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Abstract

Decision-theoretic planning with risk-sensitive
planning objectives is important for building au-
tonomous agents or decision-support systems for
real-world applications. However, this line of
research has been largely ignored in the arti-
ficial intelligence and operations research com-
munities since planning with risk-sensitive plan-
ning objectives is more complicated than plan-
ning with risk-neutral planning objectives. To
remedy this situation, we derive conditions that
guarantee that the optimal expected utilities of
the total plan-execution reward exist and are fi-
nite for fully observable Markov decision process
models with non-linear utility functions. In case
of Markov decision process models with both
positive and negative rewards, most of our re-
sults hold for stationary policies only, but we
conjecture that they can be generalized to non-
stationary policies.

1 Introduction

Decision-theoretic planning is important since real-
world applications need to cope with uncertainty.
Many decision-theoretic planners use fully observable
Markov decision process models (MDPs) from oper-
ations research [11] to represent probabilistic plan-
ning problems. However, most of them minimize the
expected total plan-execution cost or, synonymously,
maximize the expected total reward (MER planners).
This risk-neutral planning objective and similar sim-
plistic planning objectives often do not take the pref-
erences of human decision makers sufficiently into ac-
count, for example, their risk attitudes in planning
domains with huge wins or losses of money, equip-
ment, or human life. This means that they are not
ideally suited for real-world planning, including space
applications [14], environmental applications [2] and
business applications [6]. In this paper, we therefore
provide a first step toward a comprehensive founda-
tion of risk-sensitive planning by deriving conditions
that guarantee that the optimal expected utilities of

Table 1: An Example of Risk Sensitivity

Probability Reward Expected
Reward

Utility Expected
Utility

Choice 1
50% $10,000,000

$5,000,000
−0.050

−0.525
50% $ 0 −1.000

Choice 2 100% $ 4,500,000 $4,500,000 −0.260 −0.260

the total reward exist and are finite for fully observ-
able Markov decision process models with non-linear
utility functions.

2 Risk Attitudes and Utility Theory

Human decision makers are typically risk-sensitive and
thus do not maximize the expected total reward in
planning domains with huge wins or losses. Table 1
shows an example for which many human decision
makers prefer Choice 2 over Choice 1 even though its
expected total reward is lower. They are risk-averse
and thus accept a reduction in expected total reward
for a reduction in variance. Utility theory [12] suggests
that this behavior is rational because human decision
makers maximize the expected utility of the total re-
ward. Utility functions map total rewards to the cor-
responding finite utilities and are monotonically non-
decreasing in the total reward. They capture the risk
attitudes of human decision makers [10]. Linear util-
ity functions result in maximizing the expected total
reward and characterize risk-neutral human decision
makers (MER planning objective), while non-linear
utility functions characterize risk-sensitive human de-
cision makers (MEU planning objective). In particular,
concave utility functions characterize risk-averse hu-
man decision makers (“insurance holders”), and con-
vex utility functions characterize risk-seeking human
decision makers (“lottery players”). For example, if
a risk-averse human decision maker has the concave
exponential utility function U(w) = −0.9999997w and
thus associates the utilities shown in Table 1 with the
total rewards of the two choices, then Choice 2 max-
imizes their expected utility and should thus be cho-
sen by them. On the other hand, MER planners pick
Choice 1. The human decision maker would thus be



extremely unhappy with them with 50 percent proba-
bility, which motivates our desire to build MEU plan-
ners.

3 Markov Decision Process Models

We study MEU planners that use MDPs to represent
probabilistic planning problems. Formally, an MDP
is a 4-tuple (S, A, P, r) of a state space S, an action
space A, a set of transition probabilities P and a set
of finite (immediate) rewards r. If an agent executes
a ∈ A in s ∈ S, then it incurs reward r(s, a, s′) and
transitions to s′ ∈ S with probability P (s′|s, a). An
MDP is called finite if its state space and action space
are both finite. We assume throughout this paper that
the MDPs are finite since decision-theoretic planners
typically use finite MDPs.

The kinds of MDPs that decision-theoretic planners
typically use tend to have goal states that need to be
reached [3]. The MDP in Figure 1(a) gives an example.
Its transitions are labeled with their rewards followed
by their probabilities. The rewards of the two actions
in s1 are negative because they correspond to costs. s2

is the goal state, in which only one action can be exe-
cuted and its execution incurs zero reward and leaves
the state unchanged. To achieve generality, however,
we do not make any assumptions about the structure
of the MDPs or their rewards. For example, we do
not make any assumptions about how the structure of
the MDPs and their rewards encode the goal states or
about whether the goal states can be reached. Neither
do we make any assumptions about whether all of the
rewards are positive, negative or zero. We avoid such
assumptions because MDPs can mix positive rewards
(which model, for example, rewards for reaching goal
states) and negative rewards (which model, for exam-
ple, costs for executing actions).

4 Planning Horizons and Policies

The number of time steps that a planner plans for is
called its (planning) horizon. A history at time step t
is a sequence ht = (s0, a0, · · · , st−1, at−1, st) of states
and actions from the initial state s0 to the current
state st. The set of all histories at time step t is Ht =
(S × A)t × S. A trajectory is an element of H∞ for
infinite horizons and HT for finite horizons, where we
use T ≥ 1 to denote the last time step of the finite
horizon.

Decision-theoretic planners determine a decision rule
for every time step within the horizon. A decision rule
determines which action the agent should execute in its
current state. A randomized history-dependent (HR)
decision rule, the most general decision rule, at time
step t is a mapping dt : Ht → P(A), where P(A) is
the set of probability distributions over A. A Markov-
ian decision rule is a history-dependent decision rule

whose actions depend only on the current state. A
randomized Markovian decision rule at time step t is
a mapping dt : S → P(A). A deterministic Markovian
decision rule at time step t is a mapping dt : S → A.

A policy π is a sequence of decision rules dt, one for
every time step t within the horizon. We use ΠHR to
denote the set of all policies with HR decision rules,
which is the same as the set of all policies. A policy is
called stationary if dt = d for all time steps t and d is
a Markovian decision rule. We use ΠSR to denote the
set of all stationary randomized (SR) policies, which is
the same as the set of all stationary policies, and ΠSD

to denote the set of all stationary deterministic (SD)
policies. It holds that ΠSD ⊆ ΠSR ⊆ ΠHR.

5 Optimal Values and Optimal Policies

For probabilistic planning problems with a finite hori-
zon T , the expected utility of the total reward obtained
by starting in s ∈ S and following π ∈ Π is defined to
be

vπ
U,T (s) = Es,π

[

U

(

T−1
∑

t=0
rt

)]

,

where rt = r(st, at, st+1) and the expectation Es,π is
taken over all possible trajectories. The expected util-
ities exist and are bounded because the number of tra-
jectories is finite for finite MDPs. MEU planners then
need to determine the maximal expected utilities of
the total reward v∗U,T (s) = supπ∈Π vπ

U,T (s) and a pol-
icy that achieves them. The maximal expected utilities
exist and are finite because the expected utilities are
bounded.

For probabilistic planning problems with an infinite
horizon, the expected utility of the total reward ob-
tained by starting in s ∈ S and following π ∈ Π is
defined to be

vπ
U (s) = lim

T→∞

vπ
U,T (s) = lim

T→∞

Es,π

[

U

(

T−1
∑

t=0

rt

)]

. (1)

The expected utilities exist iff the limit exists, that
is, the limit is a finite number, positive infinity or
negative infinity. MEU planners then need to deter-
mine the maximal expected utilities of the total re-
ward v∗U (s) = supπ∈Π vπ

U (s) and a policy that achieves
them. To simplify our terminology, we refer to the
expected utilities vπ

U (s) as the values for π ∈ Π and
to the maximal expected utilities v∗U (s) as the optimal
values. A policy π ∈ Π is optimal iff vπ

U (s) = v∗U (s) for
all s ∈ S.

6 Existence and Finiteness Conditions

In this paper, we derive conditions that guarantee that
the optimal values exist and are finite for MDPs with
non-linear utility functions, as a first step toward a
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Figure 1: Example MDPs

comprehensive foundation of risk-sensitive planning.
When we say that the values exist (or are finite), we
mean that they have this property for all policies and
all states. Similarly, when we say that the optimal
values exist (or are finite), we mean that they have
this property for all states.

It is important that the optimal values exist since MEU

planners determine a policy that achieves them. There
are cases where the optimal values do not exist, as the
MDP in Figure 1(b) illustrates. An agent that starts
in s1 receives the following sequence of rewards for its
only policy: +1,−1, +1,−1, . . . , and consequently the
following sequence of total rewards: +1, 0, +1, 0, . . . ,
which oscillates. Thus, the limit in Eq. (1) does not
exist for any utility function with U(0) 6= U(1), and
the optimal value of s1 does not exist either. A similar
argument holds for s2 as well.

It is also important that the optimal values be finite.
There are cases where the optimal values are not finite,
as the MDP in Figure 1(a) illustrates. The MDP has
two stationary deterministic policies. π1 assigns the
top action to s1, and π2 assigns the bottom action to
s1. Consider U(w) = −

(

1
2

)w
. The values are

vπ1

U (s1) =

∞
∑

t=1

[

−
(

1
2

)(−1)t
· (1/2)t

]

= −

∞
∑

t=1

1 = −∞,

vπ2

U (s1) =
∞
∑

t=1

[

−
(

1
2

)(−2)t
· (1/2)t

]

= −
∞
∑

t=1

2t = −∞,

and vπ1

U (s2) = vπ2

U (s2) = −1. Thus, the optimal values
are v∗U (s1) = max(−∞,−∞) = −∞ and v∗U (s2) =
max(−1,−1) = −1. All trajectories have identical
probabilities for both policies, but the total reward
and thus also the utility of each trajectory is larger for
policy π1 than policy π2. Thus, policy π1 should be
preferred over policy π2 for all utility functions. Policy
π2 thus demonstrates that a policy that achieves the
optimal values and thus is optimal according to our
definition is not always the best one. The problem is
that policies with infinite values are indistinguishable,
and thus the optimal values need to be finite to com-
pare policies in a meaningful way. This example also
shows that the optimal values are not guaranteed to be
finite even if all policies reach a goal state with prob-
ability one. Furthermore, the optimal values of both
states are, for example, finite for U(w) = w and thus
any policy that achieves them is indeed the best one

for this utility function, which shows that the problem
can exist for some utility functions but not others.

The values exist and are bounded if one uses discount-
ing, that is, assumes that a reward obtained at some
time step is worth only a fraction of the same re-
ward obtained one time step earlier. Discounting is a
way of modeling interest on investments. Such inter-
est often does not exist, for example, for human life.
This is fortunate because discounting makes it very
difficult to find optimal policies for non-linear utility
functions [13]. For example, it is known that all opti-
mal policies can be non-stationary (and thus difficult
to find) for positive or negative MDPs with exponen-
tial utility functions if discounting is used [7]. On the
other hand, there always exists an optimal stationary
deterministic policy for positive and negative MDPs
with exponential utility functions if discounting is not
used [1, 4]. In the following, we therefore do not use
discounting.

7 Existing Results

We first review conditions that guarantee that the op-
timal values exist and are finite. These conditions have
been obtained for MDPs with linear and exponential
utility functions. We then use these results to identify
similar conditions for more general MDPs and more
general utility functions.

7.1 Linear Utility Functions

We first consider linear utility functions. They are
of the form U(w) = w and characterize risk-neutral
human decision makers. We omit the subscript U for
linear utility functions.

7.1.1 Positive MDPs

MDPs for which C1 holds are called positive [11]. The
values vπ(s) exist for positive MDPs since vπ

T (s) is
monotone in T . Thus, the optimal values exist as
well. The optimal values are finite if C2 holds [11],
which bounds the optimal values from above. The op-
timal values are finite even if Π is replaced with ΠSD

in C2 since there always exists an optimal stationary
deterministic policy for linear utility functions [11].

C1: For all s, s′ ∈ S and all a ∈ A, r(s, a, s′) ≥ 0.

C2: For all π ∈ Π and all s ∈ S, vπ(s) is finite.



7.1.2 Negative MDPs

MDPs for which C3 holds are called negative [11]. Sim-
ilar to positive MDPs, the values exist for negative
MDPs and thus the optimal values exist as well. The
optimal values are finite if C4 holds [11], which bounds
the optimal values from below. The optimal values are
finite even if Π is replaced with ΠSD in C4 since there
always exists an optimal stationary deterministic pol-
icy for linear utility functions [11].

C3: For all s, s′ ∈ S and all a ∈ A, r(s, a, s′) ≤ 0.

C4: There exists π ∈ Π such that, for all s ∈ S, vπ(s)
is finite.

7.1.3 General MDPs

In general, MDPs can have both positive and negative
(as well as zero) rewards. We define the positive part of
a real number r to be r+ = max(r, 0) and its negative
part to be r− = min(r, 0). We then obtain the positive
part of an MDP by replacing every reward of the MDP
with its positive part. We use v+π(s) to denote the
values of the positive part of an MDP for policy π ∈ Π.
We define the negative part of an MDP and v−π(s) in
an analogous way.

The values exist and vπ(s) = v+π(s) + v−π(s) for all
s ∈ S and all π ∈ Π if C5 holds [11]. Thus, the optimal
values exist as well but they are not guaranteed to be
finite [11].

C5: For all π ∈ Π and all s ∈ S, at least one of v+π(s)
and v−π(s) is finite.

The optimal values are finite if C6 and C7 hold [11],
which bound the optimal values from above and below,
respectively. The optimal values are finite even if Π is
replaced with ΠSD in C6 and C7 since there always
exists an optimal stationary deterministic policy for
linear utility functions [11].

C6: For all π ∈ Π and all s ∈ S, v+π(s) is finite.

C7: There exists π ∈ Π such that, for all s ∈ S, v−π(s)
is finite.

Consider U(w) = w. The MDP in Figure 1(b) then
violates C5. The values do not exist for its only policy
π, as we have argued earlier. It is easy to see that
v+π(s1) = +∞ and v−π(s1) = −∞, which violates C5

and illustrates that C5 indeed rules out MDPs whose
values do not exist for all policies. The MDP in Fig-
ure 1(c) is another MDP that violates C5. The values,
however, exist for its only policy π′. For example, an
agent that starts in s1 receives the following sequence
of rewards for its only policy: +2,−1, +2,−1, . . . , and
consequently the following sequence of total rewards:
+2, +1, +3, +2, +4, +3, . . . , which converges toward
positive infinity. Thus, the limit in Eq. (1) exists for
π′, that is, the value of s1 exists for π′. However, it is

easy to see that v+π′

(s1) = +∞ and v−π′

(s1) = −∞,
which violates C5 and demonstrates that C5 is not a
necessary condition for the values to exist.

7.2 Exponential Utility Functions

We now consider exponential utility functions, the
most widely used non-linear utility functions [5]. They
are of the form Ue(w) = ιγw for γ > 0, where
ι = sign ln γ. If γ > 1, then the exponential utility
function is convex and characterizes risk-seeking hu-
man decision makers. If 0 < γ < 1, then the utility
function is concave and characterizes risk-averse hu-
man decision makers. We use the subscript e instead
of U for exponential utility functions.

7.2.1 Positive MDPs

The values vπ
e (s) exist for positive MDPs since vπ

e,T (s)
is monotone in T . Thus, the optimal values exist as
well. The optimal values are finite if either 0 < γ < 1,
or if γ > 1 and C8 holds [4]. The optimal values are
finite even if Π is replaced with ΠSD since there always
exists an optimal stationary deterministic policy for
exponential utility functions [4].

C8: For all π ∈ Π and all s ∈ S, vπ
e (s) is finite.

7.2.2 Negative MDPs

Similar to positive MDPs, the values exist for negative
MDPs and thus the optimal values exist as well. The
optimal values are finite if either γ > 1, or if 0 < γ < 1
and C9 holds [1]. The optimal values are finite even
if Π is replaced with ΠSD in C9 since there always
exists an optimal stationary deterministic policy for
exponential utility functions [1].

C9: There exists π ∈ Π such that, for all s ∈ S, vπ
e (s)

is finite.

8 New Results: Overview

We now propose several new conditions that guarantee
that the optimal values exist and are finite, to cover
additional situations. Each condition consists of con-
straints on the utility function and the MDP. For ex-
ample, we study utility functions that grow with differ-
ent rates, namely utility functions that are bounded,
linearly bounded, exponentially bounded, and expo-
nential in addition to general utility functions without
any constraints other than them being monotonically
non-decreasing. We study MDPs whose values satisfy
different conditions, including C5 as the weakest con-
straint, to MDPs whose total rewards are bounded as
the strongest constraint.

The following lemmata about stationary policies are
key to proving our main results. Because of the space
limit, we state our results and provide only intuitive
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Figure 2: Example MDPs that Illustrate Lemma 1

explanations instead of formal proofs. All proofs are
available in [9].

Lemma 1 states implications of C5 for stationary poli-
cies. Its proof is a direct application of C5. Stationary
policies determine Markov chains. A state of a Markov
chain and thus also a state of an MDP for a stationary
policy is called recurrent iff the expected number of
time steps between visiting the state is finite, other-
wise it is called transient. A recurrent class is a maxi-
mal set of states that are recurrent and reachable from
each other. We use Rπ to denote the set of recurrent
states and Rπ

i ⊆ Rπ to denote a recurrent class for a
stationary policy π.

Lemma 1. Assume that C5 holds. Let π ∈ ΠSR.
Then, for all s ∈ S and all recurrent classes Rπ

i ,

a. if vπ(s) is finite, then, for all s′ ∈ S that are reach-
able from s if one follows π, vπ(s′) is finite. If
s′ ∈ Rπ

i , then the rewards of all transitions within
Rπ

i are zero and, for all s′′ ∈ Rπ
i , vπ(s′′) = 0,

b. if vπ(s) = ∞, then, for all s′ ∈ S that are reach-
able from s if one follows π, vπ(s′) = ∞ or vπ(s′)
is finite. If s′ ∈ Rπ

i , then either (1) the rewards
of all transitions within Rπ

i are zero and, for all
s′′ ∈ Rπ

i , vπ(s′′) = 0 or (2) the rewards of all tran-
sitions within Rπ

i are nonnegative and at least one
is positive and, for all s′′ ∈ Rπ

i , vπ(s′′) = ∞, and

c. if vπ(s) = −∞, then, for all s′ ∈ S that are reach-
able from s ∈ S if one follows π, vπ(s′) = −∞ or
vπ(s′) is finite. If s′ ∈ Rπ

i , then either (1) the re-
wards of all transitions within Rπ

i are zero and, for
all s′′ ∈ Rπ

i , vπ(s′′) = 0 or (2) the rewards of all
transitions within Rπ

i are nonpositive and at least
one is negative and, for all s′′ ∈ Rπ

i , vπ(s′′) = −∞.

Lemma 1 classifies the recurrent classes for station-
ary policies under C5 into three types (zero, positive
and negative), depending on whether all states in them
have value zero, positive infinity or negative infinity.
The MDPs in Figure 2(a)-(c) have one recurrent class
of each type. The MDPs in Figure 2(d)-(e) illustrate
that it is possible to reach more than one recurrent

class from the same state. However, it is impossible
that some of them are positive and others are nega-
tive. The MDP in Figure 2(f) is therefore impossible.
The MDP in Figure 2(g) illustrates that MDPs can
have both positive and negative recurrent classes but
they cannot be reached from the same state.

Lemma 2 concerns the well-known geometric rate of
state evolution [8] for stationary policies, which is im-
portant since the rewards accumulate only at a linear
rate. The expressions ρt suggest correctly that expo-
nential utility functions are often key in the proofs of
our main results.

Lemma 2. Let π ∈ ΠSR. Then, for all s ∈ S, there
exists 0 < ρ < 1 such that

a. there exists a > 0 such that, for all t ≥ 0, P s,π(st /∈
Rπ) ≤ aρt,

b. there exists b > 0 such that, for all t ≥ 0, P s,π(st /∈
Rπ, st+1∈ Rπ) ≤ bρt, and

c. for all recurrent classes Rπ
i , there exists c > 0 such

that, for all t ≥ 0, P s,π(st /∈ Rπ, st+1 ∈ Rπ
i ) ≤ cρt,

where P s,π is a shorthand for a probability if s0 = s
and one follows π.

The MDP in Figure 1(d) illustrates Lemma 2. s2 is
the only recurrent state for its only policy π if p > 0.
For all t ≥ 0, P s1,π(st 6= s2) = (1 − p)t, illustrating

Lemma 2a, and P s1,π(st 6= s2, st+1 = s2) = p(1 − p)t,
illustrating Lemma 2b and Lemma 2c.

We are now ready to give an overview of the proofs
of our main results. We start by deriving conditions
that guarantee that the values exist for all stationary
policies. We use wt =

∑t−1
i=0 ri to denote the total

reward up to time step t and τ(T ) with 0 ≤ τ(T ) ≤ T
to denote the first time step within horizon T of being
in any recurrent state, implying that τ(T ) = 0 if s0 ∈
Rπ, and sτ(T )−1 /∈ Rπ and sτ(T ) ∈ Rπ otherwise. We



can then decompose the values as follows:

vπ
U (s) = lim

T→∞

vπ
U,T (s)

= lim
T→∞

Es,π

[

U

(

T−1
∑

t=0

rt

)]

= lim
T→∞

Es,π
[

U(wT )
]

= lim
T→∞

Es,π
[

U(wT )
∣

∣sT /∈Rπ
]

·P s,π(sT /∈Rπ)

+ lim
T→∞

Es,π
[

U(wT )
∣

∣sT ∈Rπ
]

·P s,π(sT ∈Rπ)

= lim
T→∞

Es,π
[

U(wT )
∣

∣sT /∈Rπ
]

·P s,π(sT /∈Rπ)

+ lim
T→∞

Es,π
[

U(wτ(T ))
∣

∣sT ∈Rπ
]

·P s,π(sT ∈Rπ) (2)

+ lim
T→∞

Es,π
[

U(wT )−U(wτ(T ))
∣

∣sT ∈Rπ
]

·P s,π(sT ∈Rπ).

The first limit of Eq. (2) is the contribution of those
trajectories that do not enter any recurrent state
within horizon T , while the second and third limit
are the contributions of those trajectories that enter
a recurrent state. The second limit is the contribution
until any recurrent state is entered for the first time,
and the third limit is the contribution after a recurrent
state has been entered for the first time. Therefore, the
values exist if all three limits exist.

The following lemma proves that the third limit exists
for stationary policies under C5. Its proof uses the
types of recurrent classes from Lemma 1.

Lemma 3. Assume that C5 holds. For all π ∈ ΠSR

and all s ∈ S,

lim
T→∞

Es,π [U(wT )−U(wτ(T ))|sT ∈ Rπ] ·P s,π(sT ∈ Rπ)

exists. Moreover, if vπ(s) is finite, the limit is zero;
if vπ(s) = +∞, the limit is finite if the utility func-
tion is bounded from above, and positive infinity other-
wise; and if vπ(s) = −∞, the limit is finite if the utility
function is bounded from below, and negative infinity
otherwise.

Not surprisingly, C5 is part of many of the follow-
ing theorems in this paper, which establish additional
conditions under which the first and second limits of
Eq. (2) and thus also the values exist. Their proofs
make use of the following properties: The first limit
is zero iff the second limit is finite; the limit superior
(lim sup) of the first term is positive iff the second limit
is positive infinity; and the limit inferior (lim inf) of the
first term is negative iff the second limit is negative in-
finity. The proofs of these properties use Lemma 2 or
stronger conditions. We show later in the context of
Lemma 5 and Lemma 6 how to prove special cases of
these properties.

If the values vπ
U (s) exist then the optimal values

v∗U (s) = supπ∈Π vπ
U (s) also exist. Similarly, if the

values are bounded from above for all policies and
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Figure 3: Example MDP that Illustrates C5

all states and are finite for at least one policy and
all states then the optimal values are finite. Unfor-
tunately, we are often only able to state conditions
that guarantee that the values exist for all station-
ary policies because the counterparts of Lemma 1 and
Lemma 2 for non-stationary policies are not known
to hold. If it is unknown whether there always exists
an optimal stationary policy or known that there does
not always exist an optimal stationary policy, then we
cannot conclude from this result that the optimal val-
ues exist. This is not a problem for linear utility func-
tions, where it is known that there always exists an op-
timal stationary deterministic policy. Unfortunately,
this property does not hold for non-linear utility func-
tions [13]. This is the reason why we listed in Section 7
existing results the few cases where optimal stationary
policies are known to exist. However, in many cases,
we are able to state additional conditions that guar-
antee that the optimal values are finite if they exist.
The proofs of these properties use the positive part of
the MDP to provide an upper bound on the optimal
values and the negative part of the MDP to provide a
lower bound.

9 Exponential Utility Functions

We first discuss exponential utility functions in the
context of MDPs with both positive and negative re-
wards, a situation not yet discussed in Section 7. We
use v+π

e (s) to denote the values of the positive part of
an MDP and v+∗

e (s) to denote its optimal values if the
utility function is exponential. We define v−π

e (s) and
v−∗

e (s) in an analogous way.

The following lemma shows that the vπ
e,T (s) can be

calculated as matrix powers, where γ is the parameter
of the exponential utility function and ι = sign ln γ.
π(s, a) denotes the probability with which to execute
a ∈ A in s ∈ S if one follows π ∈ ΠSR. Its proof is by
induction.

Lemma 4. Let π ∈ ΠSR and Dπ be the matrix
whose (s, s′)-entry is, for all s, s′ ∈ S, Dπ(s, s′) =
∑

a∈A π(s, a)P (s′|s, a)γr(s,a,s′). Let DT
π be the T -th

power of Dπ. Then, for all s, s′ ∈ S,

DT
π (s, s′) = Es,π[γwT |sT = s′] · P s,π(sT = s′)



and vπ
e,T (s) = ι ·

∑

s′∈S DT
π (s, s′).

The MDP in Figure 3(a) and its only policy π illustrate
Lemma 4. For the convex exponential utility function
U(w) = 2w, vπ

e,T (s) can be obtained by calculating the
matrix powers of

Dπ =





0 1 1

1 0 1
2

0 0 1
2



 .

They are

vπ
e,T (s1) = 5

2 − 1
6 (−1)T − 4

3

(

1
2

)T
,

vπ
e,T (s2) = 5

2 + 1
6 (−1)T − 5

3

(

1
2

)T
,

vπ
e,T (s3) =

(

1
2

)T
,

as shown in Figure 3(b). Therefore, vπ
e (s1) and vπ

e (s2)
do not exist. For the concave exponential utility func-
tion U(w) = −

(

1
2

)w
, the same matrix Dπ results if

all rewards of the MDP are negated, and vπ
e (s1) and

vπ
e (s2) do not exist either. However, the MDP satisfies

C5. Thus, C5 is thus too weak to guarantee that the
values exist.

The conditions that can eliminate such MDPs are dif-
ferent for convex and concave exponential utility func-
tions. Before considering them separately, we present
some results about stationary policies that hold for
both of them and are key for our later results by es-
tablishing that the first and second limits of Eq. (2)
exist. The following lemmata relate them.

Lemma 5. Let π ∈ ΠSR. For all s /∈ Rπ,

lim
T→∞

Es,π [γwT | sT /∈ Rπ] · P s,π(sT /∈ Rπ) = 0

iff limT→∞ Es,π [γwτ(T ) | sT ∈ Rπ] · P s,π(sT ∈ Rπ) is
finite.

Lemma 6. Let π ∈ ΠSR. For all s /∈ Rπ,

lim sup
T→∞

Es,π [γwT | sT /∈ Rπ] · P s,π(sT /∈ Rπ) > 0,

iff limT→∞ Es,π [γwτ(T ) | sT ∈Rπ]·P s,π(sT ∈Rπ)=+∞.

The proofs of Lemma 5 and Lemma 6 are based on the
following lemma, whose proof is by induction.

Lemma 7. Let π ∈ ΠSR and D̂π be the matrix whose
(s, s′)-entry is, for all s, s′ ∈ S,

D̂π(s, s′) =















Dπ(s, s′) s /∈ Rπ

1 s = s′, s ∈ Rπ

0 s 6= s′, s ∈ Rπ.

Let D̂T
π be the T -th power of D̂π. Then, for all s, s′∈S,

D̂T
π (s, s′) =



































Es,π
[

γwT

∣

∣sT =s′
]

·P s,π(sT =s′)

s, s′ /∈ Rπ

Es,π
[

γwτ(T )
∣

∣sτ(T ) =s′
]

·P s,π(sτ(T ) =s′)

s /∈ Rπ, s′ ∈ Rπ

1 s = s′, s ∈ Rπ

0 s 6= s′, s ∈ Rπ.

We can order the indices of D̂π so that D̂π =
(

Aπ Bπ

0 1

)

for some matrices Aπ and Bπ, where 1 is an identity
matrix and 0 is a zero matrix. The top rows then cor-
respond to the transient states, and the bottom rows
correspond to the recurrent states. Then,

D̂T
π =

(

AT
π

(

∑T−1
t=0 At

π

)

· Bπ

0 1

)

,

and Lemma 5 and Lemma 6 follow from the fact that
the limit of D̂T

π exists as T → ∞ iff AT
π → 0 since the

limit of
(

∑T−1
t=0 At

π

)

· Bπ then exists as well.

9.1 Convex Exponential Utility Functions

We first consider the case where the utility function
is convex exponential. Then, Theorem 8 states a con-
dition under which the values exist for all stationary
policies π. Its proof makes use of Lemma 5, Lemma 6
and the types of the recurrent classes from Lemma 1.

C10: For all π ∈ Π and all s ∈ S, at least one of
v+π
e (s) and v−π(s) is finite.

Theorem 8. Assume that the utility function is con-
vex exponential and C10 holds. Then, for all π ∈ ΠSR

and all s ∈ S, vπ
e (s) exists.

Consider again the MDP in Figure 3(a) and its only
policy π. For the convex exponential utility function

U(w) = 2w, v
+π(s)
e,T can be obtained by calculating the

matrix powers of the positive part of the MDP





0 1 1

1 0 1
2

0 0 1





according to Lemma 4. They are

v+π
e,T (s1) = 9

8 − 1
8 (−1)T + 3

4T,

v+π
e,T (s2) = 7

8 + 1
8 (−1)T + 3

4T,

v+π
e,T (s3) = 1.

Therefore, v+π
e (s1) = v+π

e (s2) = +∞. On the other
hand, it follows from Lemma 1 that v−π(s3) = −∞,
and thus v−π(s1) = v−π(s2) = −∞. Consequently,
the MDP violates C10, and C10 is sufficiently strong
to eliminate this MDP.



We conjecture that Theorem 8 also holds for all poli-
cies. Since it is currently unknown whether there al-
ways exists an optimal stationary policy, it is also un-
known whether the optimal values exist. Assume that
C11 holds, the utility function is convex exponential,
and the optimal values exist. Then, the optimal val-
ues are finite since C11 bounds them from above. This
is the case because the positive MDP satisfies C8 and
thus v+∗

e (s) is finite. Furthermore, for all π ∈ Π and
all s ∈ S,

vπ
e,T (s) = Es,π

[

Ue

(

T−1
∑

t=0

rt

)]

≤ Es,π

[

Ue

(

T−1
∑

t=0

r+
t

)]

= v+π
e,T (s).

Taking the limit as T → ∞ shows that vπ
e (s) ≤ v+π

e (s).
Therefore, v∗e (s) ≤ v+∗

e (s) < +∞.

C11: For all π ∈ Π and all s ∈ S, v+π
e (s) is finite.

9.2 Concave Exponential Utility Functions

We now consider the case where the utility function is
concave exponential. The results and proofs for con-
cave exponential utility functions are analogous to the
ones for convex exponential utility functions.

C12: For all π ∈ Π and all s ∈ S, at least one of
v+π(s) and v−π

e (s) is finite.

Theorem 9. Assume that the utility function is con-
cave exponential and C12 holds. For all π ∈ ΠSR and
all s ∈ S, vπ

e (s) exists.

We conjecture that Theorem 9 also holds for all poli-
cies. Since it is currently unknown whether there al-
ways exists an optimal stationary policy, it is also un-
known whether the optimal values exist. Assume that
the utility function is concave exponential, C13 hold,
and the optimal values exist. Then, the optimal values
are finite since C13 bounds them from below. This is
the case because for the π from C13 and all s ∈ S,

vπ
e,T (s) = Es,π

[

Ue

(

T−1
∑

t=0

rt

)]

≥ Es,π

[

Ue

(

T−1
∑

t=0

r−t

)]

= v−π
e,T (s).

Taking the limit as T → ∞ shows that v∗e (s) ≥ vπ
e (s) ≥

v−π
e (s) > −∞.

C13: There exists π ∈ Π such that, for all s ∈ S,
v−π
e (s) is finite.

10 General Utility Functions

We now consider non-linear utility functions that are
more general than exponential utility functions. Such

utility functions are, for example, necessary to model
risk attitudes that change with the total reward.

10.1 Positive and Negative MDPs

We first consider positive and negative MDPs. The
values vπ

U (s) exist since vπ
U,T (s) is monotone in T .

Thus, the optimal values exist as well. Theorem 10
and Theorem 11 state conditions under which the val-
ues and optimal values are finite for positive MDPs,
and Theorem 12 and Theorem 13 state conditions un-
der which they are finite for negative MDPs. The the-
orems hold since vπ

U (s) and v∗U (s) are dominated by
vπ(s) and v∗(s) (for Theorem 10 and Theorem 12) or
by vπ

e (s) and v∗e (s) (for Theorem 11 and Theorem 13),
respectively, where γ is the parameter of the exponen-
tial utility function.

Theorem 10. Assume that C1 and C2 hold and there
exist C, D > 0 such that U(w) ≤ Cw+D for all w ≥ 0.
Then, for all π ∈ Π and all s ∈ S, vπ

U (s) and v∗U (s)
exist and are finite.

Theorem 11. Assume that C1 and C8 hold for some
γ > 1 and there exist C, D > 0 such that U(w) ≤
Cγw +D for this γ and all w ≥ 0. Then, for all π ∈ Π
and all s ∈ S, vπ

U (s) and v∗U (s) exist and are finite.

Theorem 12. Assume that C3 and C4 hold for some
π ∈ Π and there exist C, D > 0 such that U(w) ≥
−Cw − D for all w ≤ 0. Then, for this π and all
s ∈ S, vπ

U (s) and v∗U (s) exist and are finite.

Theorem 13. Assume that C3 and C9 hold for some
π ∈ Π and some γ with 0 < γ < 1 and there exist
C, D > 0 such that U(w) ≥ −Cγw − D for this γ and
all w ≤ 0. Then, for this π and all s ∈ S, vπ

U (s) and
v∗U (s) are finite.

10.2 General MDPs

We now consider MDPs with both positive and nega-
tive rewards.

10.2.1 Bounded Functions

We first consider the case where the utility function is
bounded, that is, there exist finite U+ and U− such
that U− ≤ U(w) ≤ U+ for all w. Then, vπ

U,T (s) is
bounded as T → ∞ but can oscillate, in which case
the values do not exist. Theorem 14 states a condition
under which the values exist for all stationary policies
π. Its proof shows that the first limit of Eq. (2) is zero
and the second limit exists, making use of Lemma 2
and U+ and U− as bounds.

Theorem 14. Assume that the utility function is
bounded and C5 holds. Then, for all π ∈ ΠSR and
all s ∈ S, vπ

U (s) exists and is finite.

We conjecture that Theorem 14 also holds for all poli-
cies. Since it is known that there does not always exist



an optimal stationary policy, it is currently unknown
whether the optimal values exist. Assume that the
utility function is bounded and the optimal values ex-
ist. Then, the optimal values are finite since the values
are bounded.

10.2.2 Linearly Bounded Functions

We now consider the case where the utility function
is linearly bounded, that is, there exist C, D > 0 such
that U(w) ≤ Cw+D for all w ≥ 0 and U(w) ≥ −Cw−
D for all w ≤ 0. Then, Theorem 15 states a condition
under which the values exist for all stationary policies.
Its proof shows that the first limit of Eq. (2) is zero
and the second limit exists, making use of Lemma 2
and the linear functions as bounds.

Theorem 15. Assume that the utility function is lin-
early bounded and C5 holds. Then, for all π ∈ ΠSR

and all s ∈ S, vπ
U (s) exists.

We conjecture that Theorem 15 also holds for all poli-
cies. Since it is known that there does not always exist
an optimal stationary policy, it is currently unknown
whether the optimal values exist. Assume that the
utility function is linearly bounded, C6 and C7 hold,
and the optimal values exist. Then, the optimal val-
ues are finite since C6 bounds them from above and
C7 bounds them from below. The proof is similar to
the one for exponential utility functions.

10.2.3 Exponentially Bounded Functions

We now consider the case where the utility function is
exponentially bounded, that is, there exist C, D > 0,
γ+ > 1 and 0 < γ− < 1 such that U(w) ≤ Cγw

+ +D for
all w ≥ 0 and U(w) ≥ −Cγw

−
−D for all w ≤ 0. Then,

Theorem 16 states a condition under which the values
exist for all stationary policies π, where e(γ+) refers to
the exponential utility function with parameter γ+ and
e(γ−) refers to the exponential utility function with
parameter γ−. Its proof shows that the first limit of
Eq. (2) is zero and the second limit exists, making use
of Lemma 6 and the exponential functions as bounds.

C14: For all π ∈ Π and all s ∈ S, v+π
e(γ+)(s) and

v−π
e(γ−)(s) are finite.

Theorem 16. Assume that the utility function is ex-
ponentially bounded and C14 holds. Then, for all
π ∈ ΠSR and all s ∈ S, vπ

U (s) exists and is finite.

However, C14 is very restrictive. It excludes, for ex-
ample, MDPs with cycles with acyclic optimal policies.
An analogy to the case of linearly bounded utility func-
tions suggests that one might be able to use the weaker
condition C15.

C15: For all π ∈ Π and all s ∈ S, at least one of
v+π
e(γ+)(s) and v−π

e(γ−)(s) is finite.

Assume that the utility function is exponentially
bounded and C15 holds. Then, we conjecture that
the values exist but currently cannot even prove this
conjecture for all stationary policies. Since it is known
that there does not always exist an optimal stationary
policy, it is currently unknown whether the optimal
values exist. Assume that the utility function is expo-
nentially bounded, C11 and C13 hold for γ+ and γ−,
respectively, and the optimal values exist. Then, the
optimal values are finite since C11 bounds them from
above and C13 bounds them from below. The proof is
similar to the one for exponential utility functions.

10.2.4 Bounded Total Rewards

Finally, we consider the case where the total re-
ward is bounded from above or below. We use Hs,π

T

to denote the set of trajectories with finite hori-
zon T obtained by starting in s ∈ S and follow-
ing π ∈ Π. We define w(hT ) =

∑T−1
t=0 rt for all

hT = (s0, a0, · · · , sT−1, aT−1, sT ) ∈ Hs,π
T . We also

define vπ
max,T (s) = maxhT ∈H

s,π

T
w(hT ), vπ

max(s) =
limT→∞ vπ

max,T (s), vπ
min,T (s) = minhT ∈H

s,π

T
w(hT ),

and vπ
min(s) = limT→∞ vπ

min,T (s). Then, v+π
max(s)

and v−π
min(s) exist since v+π

max,T (s) and v−π
min,T (s) are

monotone in T . Theorem 17 states a condition un-
der which the values exist.

C16: For all π ∈ Π and all s ∈ S, at least one of
v+π
max(s) and v−π

min(s) is finite.

Theorem 17. Assume that C16 holds. Then, for all
π ∈ Π and all s ∈ S, vπ

U (s) exists. Thus, v∗U (s) exists
as well.

Assume that C17 and C18 hold. Then, the optimal
values are finite since C17 bounds them from above
and C18 bounds them from below. The proof is similar
to the one for exponential utility functions. C17 and
C18 are, for example, satisfied for acyclic MDPs where
plan execution is guaranteed to end in absorbing states
but are satisfied for some MDPs with cycles as well.

C17: For all π ∈ Π and all s ∈ S, v+π
max(s) is finite.

C18: There exists π ∈ Π such that, for all s ∈ S,
v−π
min(s) is finite.

11 Conclusions

In this paper, we derived conditions that guarantee
that the optimal expected utilities exist and are finite
for MDPs with non-linear utility functions. We de-
rived results for positive MDPs, negative MDPs and
general MDPs with both positive and negative re-
wards. Table 2 summarizes our existence results for
general MDPs and various kinds of utility functions.
A checkmark represents that the expected utilities ex-
ist and the optimal expected utilities therefore exist
as well. A checkmark with a question mark represents



Table 2: Summary of Results for General MDPs

Kind of Utility Functions C16 C15 C5

Bounded — — ✓?

Linearly Bounded — — ✓?

Exponentially Bounded — ? ✗

General ✓ (✗) ✗

that the expected utilities are known to exist for all
stationary policies but it is currently unknown whether
they exist for all policies and thus also whether the
optimal expected utilities exist. A question mark rep-
resents that it is currently unknown whether the ex-
pected utilities exist even for all stationary policies. A
cross represents that the optimal expected utilities are
known not to exist in all cases. A dash represents that
the result for this case should follow from other cases
since C16 implies C15, which in turn implies C5. In fu-
ture work, we intend to remove the question marks in
the table. More importantly, the results in the paper
on the existence and finiteness of the optimal expected
utilities provide only a first step toward a comprehen-
sive foundation of risk-sensitive planning. In future
work, we also intend to study the structure of opti-
mal policies and basic computational procedures for
obtaining them.
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