IEEE TRANSACTIONS ON ROBOTICS

Multi-Robot Forest Coverage

for Weighted and

Unweighted Terrain

Xiaoming Zheng, Sven Koenidgsenior Member, IEEEDavid Kempe, and Sonal Jain

Abstract—One of the main applications of mobile robots is
coverage: visiting each location in known terrain. Coverage is
crucial for lawn mowing, cleaning, harvesting, search-and-resog,
intrusion detection and mine clearing. Naturally, coverage can
be sped up with multiple robots. However, we show that solving
several versions of multi-robot coverage problems with minimal
cover times is NP-hard, which provides motivation for design-
ing polynomial-time constant-factor approximation algorithms.
We then describe Multi-Robot Forest Coverage (MFC), a new
polynomial-time multi-robot coverage algorithm based on an
algorithm by Even et al. for finding a tree cover with trees of
balanced weights. Our theoretical results show that the cover
times of MFC in weighted and unweighted terrain are at most
about a factor of 16 larger than minimal. Our simulation results
show that the cover times of MFC are close to minimal in all
tested scenarios and smaller than the cover times of an alternagv
multi-robot coverage algorithm.

Index Terms—Approximation Algorithm, Cell Decomposition,
Complexity, Multi-Robot Coverage, NP-Hardness, Robot Teams,
Spanning Tree Coverage, Terrain Coverage, Tree Cover.

I. INTRODUCTION

(MFC), a polynomial multi-robot coverage algorithm based o
finding tree covers with trees of balanced weights, one wee f
each robot. We then generalize MFC from unweighted terrain
to weighted terrain, where the travel times of robots are not
the same everywhere, for example, because different terrai
properties (such as rock, sand and grass) require different
speeds [35] [39]. MFC is nontrivial to generalize because it
uses a tree cover algorithm as a subroutine that is specific
to unweighted terrain. We thus first generalize the tree rcove
algorithm and only then MFC. We prove that the cover times
of MFC in weighted and unweighted terrain are at most about
sixteen times larger than minimalOur simulation results
show that the cover times of MFC are close to minimal in all
tested scenarios and smaller than the cover times of MSTC.
MFC has the additional benefit that it tends to return the t®bo
close to their initial cells, which facilitates their catlion and
storage.

II. RELATED WORK

OVERAGE requires robots to visit each location in Coverage has been investigated extensively in the litera-
known terrain once to perform some task. Examplagre [7]. One line of research investigates ant-like rokbts

include lawn mowing, cleaning, harvesting, search-asdtre,
intrusion detection and mine clearing. It is frequently ides

plan locally, mostly to coveunknownterrain [33]. Ant-like
robots require only a limited amount of memory, computation

able to minimize the time by which coverage is complete;nd communication, yet are able to cover terrain robustigyT

called_the c_over time. In_ recent years, robotics reseasc_hgfe simple to design, cheap to build and easy to program but
have investigated spanning tree-based coverage algarithdan result in large cover times [37]. There are three main

in unweighted terrain, where the travel times of robots agasses of robots, namely

the same everywhere in the terrain. Single-robot coverage
problems are solved with minimal cover times by Spanning
Tree Coverage (STC), a polynomial-time single-robot cov-
erage algorithm that decomposes terrain into cells, finds a
spanning tree of the resulting graph, and makes the robot
circumnavigate it [13]. Naturally, coverage can be sped up
with multiple robots. We show that solving several versions
of multi-robot coverage problems with minimal cover times i
NP-hard, which provides motivation for designing polynami
time constant-factor approximation algorithms. Hazon and.
Kaminka recently generalized STC to Multi-Robot Spanning
Tree Coverage (MSTC), a polynomial-time multi-robot cever
age algorithm [18]. While MSTC provably improves the cover
times compared to STC, it cannot guarantee its cover times to
be small. We generalize STC to Multi-Robot Forest Covera%e

» robots that leave permanent markings in the ter-

rain [9] [10]. Some of these robots use real-time search
to exploit the markings, such as [22]. Other robots use
algorithms that preserve the connectivity of the uncovered
terrain, such as [16] and [40].

robots that leave evaporating markings in the terrain.
Some of these robots use adaptive algorithms to exploit
the markings, such as [41]. Other robots use algorithms
inspired by alarm pheromones of ants, such as [29].
robots that do not leave any markings in the terrain. Some
of these robots mimic the behavior of gas flow, such
as [36]. Other robots divide the terrain into regions that
are covered in parallel by different robots, such as [30].

Rekleitis et al. [34] study how to reduce repeat cover-
ge with ant-like robots, Noborio et al. [31] and Qutub et
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Ichikawa and Hara [19] study coverage after which ant-like
robots have to return to their initial locations.

1The word “about” indicates the omission of an additive comista
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where the levels of grey correspond to the weights. We study
two different kinds of terrain.
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Fig. 1. Model of Weighted Terrain
o Terrain isunweightedf the weight of each large cell is
four, which implies that the weight of each small cell is
Another line of research investigates robots that plan-glob  one.
ally to cover bothknownand unknownterrain. Some robots « Terrain isweightedif the weight of each large cell is an
represent known changing terrain with neural networks ab th  arbitrary positive integer.
the uncovered areas attract robots, such as [28]. Somesrobot-l-he robots have the same size as the small cells and start

coordinate with sensor networks to cover known terrainhsu*:h small cells that belong to different large cells. They ays
as [15]. However, most robots divide the terrain explicitijo know their current small cell and can move from their current

regions that are covered in parallel by different rObOtS]'[25small cell to any adjacent small cell in the four main compass
There are two main classes of robots, namely

directions without error in a time that is equal to the averag

« robots that useexact cellular decomposition® model of the weights of the two small cells (although our analytica
the unblocked terrain precisely. Some of these robots uggults can easily be adapted to other definitions, such as a
trapezoidal decompositions [27] to divide the terrain intBme that is equal to the maximum of the weights of the two
regions, such as [2] in known terrain and [6] and [383mall cells). Each move is atomic, that is, needs to be egdcut
in unknown terrain. Other robots use Boustropheddp full by a robot. Thetravel timeof a robot along a path is the
decompositions [8] (that use Morse functions [1] t@um of the times of its moves and thus equal to the number of
determine critical locations indicating changes in thgs moves in unweighted terrain. We assume that severatsobo
terrain connectivity), such as [24] and [42] in knowrgre able to occupy the same small cell simultaneously arsd thu
terrain and [23] and [26] in unknown terrain. never block each other. This assumption avoids deadloaks an

« robots that that usepproximate cellular decompositionssimplifies our analytical results.
to model the unblocked regions only approximately, by e study two different team objectives.
partitioning the terrain into cells of the same shape and
size that are either entirely blocked (that is, untravdeyab
or unblocked (that is, traversable). Some of these robots
use the distance wavefront algorithm [20], such as [43] .

travel time of any robot.

in known terrain. L . .
] . _e The team objectiv€over with Returmequires each small
The above coverage algorithms assume unweighted terrain o to pe visited by at least one robot and each robot to

and often do not provide analytical results on the resulting oty to its initial small cell. We want to minimize the

cover times, which is not surprising for unknown terrain  qyer time with returnwhich again is equal to the largest
since the cover times can be arbitrarily bad in unknown .ovel time of any robot.

terrain [26]. The new coverage algorithms introduced irs thi , } - « .
article use approximate cellular decompositions where theWe SIMPply use “cover time” when we mean “cover time
cells are four times the size of the robots. They are (to th@th with and without return.” For illustration, Figure 2cstrs
best of our knowledge) the first polynomial-time constanfOth a single-robot coverage problem with the team objectiv

factor approximation algorithms for multi-robot coverage <°ver with Return” and one of its solutions, including the
both weighted and unweighted (known) terrain. Iarge cells with their weights (Ieﬂ), the small cells witheir
weights (center) and the path with the times of the moves

(right). The cover time with return is equal to 88, the sum of

o The team objectiv€€overrequires each small cell to be
visited by at least one robot. We want to minimize the
cover time without returnwhich is equal to the largest

I1l. PROBLEM DESCRIPTION the weights of all large cells, which is the minimal coveréim
We discretize the given known terrain into large squarescelWith return. _ _
Each large cell is either entirely blocked or entirely urdiled. ~ We use several symbols throughout this article.

Robots cannot traverse blocked cells. Each unblocked large ]

cell has a weight that corresponds to how difficult it is toWmax : the largest weight of any large cell

traverse the large cell. Each unblocked large cell is evenlffsum @ the sum of the weights of all large cells

divided into four small square cells. Each small cell has a* the set of robots for multi-robot coverage problems
weight that is equal to one quarter of the weight of the and the set of roots for rooted tree cover problems
large cell, as shown in Figure 1. Large blocked cells ard Wimax/Wsum

colored black and large unblocked cells are colored grey, - oK
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Fig. 4. Multi-Robot Coverage Problem with the Team Objext\Cover
without Return” in Weighted Terrain

IV. COMPLEXITY OF MULTI-ROBOT COVERAGE

Multi-robot coverage typically results in smaller covenés

than single-robot coverage. Unfortunately, we show that-so
ing several versions of multi-robot coverage problems with
minimal cover times is NP-hard, which provides motivation

for designing polynomial-time constant-factor approxiio
algorithms.

Theorem 1:It is NP-hard to determine whether the follow-
ing two versions of multi-robot coverage problems can be
solved with cover times with return (for Version 1) or cover
times without return (for Version 2) that are smaller than a

given value:

« \ersion 1:multi-robot coverage problems with the team
objective “Cover with Return” for a number of robots
specified in the problem description in unweighted ter-

rain; and

o \ersion 2:multi-robot coverage problems with the team
objective “Cover without Return” for two robots in

weighted terrain.

Proof: We reduce from partitioning problems to prove

the NP-hardness of both versions of multi-robot coverage
problems.

o Version 1: We reduce from the 3ARTITION prob-

lem: Given a positive integerB and positive inte-
gers ay,...,as, strictly betweenB/4 and B/2 with
Zf’;‘l a; = nB, can they be partitioned evenly into
n sets? The 3-ARTITION problem is strongly NP-
hard [14], that is, NP-hard even if the sizes of its integers
are only polynomial imn.

For a given instance of the 3ARTITION problem, we
construct an instance of the multi-robot coverage problem
with n robots, as shown in Figure 3. We start with a
“corridor” consisting of4n vertically adjacent unblocked
large cells, numbered fromn + 1 (bottom) to3n (top)

as indicated in the lower right corners of the corridor
cells in Figure 3. There is a “tunnel” ®h.a; horizontally
adjacent unblocked large cells for eath= 1,...,3n.
The i*" tunnel is connected to th&" corridor cell. It is

to the left of the corridor for odd and to the right of
the corridor for eveni. One robot starts in each of the
corridor cells—n +1,—n+2,...,0. This completes the
construction, which can be done in polynomial time. We
claim that the minimal cover time is at mastn B + 16n

iff the given integers can be partitioned evenly intgets.

“If” direction: Assume that the given integers can be
partitioned evenly inton setsSy,...,.S,. Then, we let
the j'" robot cover thei*" tunnel for eachi € S; and
then return to its initial cell. It traverses its tunnels for
a travel time of at mosd_, o 4 - 6na; = 24nB and
the corridor for a travel time of at mosit- 4n. Its total
travel time is thus at mof4n B + 16n, which meets the
requirement.

“Only if” direction: Assume that the travel time of each
robot is at mosR4nB + 16n. Then, we defineS; to be
the set of indices such that thg'" robot is the first robot

to cover the upper small cell of th&" tunnel cell that

is farthest away from the corridor. These sets partition
the given integers. Thg'" robot needs to traverse its
tunnels in both directions. Moving from one tunnel cell
to an adjacent tunnel cell requires at least entering two
small cells. The total travel time of thg" robot thus

is at least2 - 2 - ZTES] 6na; = 24n2i€5j a;. We
assumed that the total travel time of each robot is at
most 24nB + 16n, which implies that24n ), ¢ a; <
24nB + 16n or, equivalently,y . ¢ a; < B + 5. But
then > ;cs ai < B since both) ;- a; and B are
integers. Thus, the setS; partition the given integers
evenly sinced_7_; > e, ai = S a; = nB and thus

D ies,; @i = B.

Version 2: The above construction has to be adapted
slightly to prove the NP-hardness of Version 2 of the
multi-robot coverage problem. We reduce from therP
TITION problem: Given at least five positive integers
ai,...,a, with Z?:l a; = 2B, can they be partitioned
evenly into two sets? TheARTITION problem is known

to be NP-hard if the integers can be exponential in
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STC Minimal

n [14]. But then the tunnels of lengtbna; from the cover time without return = 78 cover time without return = 77
above construction cannot necessarily be constructed in 2 n_do S 1o
polynomial time. Instead, weighted terrain allows us to 17& Jio 121 17{ + i'm Jro
collapse each tunnel to a single unblocked large cell with 2. 1 (R T

weight 24na;, as shown in Figure 4. Weighted terrairkig. 5. suboptimal Cover Time without Return of STC
also allows us to prove the NP-hardness of multi-robot
coverage problems with the team objective “Cover with- . STC _ _ MSTC _

. . . cover time without return= 682 cover time without return = 332
out Return” by adding one unblocked large “destination” cover time with return = 688 cover time with return = 394
cell of weight 16n2B for each robot to the left of its ‘ ‘
initial corridor cell. This weight is so large that exiting 1 1
the destination cell results in large cover times. The ‘ | |
corridor consists ofn + 2 unblocked large cells with | \
weight four each, numbered from1 (bottom) ton (top). ‘ | ‘ |
One robot starts in each of the corridor celld and 0.
This completes the construction, which can be done in
polynomial time. We claim that there is a schedule with
cover time of at mosb6n?B + 24nB + 4n + 8§ iff the
given integers can be partitioned evenly into two sets. Fig. 6. Example of STC  Fig. 7. Example of MSTC
“If” direction: Assume that the given integers can be
partitioned evenly into two set§; and S;. Then, we
let the j** robot cover theit" tunnel for eachi € S; the given integers evenly sin¢e, g, a; = B. u
and then move to its destination cell. It thus traverses its

tunnels with a travel time of at most, g 4 - 6na; = i ) . i
4.6nB — 24n.B. the corridor with a travel time of at most 't is currently open whether solving Version 1 of the multi-

4n + 8 and its destination cell with a travel time of af©POt coverage problem is NP-hard for a fixed number of
most3.5 - 16n2B = 56n2B. (The factor of3.5 results robots (that is, a number of robots that is always the same and
from the fact that the destination cell is not exited.) 1t§1us does not need to be specified in the problem description)

total travel time is thus at mos6n2B + 24nB +4n +8, Ve conjecture that this problem is indeed NP-hard. It is
which meets the requirement. currently also on open whether the problem remains NP-hard

“Only if" direction: Assume that the travel time of each!®" the téam objective “Cover without Return.”
robot is at most6n2B+24nB +4n+8. Then, we define
S; to be the set of indices such that thej'" robot is V. EXISTING COVERAGE ALGORITHMS

the first robot to cover the upper small cell of t#€ e puild on insights provided by the following single-robot

tunnel that is farthest away from the corridor. These sefs,q multi-robot coverage algorithms from the literature.
partition the given integers. Thg" robot can cover only

one destination cell and needs to traverse it with a travel )
time of at leas66n2 B. Thus, it has to traverse the tunnelé\: Spanning Tree Coverage
and corridor with a travel time of at mo8tnB +4n + 8 Spanning Tree Coverage (STC) [13] is a single-robot cov-
and also needs to cover the lower small cell of iHe erage algorithm that was originally proposed for unweighte
tunnel that is farthest away from the corridor i€ S;. If  terrain but also applies unchanged to weighted terrain. [45]
it did not, then each robot would traverse thie tunnel First, STC constructs a graph whose vertices correspond to
with a travel time of at least- 6na; = 18na; each. They the unblocked large cells and whose edges connect adjacent
would traverse the other tunnels with a combined travahblocked large cells. This graph needs to be connected.
time of at leas® _,,_,; 24na;,. Their combined total travel Then, STC finds a spanning tree of this graph in polynomial
time would thus be at Iea@i,# 24na; + 2 - 18na; = time. Finally, STC lets the robot move along the path that
24n 37" | a;+12na; = 48nB+12na; > 48nB+8n+16  circumnavigates this spanning tree. For the team objective
sincen > 5. Thus, at least one of them would have tdCover with Return,” the robot completely circumnavigaties
traverse the tunnels and corridor with a travel time afpanning tree until it returns to its initial small cell. Fibre
more than24nB + 4n + 8, which is a contradiction. team objective “Cover without Return,” the robot stops once
Thus, the ;' robot covers both the upper and lowegll small cells have been covered, which is one move earlier.
small cell of thei*® tunnel that is farthest away fromClearly, STC runs in polynomial time. The cover times of
the corridor ifi € S;. It traverses theé'® tunnel with a STC in unweighted terrain are minimal [13]. The cover times
travel time of at leas®4na; and all tunnels with a travel with return of STC in weighted terrain are still minimal. The
time of at Ieastziesj 24na;. But then Ziesj a; < B cover times without return of STC in weighted terrain are not
since Zies,- 24na; < 24nB + 4n + 8 or, equivalently, necessarily minimal but are larger than minimal by at most
Eiesj a; < B+1/6 +1/(3n) and, furthermore, the; the largest weight of any small cell [45], as shown in Figure 5
and B are integers and > 5. Thus, the sets; partition for the coverage problem from Figure 2. (The thick line shows
the spanning tree.)

——
I —
® ER— [®— ®
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MFC MSTC

For illustration, Figure 6 shows the spanning tree and path  cover time without return = 15 cover time without return = 9
for the coverage problem from Figure 1. The cover time © i
without return of STC is 682, The robot has to make one ’Tj@ “ ’ T®{ — |j‘

additional move to return to its initial small cell for theate £y o MFC versus MSTC in Unweighted Terrain
objective “Cover with Return,” which is shown with a dashed
line. The cover time with return of STC is 688.

a graph whose vertices correspond to the unblocked largge cel
B. Multi-Robot Spanning Tree Coverage and whose edges connect adjacent unblocked large cels. Thi

STC has been generalized to Multi-Robot Spanning Tr@éaph does not ne_ed to be connected, as long as each of its
Coverage (MSTC) [18] [45]. MSTC is a multi-robot Coveraggompqrjents contains at least one vertex that. corresponds to
algorithm for both unweighted terrain [18] and weighteahe initial Iarge_cell of a robot. Then, MFC finds a _rooted
terrain [45] that computes suboptimal cover times in pol)}[ee cover of this g_ra_p_h, where the roots are the vertices tha
nomial time, as follows: MSTC computes the same spanniﬁ rrespond to t_he initial _Iarge cells of the rot_)ots. A rooted
tree as STC and considers the path that circumnavigates & cover of this graph is a forest of trees with exactly one
spanning tree. Each robot follows the segment of the peHﬁe for each root. The trees can share yertlges and edges.
counterclockwise ahead of it, with one exception: To improy="e"Y vertex of the graph has to be contained in at least one
the cover times, the longest segment is divided evenly trtwd€€- Finally, MFC lets each robot move along the path that
the two adjacent robots. A few small adjustments, detail&Cumnavigates its tree. For the team objective "Covehwit
in [18] for unweighted terrain and in [45] for weighted taéma Return,” the robot; (.:o.njpletely circumnavigate their treplsl
then ensure that MSTC reduces the cover times without ret(ify "eturn to their initial small cells. For the team objeet

of STC in unweighted terrain by at least a factor of 2 forcover without Return,” the robots stop once all small cells

three or more robots. For the team objective “Cover with2Ve been covered. Clearly, MFC runs in polynomial time if it
Return,” MSTC returns the robots to their initial small sell €&" determine a suitable rooted tree cover in polynomiat.tim
on paths with minimal travel times once all small cells have FOr illustration, Figure 8 shows the trees and paths for the
been covered. coverage problem from Figure 1 for four robots. The cover
For illustration, Figure 7 shows the spanning tree and patiig'€ Without return of MFC is 225. The robots have to return
for the coverage problem from Figure 1 for four robots. Th their initial small cells for the team objective “Coverthi
cover time without return of MSTC is 332. The robots have tB€turn,” which is shown with dashed lines. The cover time
return to their initial small cells for the team objectivecx@r With return of MFC is 256.
with Return,” which is not shown in the figure. The cover time
with return pf MSTC is 394. This example dgmpnstrates thg\t Unweighted Terrain
the cover times of MSTC do not necessarily improve wit
an increasing number of robots since MSTC makes only twoIn unweighted terrain, we define the weight of a tree to be
robots exit the bottom-most row of large cells through thée number of its edges and the weight of a rooted tree cover
narrow passage. Additional robots in the center of the bottoto be the largest weight of any of its trees. Finding a weight-
most row do not shorten the travel times of these two robotginimal rooted tree cover is NP-hard [11]. MFC therefore
The cover times of MSTC thus become larger than minimébes the tree-cover algorithm by Even et al. [11] to find in
by an arbitrary factor if one expands the terrain above tif#@lynomial time a rooted tree cover with a weight that is at
narrow passage and adds robots in the center of the bottanipst a factor of 4 larger than minimal. For a single robot,
most row since then all of the robots would have to exit thdFC reduces to STC and thus minimizes the cover times. For
bottom-most row to minimize the cover times. Thus, MST@ultiple robots, remember that the cover times withoutrretu
cannot guarantee that its cover times are close to minimal@rMSTC are at least a factor of 2 smaller than those of STC

even small. and thus at least a factor of 2 smaller than the minimal ones
for a single robot. MFC cannot provide such a strong worst-
VI. M ULTI-ROBOT FORESTCOVERAGE case guarantee about how small its cover times withoutrretur

. : ith he minimal ith f a gingl
We now introduce Multi-Robot Forest Coverage (MFC), gre wit _respect (o the minimaf ones wit Ol.Jt return o a ang
bot. Figure 9 shows an example of unweighted terrain where

. : . r
new multl-robqt coverage a'go”thm fo_r both unweighted ar}@e cover time without return of MFC is almost equal to that
weighted terrain that is a polynomial-time constant-fa@o- ¢+ o+ it the corridor is sufficiently long, even though the

proximation algorithm for computing suboptimal cover tﬂ;necover time without return of MSTC is only half that of STC.

in polynomial time. Remember that MSTC determines Or]Sowever, we now prove that MFC provides a more powerful

spanning tree, splits the path that circumnavigates it ame
; uarantee than MSTC, namely a worst-case guarantee about
path for each robot and lets each robot move along its pafh. , . g o

10w small its cover times are with respect to the minimal ones

MSTC constructs the tree without taking into account that 4 .

: ; . . or the number of available robots.
will be split afterwards, which results in unbalanced ttave
times of the robots. MFC, on the other hand, determines oneTheorem 2:The cover times (with and without return) of
tree for each robot and lets each robot move along the padirC in unweighted terrain are at most about a factor of 16
that circumnavigates its tree, as follows: First, MFC comgs larger than minimal.
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MFC (Robot 1) MFC (Robot 2) MFC (Robot 3) MFC (Robot 4)
travel time without return = 217 travel time without return = 216 travel time without return = 225 travel time without return = 216
travel time with return = 256 travel time with return = 256 travel time with return = 256 travel time with return = 256

mmm

Fig. 8. Example of MFC

Proof: Consider the team objective “Cover without Re- Theorem 3 (= Theorem 9)TREE COVER can be used to
turn.” We defineM to be the weight of the rooted tree covefind a K-rooted tree cover of grapi whose weight is at most
found by the tree-cover algorithm by Even et al. [1N, a factor of4(1 + ¢) larger than minimal, where = ¢|K]|,
to be the weight of the weight-minimal rooted tree covet) = wyax/wsum and|K| is the number of roots.

O to be the cover time without return of MFQ? to be We now brove that MEC brovid Worst rant
the minimal cover time without return an@ to be the € how prove tha provides a worst-case guaraniee

minimal cover time without return if the robots only neeaagg:tfz(r)vtvhsemnﬂlrrl]tsecrog?r;/;;Sb?gimgﬁsriﬁg?%t(s)i:r:]ilearrn'lg”trﬁ]z
to cover the upper left small cells of all unblocked Iargg

cells. Because circumnavigating a tree of weiglitrequires one in u_nv_velghted terrain. We first reIatc_a _the welght_of a
entering at mostM -4 small cells, we get tha < 4 + 4. weight-minimal rooted tree cover to the minimal cover time.
The approximation guarantee proved in [11] provides thatlemma 4:The weight of a weight-minimal rooted tree
M < 4N. Because the weight-minimal rooted tree covefover divided by four is at most the largest weight of any $mal
(shifted slightly to the upper left) contains all upper Isfball cell plus the minimal cover time (with and without return).
cells and thus provides a lower bound on the minimal cover Proof: The proof follows the same structure as the proof

time without return if the robots on_Iy need to cover the UPPYF Theorem 2. Consider the team objective “Cover without
l?ft sm_all cells, we get thay < Q. Finally, the minimal cover Return.” We defineN to be the weight of a weight-minimal
time without return if the robots need to cover only the Uppg[ iy tree coverP to be the minimal cover time without

left small cells is at most the minimal cover time W'thouPeturn and@ to be the minimal cover time without return if

return if the robots need to cover all small cells. Because me robots need to cover only the upper left small cells of
this fact we get tha) < P. Combining all these results yIEEldsall large cells. Assume that the robots have to cover only the

O <AM +4 < 16N +4 < 16Q + 4 < 16P + 4. The proof upper left small cells of all unblocked large cells and that

F:ontlnues to hold for tTe team objeguve “Cover },N.'th Remmthey cover these small cells with minimal cover time without
i .eac‘:‘h occurrence of 00ver" time without return” is rePIdcereturn. Construct a rooted tree cover where the tree of arobo
with “cover time with return. contains exactly the vertices that correspond to the lagfle ¢
Thus, MFC provides a more powerful guarantee thghat contain any small cell visited by the robot. The robat ha
MSTC. MFC also has disadvantages. For example, it makesenter and exit all small cells it visits except possibly its
several robots occupy the same small cell at the same tirmtial small cell (which it does not need to enter) and itsafin
Then, some robots have to wait for other robots to leawnall cell (which it does not need to exit). Thus, the weight o
their small cells (or move around them) if our assumptiote tree of a robot divided by four is at most the largest wieigh
that several robots are able to occupy the same small agflany small cell plus the travel time of the robot, implying

simultaneously is unjustified. that the weight of the given rooted tree cover divided by four
) ) is at most the largest weight of any small cell plus the mihima
B. Weighted Terrain cover time without return if the robots need to cover only the

In weighted terrain, we define the weight of each vertex tgpper left small cells of all large cells, Since the weightaof
be the weight of the corresponding large cell, the weight ofvaeight-minimal rooted tree cover is at most the weight of the
tree to be the sum of the weights of its vertices and the weigiten rooted tree cover, we gé&f/4 < Q + wpax /4. Finally,
of a rooted tree cover to be the largest weight of any of ithke minimal cover time without return if the robots need to
trees. Finding a weight-minimal rooted tree cover remaiRs Ncover only the upper left small cells is at most the minimal
hard as proved in the appendix but the tree-cover algorithm bover time without return if the robots need to cover all dmal
Even et al. [11] no longer applies. MFC therefore uses a naslls. Because of this fact we get that< P. Combining all
tree-cover algorithm, TREE COVER, to find in polynomiathese results yieldd//4 < @ + wmax/4 < P + wmax/4. The
time a rooted tree cover with a weight that is at most a factproof continues to hold for the team objective “Cover with
of 4 larger than minimal. We describe this polynomial-tim&eturn” if each occurrence of “cover time without return” is
constant-factor approximation algorithm in the appendix. replaced with “cover time with return.” [ ]
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Theorem 5:The cover times (with and without return) ofrooted tree covers (for MFCG)All runs terminate within 30
MFC in weighted terrain are at most about a factot@fl +¢) second. A lower bound that represents idealized cover times
larger than minimal, where = ¢|K|, ¢ = wmax/wsum and for each scenario can be calculated by dividing the sum of the
| K| is the number of robots. weights of all large cells by the number of robots and subtrac

Proof: Consider either the team objective “Cover withoup"® in Unweighted terrain and,../4 in weighted terrain.

Return” or “Cover with Return.” We defina/ to be the weight These ideal cover times would result if no robot needed to
of the rooted tree cover found by TREE COVER, to be P2aSS through already covered small cells. We are inter@sted
the weight of a weight-minimal rooted tree cové}‘, to be the ratios of the actual cover times of MSTC or MFC and the

the cover time of MEC and® to be the minimal cover time. id€al cover times since these ratios are upper bounds on how

Because circumnavigating a tree of weighitrequires a travel Much the actual cover times are larger than minimal. They are

time of M, we get thalD < M. The approximation guarantee,only upper bounds since the |de'al'm|ght not be achlevablt?. Fo

of Theorem 3 provides that/ < 4(1 + ¢)N. Lemma 4 instance, severgl robots n_1ust visit the same small ce_IIben _t

provides thatV/4 < P+ wynay /4. Combining all these results example from Figure 8. Figures 11_-14 show the rela_tlon_shlps

yields O < M < 4(1 + )N < 16(1 + )P + 4(1 + )wmax. of thg number of robots anq the ratios fpr each combmfamo_n of
m Multi-robot coverage algorithm, scenario and team ohjecti

We make the following observations: The ratios of MFC
The ratio = wmax/wsum IS close to zero for terrain with gre smaller than those of MSTC for both team objectives.
many large cells of about the same weight. For example, \MFC takes the team objective already into account when
0.0814 for the terrain from Figure 1. Thenf(1+e¢) = 16(1+  finding a tree for each robot to circumnavigate, whereas MSTC
¢K) is close to sixteen for a small number of robéfs Thus,  takes the team objective into account when it decides how the
the cover times of MFC are at most about sixteen times larg@hots should circumnavigate the single tree. Thus, thercov
than minimal. times of MFC are smaller than those of MSTC. The ratios
increase with the number of robots for both MFC and MSTC
since the robots then need to pass more and more through
VII. SIMULATION RESULTS already covered cells. The ratios increase very slowly tith
) number of robots for MFC, but much faster for MSTC, which
We evaluate MFC and MSTC experimentally for both teajistributes most of the travel time among two robots only.
objectives, namely “Cover without Return” and “Cover withrpe ratios change insignificantly with the amount of cluistgr
Return,” in different scenarios, namely different kinds ofyr MEC (as can be clearly seen in Figures 11-14), but a lot
terrain, different numbers of robots and different clus@r o, MSTC. In particular, the cover times of MFC are small
of the initial large cells of the robots. The terrain alwayf, the common situation where robots are deployed together.
consists 0f49 x 49 large cells. Their weight in weighted Fina)ly, the ratios change insignificantly for MFC if the tea
terrain is chosen uniformly at random from the weights pjective is changed from “Cover without Return” to “Cover
16, 24, ..., 80. Figure 10 shows the three different kinds Qfith Return,” but noticeably for MSTC. Thus, all robots are
terrain. The first kind of terrain is empty. The second Kindns ¢|gse to their initial small cells when coverage is compfete
outdoor-like terrain where walls are randomly removed frofyec which facilitates their retrieval.
a random depth-first search maze until the wall density dmpSTheorem 2 guarantees that the cover times of MFC in
fo 10 percent, resulting in terrain with random obstaclde Tunweighted terrain are at most a factor of about 16 larger

third kind is an indoor-like terrain with walls and doors.éer'h than minimal. Similarly, Theorem 5 guarantees that the cove

positions of the walls and doors are fixed, but doors are dlosﬁmes of MFC in weighted terrain are at most a factor of

with 20 percent probability. We vary the number of robotg out 16 larger than minimal since the valuespadre indeed
from 2, 8, 14 to 20. We ensure that no two robots are plac g

G8ry small. For examplep = 8.9 x 10~4 for empty terrain
in the same large cell by randomly choosing different Iarg(g:y9 9 % 104 for outh)j(?Zr-like terrain and — 1([)35)/X 10_4’

cells for each robot and placing the robots in their uppdntrigfor indoor-like terrain. Empirically, the ratios are si§joantly

Emall tC eIIs.l AthCIU.St.?r'IHP perceﬂtagfetrﬁ)ara?ezttedeterT|nes smaller for all tested scenarios and both team objectives,
ow strongly the initial large cells of the robots are cluste namely at most 1.91.

The initial large cell of the first robot is chosen uniformly .
at random from all unblocked large cells. The initial large Flgurgs 15 anq 16 pre;ent examples of MSTC and MFC,
rgpecnvely, solving multi-robot coverage problems fourf

cells of the other robots are then chosen uniformly at rando ts in ind like t in. Th d by diffe
from all unblocked large cells in an area centered at the fifQROts 1N INOOr-Iike terramn. The areas covered by difere

robot, whose height and width are (approximatel§} of the robots are shown in different colors. The covered areas of
height and width of the terrain. Thus, a small value:agsults MFC are much more balanced in size than those of MSTC,

in a large clustering of initial large cells, while — 200 is explaining both the smaller cover time with return and the

equivalent to no clustering at all (calletbneclustering). smaller ratio of MFC.

For each scenario, we average the cover times of MSTC

and MFC over 50 runs with randomly generated terrain (tif 2For MSTC, we first choose the root of the spanning tree randamigng
he initial large cells of the robots and then use the Prirortigm to generate

applicable), randpmly chosen initial large cells, randpmlthe spanning tree, breaking ties randomly. For MFC, we userée cover
generated spanning trees (for MSTC) and randomly generas&frithms described in this article, breaking ties randomly
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Fig. 10. Screenshots of Different Kinds of Terrain
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Fig. 11. Simulation Results for the Team Objective “CovertmiReturn” in Unweighted Terrain
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Fig. 12. Simulation Results for the Team Objective “Coverhwitt Return” in Unweighted Terrain
VIII. DISCUSSION ANDFUTURE WORK showed that the cover times of MFC are smaller than the ones

of Multi-Robot Spanning-Tree Coverage (MSTC), an alter-
Our main contribution is a theoretical one since we demonative multi-robot coverage algorithm, and close to miima

strated how difficult multi-robot coverage is under ideadiz in all tested scenarios. Our simulation results used raidom
conditions. We showed that solving several versions of imulgenerated spanning trees (for MSTC) and randomly generated
robot coverage problems with minimal cover times is NP-hartpoted tree covers (for MFC), to compare MSTC and MFC
We then introduced a new multi-robot coverage algorithr@n equal grounds. However, the cover times of MSTC can be
called Multi-Robot Forest Coverage (MFC), which is (to théeduced by carefully constructing its spanning trees [B] If4
best of our knowledge) the first polynomial-time constants future work to determine whether the cover times of MFC
factor approximation algorithm for multi-robot coverage ican be reduced as well by carefully constructing its rooted
both weighted and unweighted terrain. Our simulation tesufree covers and then compare MSTC and MFC using these
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Fig. 13. Simulation Results for the Team Objective “Coverhvieturn” in Weighted Terrain
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Fig. 15. Example of MSTC in Indoor-Like Terrain (Cover Time lwiReturn = 3,338 and Ratio = 1.63)

spanning trees and rooted tree covers, respectively. Atso, APPENDIX

current version of MFC assumes ideal robots. However, B0bot \ye modify the tree-cover algorithm by Even et al. [11] (and
embedded in the real world are subject to sensor and actugif proofs in that paper) to work on graphs with weighted ver-
noise and may not always be reliable [S]. It is future worfices rather than weighted edges. We present the resuléiag t
to generalize our algorithm to robots with such uncertaingoyer algorithm (called TREE COVER), prove its properties
and other typical imperfections, which also includes mgkitn 5d describe how MFEC uses it.

robust in the presence of failing robots, a property that ST
already has. It is also promising to combine the ideas behiRd

MSTC and MEC. Weight-Minimal Rooted Tree Cover Problem

We define the WIGHT-MINIMAL ROOTED TREE COVER
problem as follows: LetG = (V, E) be a graph with weighted
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Fig. 16. Example of MFC in Indoor-Like Terrain (Cover Time witeturn = 2,064 and Ratio = 1.01)

vertices, wheraw(v) is the positive integer weight of vertexand one vertex for each bin (whose weight is one). The set
v € V. Define K C V to be a set of distinguished verticespf roots K contains exactly the vertices for the bins. This
called roots. AK-rooted tree cover of7 is a forest of| K| completes the construction, which can be done in polynomial
trees, which can share vertices and edges. The set of tiogs raime. We claim that the weight of & '-rooted tree cover of
must be equal td<, and every vertex i’ has to be in at least graph G is at most the given capacity plus one iff the bin-
one tree. The weight of a tree is the sum of the weights packing problem is solvable.

its vertices. The weight of & -rooted tree cover is the largest “If” direction: Assume that each element can be placed in
weight of any of its trees. Given a gragh = (V, E) with exactly one of the bins so that the sum of the sizes of the
weighted vertices and a s&f C V of roots, find a weight- elements in each bin does not exceed its capacity. We make
minimal K-rooted tree cover of grap8y. the tree rooted in the vertex of a bin contain the vertices of
the elements that the bin contains. Then, the weight of the
resulting K-rooted tree cover is at most the given capacity

i . . plus one, which meets the requirement.
We define the weight of a path in the graph to be the sumuqyy it girection: Assume that the weight of & -rooted

of the weights o_f the vert.ices in the path, except for its. enfbe cover of graplt? is at most the given capacity plus one.
vertu;]es. We geflng .theldlstgnhce fOf a vertix snd a tree in t\Wé place each element in one of the bins whose vertex is the
graph to be the minimal weight of any path that connects thgq of 5 tree that contains the vertex of the element. Then,

vertex to some vertex in the tree. We define the distance @b 1in_packing solution meets the capacity constraintsm
two trees in the graph to be the minimal weight of any path

that connects some vertex in one of the trees to some vertex

in the other tree. We also use the notation from Section |Il. )
D. Tree Cover Algorithm

B. Definitions

C. Complexity of Finding Weight-Minimal Rooted Tree Covers YWe now describe TREE COVER, that takes as input a graph
G = (V, E), a set of roots’ and a boundB > wy,.x. Given

We show that finding weight-minimal rooted tree covergny boundB € [w weum], TREE COVER either reports

s NP—hard,_whjch provides our motivatiqn fgr designings ;ccESS and returns-rooted tree cover of grap@¥ with
the polynomial-time constant-factor approximation aiin weight at mos#d B or reports FAILURE, in which case there

TREE COVER. does not exist d(-rooted tree cover of grapfy’ with weight
Theorem 6:1t is NP-hard to determine whether there exisat mostB/(1+¢). In later sections, we prove these properties
K-rooted tree covers whose weights are smaller than givend show how to find a small value @ such that TREE

values for specified graphs and sets of roots. COVER reports SUCCESS and the weight of the resulting
Proof: To prove the NP-hardness of solving theEWgHT- K-rooted tree cover is at most a factor4gfl + ¢) larger than
minimal.

MINIMAL ROOTED TREE COVER problem, we reduce from
the BIN-PACKING problem: Given a set of elements with given TREE COVER operates as follows:

positive integer sizes and a fixed number of bins, each withl) Contract all roots into a new vertéx by adding vertex
the same given integer capacity, can each element be placed k* to the graph, removing all roots and the edges
in exactly one of the bins so that the sum of the sizes of the  connecting them from the graph and, for each edge

elements in each bin does not exceed its capacity? (v,k) € E with v ¢ K andk € K, adding edge
For a given instance of the IB-PACKING problem, we (v, k*) to the graph and removing the edge k) from
construct a completely connected gra@twith one vertex for the graph.

each element (whose weight is equal to the size of the elgment2) Find any spanning tree of the resulting graph.
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original tree remaining tree non-leftover subtree
(b) Case 3b
Fig. 17. Cases 3a and 3b of the Tree Decomposition

3) Uncontract the single vertek* back to the roots by
adding all roots to the spanning tree, removing vektéx
from the spanning tree, and, for each edgek*) with
v € V in the spanning tree, adding one edaek) € F

11

than B but the weight of the tree rooted inis

at least2B.) One non-leftover subtree consists of
r and these trees. The decomposition procedure
removes all vertices of this non-leftover subtree
except forr from the tree rooted in and calls
itself recursively on the remaining tree rooted in
r in order to find the other non-leftover subtrees.
This case is illustrated in Figure 17a, whéfg
denotes the tree rooted inand w(7,) denotes

its weight.

— Case 3b:The weight of at least one tree rooted
in a child of r is in the interval[B,2B). Then,
the decomposition procedure picks such a tree.
One non-leftover subtree consists of this tree. The
decomposition procedure removes all vertices of
the non-leftover subtree from the tree rooted-in
and calls itself recursively on the remaining tree
rooted inr in order to find the other non-leftover
subtrees. This case is illustrated in Figure 17b.

— Case 3c:Otherwise, the weight of at least one
tree rooted in a child of is at leas2 B. Then, the
decomposition procedure calls itself recursively
on such a tree rooted in a child efand then on
the remaining tree rooted inin order to find the
non-leftover subtrees.

with k € K to the spanning tree and removing the edge ©) Find a maximum matching [21] of all non-leftover

(v, k*) from the spanning tree. This splits the spanning
tree into a forest of K| trees.

4) Decompose each tree recursively into zero or more
non-leftover subtrees whose weights are in the interval
[B,2B) and one leftover subtree whose weight is in the
interval (0, B). Assume that a tree is rooted in The
decomposition procedure repeatedly removes vertices
from the tree as it generates the non-leftover subtrees®
The leftover subtree consists of all vertices that have
not been removed after the decomposition procedure
terminates. If all vertices have been removed, then the
leftover subtree consists of only We distinguish three
cases:

« Case 1:The weight of the tree rooted in is less
than B. Then, the decomposition procedure simply
returns.

o Case 2:The weight of the tree rooted in is in
the interval[B, 2B). Then, one non-leftover subtree
consists of the tree rooted in The decomposition
procedure removes all vertices of this non-leftov
subtree from the tree rooted in(leaving the empty
tree) and returns.

« Case 3:The weight of the tree rooted inis at least
2B. We distinguish three subcases:

— Case 3a:The weights of all trees rooted in
children ofr are less tha3. Then, the decompo-

subtrees to the roots, subject to the constraint that a non-
leftover subtree can only be matched to a root if the non-
leftover subtree and the leftover tree of the root are at
distance at mosB. The maximum matching problem
can be modeled as a maximal flow problem and be
solved in polynomial time, for example, with the Ford-
Fulkerson algorithm [12].

) If one or more non-leftover subtrees cannot be matched,

report FAILURE. Otherwise, report SUCCESS and, for
each root, return the tree consisting of the leftover
subtree of the root, the single non-leftover subtree (if
any) matched to the root and a weight-minimal path
(if any) from the non-leftover subtree to the leftover
subtree.

E. Properties

Clearly, TREE COVER runs in polynomial time and either
reports SUCCESS or FAILURE. It is also easy to see that
the weights of all non-leftover subtrees (if any) returned b
Ghe decomposition procedure in Step 4 of TREE COVER for
a given tree are in the intervdB,2B). The weight of the
leftover subtree is in the intervdld, B). Also, the root of
the tree is in the leftover subtree. We now prove two main
properties of TREE COVER.

Theorem 7:If TREE COVER reports SUCCESS, then it

sition procedure picks a number of trees rooted jreturns ak -rooted tree cover of grapfi with weight at most

children ofr so that the weight of the tree consist4B-
ing of r and these trees is in the interJal, 2B).

Proof: If TREE COVER reports SUCCESS, then it re-

(This is possible since (r) < wmax < B and the turns, for each root, the tree consisting of the leftovertrag
weights of all trees rooted in children pfare less of the root (whose weight is at moBY), the single non-leftover
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subtree (if any) matched to the root (whose weight is at mastlarger than minimal, where= ¢|K|, ¢ = wmax/Wsum and
2B) and a weight-minimal path (if any) from the non-leftovet K| is the number of roots.

subtree to the leftover subtree (whose weight is at nig)st
The weight of each tree is thus at madds.

Proof: Define B’ to be the weight of a weight-minimal

B K-rooted tree cover off. B’ is an integer since the weights of

Theorem 8:If TREE COVER reports FAILURE, then thereall vertices are integers, ang!’ € [wmax, Wsum] SinCe at least

does not exist d(-rooted tree cover of grapfy’ with weight
at mostB/(1+¢), wheree = ¢| K|, ¢ = Wmax/Wsum and | K|
is the number of roots.

one tree contains a vertex with weight,., and every tree
contains at most all vertices. We perform binary search en th
interval [wmax, Wsum] t0 find a small value ofB for which

Proof: Define B to be the weight of a weight-minimal TREE COVER reports SUCCESS. We start with the lower

K-rooted tree covefl’ of graph G and assume thaB’ <
B/(1+ ).
created in Step 4 of TREE COVER ai(/) C K to be the
set of roots at a distance of at ma3tfrom [ € L. We show
that |, K(I)| > |L'| for every L/
COVER can then match all non-leftover subtrees accordi

boundw,,.x and the upper bounds,,,. We then repeatedly
Define L. to be the set of non-leftover subtreedUn TREE COVER withB set to the mean of the lower and
upper bound. If TREE COVER reports FAILURE, then we set
the lower bound taB. Otherwise, we set the upper bound to
C L. Step 5 of TREE B. We stop once the difference of the upper and lower bound

at mostl + e. Define B; to be the lower bound and,

to Hall's Marriage Theorem [17]. Therefore, TREE COVER be the upper bound of the binary search after termination.

reports SUCCESS, which is a contradiction.

We now show that(J,. . K(1)| > |L'|. Consider any.” C
L. DefineT” C T to be the set of trees in a weight-minimal
K-rooted tree cover of grapi’ which each have at least one
vertex in common with at least one of the treeslin Define
w(L') =3 w(l) andw(T") = 32, g w(t).

First, for everyt € T”, there exists ahin L’ that has at least
one vertex in common with, per definition of7”. The root of
t is thus at a distance of at mos{t) < B’ < B/(1+¢) < B
from [, which implies that the root of is contained inK ().
Uicrr K(1) thus contains the roots of all trees T, which
implies that|J,.,, K(I)| > [T"].

Secondw(L') > B|L'| andw(T") < B'|T’| sincew(l) €
[B,2B) foralll € L’ andw(t) < B for all t € T".

Third, every vertex in a tree i’ is also in at least one tree
in 7" sinceT is a tree cover. The trees i’ can contain at

most|L’| duplicate vertices because every non-leftover subtree
created in Step 4 of TREE COVER contains at most one vertex
that has not yet been removed from all trees created in Step 3
of TREE COVER and thus could be a duplicate vertex. (The

trees created in Step 3 of TREE COVER share at most their
roots, and Step 4 of TREE COVER removes all vertices of

a non-leftover subtree from its tree when it creates the non-

leftover subtree, except possibly for the root of the ndteler

subtree in Case 3a.) Each duplicate vertex has a weight of at

MOSt wpax, Which implies thatw(L') < w(T”) + wmax|L'|-

Finally, the sum of the weights of all vertices can be split

evenly among the trees at best. Thi,> wqum /| K|, which
implies thatwmax = Wsum¢ < |K|B’¢.
Combining all these observations yields

BT = w(T)

> w(l) = wmax|L|

> BIL| - |K|B'¢|L|

= (B—I|K|B'¢)|L|

> (B'(14+¢€)— Be)|L|

- B/|L/|a
and thus| U, K(1)| > |T'| > [L/]. [ ]
F. Application

Theorem 9:TREE COVER can be used to findia-rooted
tree cover of grapkir whose weight is at most a factor ¢f1+

Define B = [B;/(1 + ¢)]. We distinguish two cases:

o Case 1:If TREE COVER reports SUCCESS witB set
to (1 + €)B, then we output the tree cover returned by
TREE COVER for this value of3.
If B, = wnax (the initial lower bound), thenB’ >
B;/(1+4¢€) sinceB’ > wmax > wmax/(1+€). Otherwise,
B’ > B;/(1 + ¢) according to Theorem 8 since TREE
COVER reports FAILURE withB set to B; according to
the binary search used. In both casB$,> B;/(1 + ¢).
But then,B’ > [B;/(1+¢)] = B since B’ is an integer.
TREE COVER reports SUCCESS wifB set to(1+¢) B
according to the assumption. It returns a tree cover whose
weight is at most4(1 + ¢)B according to Theorem 7,
which is at most a factor of(1 + ¢) larger than minimal
since4(1 +¢)B’' > 4(1 +¢)B.
o Case 2:If TREE COVER reports FAILURE withB set
to (1 + €)B, then we output the tree cover returned by
TREE COVER withB set toB,,.
B’ > (1+¢)B/(1+¢) = B according to Theorem 8 since
TREE COVER reports FAILURE with B set tfl +¢) B.
ThenB’ > B + 1 since B’ and B are integersB + 1 >
B/(14+¢)+1>B,/(1+¢) since(B, —B;)/(1+¢) <
1 according to the termination condition of the binary
search. ThusB, < (14 ¢€)(B+1) < (1+¢)B'.
If B, = wsum (the initial upper bound), then TREE
COVER reports SUCCESS witl8 set to B,, as ex-
plained above already. Otherwise, TREE COVER reports
SUCCESS with B set taB, according to the binary
search used. It returns a tree cover of weight at most
4B, < 4(1 + €) B’ according to Theorem 7, which is at
most a factor ofi(1 + €) larger than minimal. u

The binary search runs in polynomial time because TREE
COVER runs in polynomial time and is run at most

[logy ((Wsum —
which is polynomial in the size of the input.

Wmax)/ (1 + €))] + 2 < logy weum + 3 times,
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