
Constraint Satisfaction– Solution

1) Consider the two formulations of the N-Queens problem as a constraint satis-
faction problem from the slide set. Compare these two formulations in terms
of the size and branching factor of the state space and the depth of the search
tree.

Answer:
In the first formulation, there are N2 variables, each with domain {0, 1}. There-
fore, the size of the state space is 2N2

(note that this is not the number of valid
configurations). Since we can pick from at most two values from the domain
of a variable, the branching factor is 2. Since we have to assign values to N2

variables, the depth of the search tree is N2.

In the second formulation, there are N variables, each with domain {1, . . . , N}.
Therefore, the size of the state space is only NN . Since we can pick from at
most N different values from the domain of a variable, the branching factor is
N . Since we have to assign values to N variables, the depth of the search tree
is N .

2) In the crossword puzzle, we have a grid with blocked and unblocked cells and a
dictionary of words. We want to assign a letter to each unblocked cell so that
each vertical or horizontal contiguous segment of unblocked cells form a word
that appears in the dictionary. An example of a solved crossword puzzle is given
below1.

1http://www.americanshakespearecenter.com/v.php?pg=684

http://www.americanshakespearecenter.com/v.php?pg=684


Formulate this puzzle as a constraint satisfaction problem. Describe the vari-
ables, their domains and the constraints. (Bonus question: Try to come up with
a second formulation of this puzzle as a constraint satisfaction problem.)

Answer:
Formulation 1:

Variables: Unblocked cells.

Domains: The domain of each variable is the set of letters of the alphabet.

Constraints: For each vertical or horizontal contiguous segment of unblocked cells, we
add a constraint between the cells in that segment, constraining the letters
assigned to the cells in that segment to form a word that appears in the
dictionary.

Formulation 2:

Variables: All vertical or horizontal contiguous segments of unblocked cells.

Domains: The domain of each variable is the set of words in the dictionary of the
same length as the corresponding contiguous segment.

Constraints: For each pair of vertical and horizontal contiguous segments of unblocked
cells that intersect at an unblocked cell s, we add a constraint between
them, constraining the words assigned to them to have the same letter at
s.

3) Consider the following constraint satisfaction problem with variables x, y and
z, each with domain {1, 2, 3}, and constraints C1 and C2, defined as follows:

• C1 is defined between x and y and allows the pairs (1, 1), (2, 2), (3, 1), (3, 2), (3, 3).
(A pair (a, b) means that assigning x = a and y = b does not violate the
constraint. Any assignment that does not appear in the list violate the
constraint.)

• C2 is defined between y and z and allows the pairs (1, 1), (1, 2), (3, 1), (3, 2), (3, 3).

Which values does arc consistency rule out from the domain of each variable?
Suppose that we started search after establishing arc consistency, and we as-
sign x = 1. Which values does a) forward checking and b) maintaining arc
consistency rule out from the domain of each variable?

Answer:
Arc consistency first rules out y = 2 because there is no value of z that satisfies
C2 if y = 2. It then rules out x = 2 because, once y = 2 is ruled out, there is
no value of y that satisfies C1 if x = 2. Arc consistency does not rule out any
other values at this point.

If we assign x = 1 during search, forward checking rules out only y = 3 (y = 2
is already ruled out by arc consistency). Maintaining arc consistency rules out
y = 3 and z = 3.



4) Suppose you have a search problem defined by more or less the usual stuff:

• a set of states S;

• an initial state sstart;

• a set of actions A including the NoOp action, that has no effect;

• a transition model Result(s, a) (that determines the successor state when
action a is executed in state s);

• a set of goal states G.

Unfortunately, you have no search algorithms! All you have is a CSP solver.

(a) Given some time horizon T , explain how to formulate a CSP such that
(1) the CSP has a solution exactly when the problem has a solution of
length T steps; (2) the solution to the original problem can be “read off”
from the variables assigned in CSP solution. Your formulation must give
the variables, their domains, and all applicable constraints expressed as
precisely as possible. You should have at least one variable per time step,
and the constraints should constrain the initial state, the final state, and
consecutive states along the way.

(b) Explain how to modify your CSP formulation so that the CSP has a so-
lution when the problem has a solution of length ≤ T steps, rather than
exactly T steps.

Answer:
We use the variables s0 . . . sT and a0, . . . aT−1. The domain of s0 is {sstart},
the domain of sT is G, the domains of s1, . . . sT−1 are S, and the domains of
a0, . . . aT−1 are A. For each i = 0 . . . T − 1, we have the following constraint:
Result(si, ai) = si+1, that is, the execution of action ai in state si results in state
si+1 (and ai ∈ A(si), where A(si) is the set of actions that can be executed in
si). If we include the NoOp action in A (and all A(si)), we find a solution of
length ≤ T steps. Otherwise, we find a solution of length T steps. In both cases,
the solution can be read off from the assignments to the variables a0 . . . aT−1.

5) Show how a single ternary constraint such as “A + B = C” can be turned into
three binary constraints by using an auxiliary variable. You may assume finite
domains. (Hint: Consider a new variable that takes on values that are pairs of
other values, and consider constraints such as “X is the first element of the pair
Y.”) Next, show how constraints with more than three variables can be treated
similarly. Finally, show how unary constraints can be eliminated by altering
the domains of variables. This completes the demonstration that any CSP can
be transformed into a CSP with only binary constraints.

Answer:
To turn a single constraint C between n variables x1, . . . , xn into n binary
constraints, we can add a new variable y whose domain is a subset of the



Cartesian product of the n variables’ domains. Namely, this subset contains
exactly the tuples < a1, . . . an > where, ∀i ∈ {1 . . . n}, ai is in the domain of
xi, and the assignment x1 = a1, . . . , xn = an is not ruled out by C. We then
add the binary constraints B1, . . . , Bn where, ∀i ∈ {1 . . . n}, Bi is a constraint
between xi and y that rules out any assignment xi = ai, y =< b1, . . . , bn > if
and only if ai 6= bi.

A unary constraint is a constraint over a single variable, ruling out some of the
values from its domain. Instead of using a unary constraint to rule out values
from the domain of a variable, we can simply remove those values from the
variable’s domain.


