫ) ≤
1 according to the termination condition of the binary
search. Thus,Bu ≤ (1 + ǫ)(B̂ + 1) ≤ (1 + ǫ)B′.
If Bu = wsum (the initial upper bound), then TREE
COVER reports SUCCESS withB set to Bu, as ex-
plained above already. Otherwise, TREE COVER reports
SUCCESS with B set toBu according to the binary
search used. It returns a tree cover of weight at most
4Bu ≤ 4(1 + ǫ)B′ according to Theorem 7, which is at
most a factor of4(1 + ǫ) larger than minimal.

The binary search runs in polynomial time because TREE
COVER runs in polynomial time and is run at most
⌈log2((wsum − wmax)/(1 + ǫ))⌉ + 2 ≤ log2 wsum + 3 times,
which is polynomial in the size of the input.

REFERENCES

[1] E. Acar, H. Choset, A. Rizzi, P. Atkar, and D. Hull. Morse decomposi-
tions for coverage tasks.The International Journal of Robotics Research,
21(4):331–344, 2002.

IEEE TRANSACTIONS ON ROBOTICS 13

[2] A. Agarwal, L. Hiot, E. Joo, and N. Nghia. Rectilinear workspace par-
titioning for parallel coverage using multiple unmanned aerial vehicles.
Advanced Robotics, 21(1-2), 2007.

[3] N. Agmon, N. Hazon, and G. Kaminka. Constructing spanning trees
for efficient multi-robot coverage. InProceedings of IEEE International
Conference on Robotics and Automation, pages 1698–1703, 2006.

[4] N. Agmon, N. Hazon, and G. Kaminka. The giving tree: Constructing
trees for efficient offline and online nulti-robot coverage.Annals of
Mathematics and Artificial Intelligence, 52(2-4):143–168, 2008.

[5] P. Amstutz, N. Correll, and A. Martinoli. Distributed boundary coverage
with a team of networked miniature robots using a robust market-based
algorithm. Annals of Mathematics and Artificial Intelligence, 52(2-
4):307–333, 2008.

[6] Z. Butler. Distributed Coverage of Rectilinear Environments. PhD thesis,
Robotics Institute, Carnegie Mellon University, Pittsburgh (Pennsylva-
nia), 2000.

[7] H. Choset. Coverage for robotics – a survey of recent results. Annals
of Mathematics and Artificial Intelligence, 31:113–126, 2001.

[8] H. Choset and P. Pignon. Coverage path planning: The boustrophedon
cellular decomposition. InProceedings of the International Conference
on Field and Service Robotics, 1997.

[9] X. Deng and C. Papadimitriou. Competitive distributed decision-making.
Algorithmica, 16(2):350–356, 1992.

[10] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. Robotic exploration
as graph construction.IEEE Transactions on Robotics and Automation,
7(6):859–865, 1991.

[11] G. Even, N. Garg, J. K̈onemann, R. Ravi, and A. Sinha. Min-max tree
covers of graphs.Operations Research Letters, 32:309–315, 2004.

[12] L. Ford and D. Fulkerson. Maximal flow through a network.Canadian
Journal of Mathematics, 8:399–404, 1956.

[13] Y. Gabriely and E. Rimon. Spanning-tree based coverage of contin-
uous areas by a mobile robot.Annals of Mathematics and Artificial
Intelligence, 31:77–98, 2001.

[14] M. Garey and D. Johnson.Computers and Intractability: A Guide to
the Theory of NP-Completeness. Freeman, 1979.

[15] A. Gasparri, B. Krishnamachari, and G. S. Sukhatme. A framework for
multi-robot node coverage in sensor networks.Annals of Mathematics
and Artificial Intelligence, 52(2-4):281–305, 2008.

[16] S. Ge and C. Fua. Complete multi-robot coverage of unknownen-
vironments with minimum repeated coverage. InProceedings of the
International Conference on Robotics and Automation, pages 715–720,
2005.

[17] P. Hall. On representatives of subsets.Journal of the London
Mathematical Society, 10:26–30, 1935.

[18] N. Hazon and G. Kaminka. Redundancy, efficiency, and robustness in
multi-robot coverage. InProceedings of the International Conference
on Robotics and Automation, pages 735–741, 2005.

[19] S. Ichikawa and F. Hara. Characteristics of object-searching and object-
fetching behaviors of multi-robot system using local communication.
In Proceedings of the International Conference on Systems, Man, and
Cybernetics, pages 775–781, 1999.

[20] R. Jarvis and J. Byrne. Robot navigation: Touching, seeing and knowing.
In Proceedings of the Australian Conference on Artificial Intelligence,
pages 18–20, 1986.

[21] J. Kleinberg and E. Tardos.Algorithm Design. Addison Wesley, 2005.
[22] S. Koenig and Y. Liu. Terrain coverage with ant robots: Asimulation

study. InProceedings of the International Conference on Autonomous
Agents, pages 600–607, 2001.

[23] C. Kong, N. Peng, and I. Rekleitis. Distributed coverage with multi-robot
system. InProceedings of the International Conference on Robotics and
Automation, pages 2423–2429, 2006.

[24] D. Kurabayashi, J. Ota, T. Araiand, and E. Yoshida. Cooperative
sweeping by multiple mobile robots. InProceedings of the International
Conference on Robotics and Automation, pages 1744 –1749, 1996.

[25] D. Kurabayashi, J. Ota, and E. Yoshida. An algorithm of dividing a
work area to multiple mobile robots. InProceedings of the International
Conference on Intelligent Robots and Systems, pages 286–291, 1995.

[26] D. Latimer, S. Srinivasa, V. Lee-Shue, S. Sonne, H. Choset, and A. Hurst.
Towards sensor based coverage with robot teams. InProceedings of the
International Conference on Robotics and Automation, pages 961–967,
2002.

[27] J. Latombe. Robot Motion Planning. Kluwer Academic Publishers,
1991.

[28] C. Luo and S. Yang. A real-time cooperative sweeping strategy for
multiple cleaning robots. InProceedings of the International Symposium
on Intelligent Control, pages 660–665, 2002.

[29] R. Menezes, F. Martins, F. Vieira, R. Silva, and M. Braga. A model for
terrain coverage inspired by ant’s alarm pheromones. InProceedings of
the ACM Symposium on Applied Computing, pages 728–732, 2007.

[30] T. Min and H. Yin. A decentralized approach for cooperative sweeping
by multiple mobile robots. InProceedings of the International Confer-
ence on Intelligent Robots and Systems, pages 380–385, 1998.

[31] H. Noborio, T. Yoshioka, and T. Hamaguchi. On-line deadlock-free
path-planning algorithms by means of a sensor-feedback tracing. In
Proceedings of the International Conference on Systems, Man and
Cybernetics, pages 1291–1296, 1995.

[32] S. Qutub, R. Alami, and F. Ingrand. How to solve deadlock situations
within the plan-merging paradigm for multi-robot cooperation. In
Proceedings of the International Conference on Intelligent Robots and
Systems, pages 1610–1615, 1997.

[33] I. Rekleitis, G. Dudeck, and E. Milios. Multi-robot exploration of an
unknown environment, efficiently reducing the odometry error. In Pro-
ceedings of the International Joint Conference on Artificial Intelligence,
pages 1340–1345, 1997.

[34] I. Rekleitis, V. Lee-Shue, A. New, and H. Choset. Limitedcom-
munication, multi-robot team based coverage. InProceedings of the
International Conference on Robotics and Automation, pages 3462–
3468, 2004.

[35] N. Rowe and R. Alexander. Finding optimal-path maps for path
planning across weighted regions.The International Journal of Robotics
Research, 19(2):83–95, 2000.

[36] D. Spears, W. Kerr, and W. Spears. Physics-based robot swarms for
coverage problems.International Journal on Intelligent Control and
Systems, 11(3):124–140, 2006.

[37] J. Svennebring and S. Koenig. Building terrain-covering ant robots.
Autonomous Robots, 16(3):313–332, 2004.

[38] J. VanderHeide and N. Rao. Terrain coverage of an unknown room by
an autonomous mobile robot. Technical Report ORNL/TM-13117,Oak
Ridge National Laboratory, Oak Ridge (Tennessee), 1995.

[39] J. Vörös. Mobile robot path planning among weighted regions using
quadtree representations. InProceedings of the International Conference
on Computer Aided Systems Theory, pages 239–249, 2000.

[40] I. Wagner, Y. Altshuler, V. Yanovski, and A. Bruckstein. Cooperative
cleaners: A study in ant robotics.The International Journal of Robotics
Research, 27(1):127–151, 2008.

[41] I. Wagner, M. Lindenbaum, and A. Bruckstein. Distributed covering by
ant-robots using evaporating traces.IEEE Transactions on Robotics and
Automation, 15(5):918–933, 1999.

[42] G. Winward and N. Flann. Coordination of multiple vehicles for area
coverage tasks. InProceedings of the International Conference on
Intelligent Robots and Systems, pages 1351–1356, 2007.

[43] A. Zelinsky, R. Jarvis, J. Byrne, and S. Yuta. Planning paths of
complete coverage of an unstructured environment by a mobile robot.
In Proceedings of the International Conference on Advanced Robotics,
pages 533–538, 1993.

[44] X. Zheng, S. Jain, S. Koenig, and D. Kempe. Multi-robot forest
coverage. InProceedings of the International Conference on Intelligent
Robots and Systems, pages 2318–2323, 2005.

[45] X. Zheng and S. Koenig. Robot coverage of terrain with non-uniform
traversability. In Proceedings of the International Conference on
Intelligent Robots and Systems, pages 2300–2309, 2007.

ACKNOWLEDGMENTS

Parts of this article have been presented at the International
Conference on Intelligent Robots and Systems in 2005 [44]
and 2007 [45]. This article corrects one mistake in [44], where
the proof of Theorem 3 stated that2Ĉ ≤ T̂ul but should have
stated thatĈ ≤ T̂ul. We thank Gal Kaminka for interesting
discussions on Multi-Robot Spanning Tree Coverage and
multi-robot coverage in general. Our research was supported
by, or in part by, the U.S. Army Research Laboratory and
the U.S. Army Research Office under contract W911NF-08-
1-0468 and the National Science Foundation under contracts
IIS-0350584 and IIS-0413196 to Sven Koenig. Any opinions,
findings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of the sponsoring organizations and agencies.

IEEE TRANSACTIONS ON ROBOTICS 14

Xiaoming Zheng is a Ph.D. student in computer
science at the University of Southern California,
where he has worked on multi-robot coverage algo-
rithms since 2004. His research interests are multi-
robot coordination and task-allocation algorithms.
He received his B.S. degree in computer science
from the University of Science and Technology of
China in 2004 and is a member of IEEE and AAAI.

Sven Koenig is an associate professor of computer
science at the University of Southern California.
His research centers around techniques for decision
making that enable single robots and teams of robots
to act intelligently in their environments. He is
the recipient of an ACM Recognition of Service
Award, an NSF CAREER award, an IBM Faculty
Partnership Award, a Charles Lee Powell Foundation
Award, a Raytheon Faculty Fellowship Award, a
Mellon Mentoring Award, a Fulbright Fellowship
and the Tong Leong Lim Pre-Doctoral Prize from

the University of California at Berkeley. He co-founded Robotics: Science
and Systems, a general robotics conference.

David Kempe is an associate professor of computer
science at the University of Southern California. His
research is in the areas of computer science theory
and the design and analysis of algorithms, with an
emphasis on social networks and algorithmic game
theory as well as distributed network algorithms. He
is the recipient of an NSF CAREER award, the 2007
Junior Research Award of the USC Viterbi School
of Engineering, a Mellon Mentoring Award, an ONR
Young Investigator Award and a Sloan Fellowship.

Sonal Jain is a software design engineer at Mi-
crosoft Corporation in Redmond, Washington. His
research interests are resource-allocation strategies
for workflows in computational grids and multi-
robot task-allocation algorithms. He received his
M.S. degree in computer science from the University
of Southern California and his B.S. degree in elec-
trical engineering from Banaras Hindu University in
India.

