
Function Optimization With Local Search– Solution

1) In the N -Queens problem, we want to place N queens on an N × N board
with no two queens on the same row, column, or diagonal. Come up with a
value function and use hill climbing to try to solve the problem by minimizing
this value function, starting with the configuration given below. Generate the
successors of a state by moving a single queen vertically.

A B C D
1
2 Q1 Q3
3 Q2 Q4
4

Answer:
The value function is the number of pairs of queens that can attack each other,
assuming no other queens are on the board (that is, three queens in the same
row count as three pairs, not two). In the initial state, we have the pairs (Q1,
Q2), (Q1, Q3), (Q2, Q3), (Q2, Q4), (Q3, Q4), making its value 5.

Moving Q1 to A1 removes the pairs (Q1, Q2) and (Q1, Q3), decreasing the
value by 2. Moving it to A3 removes the pair (Q1, Q3), but adds the pair (Q1,
Q4). Moving it to A4 does not change the pairs. A symmetric argument can
be made for Q4.

Moving Q2 to B1 does not change the pairs. Moving it to B2 removes the
pair (Q2, Q4). Moving it to B4 removes all three pairs that Q2 appears in. A
symmetric argument can be made for Q3.

The lowest value we can get with one move is 2, either by moving Q2 to B4 or
Q3 to C1. Moving Q2 to B4, we get:

A B C D
1
2 Q1 Q3
3 Q4
4 Q2

There are many possible moves in this state, but moving Q3 to C1 finds the
solution (that is, a state with the lowest possible value of 0), so we can skip the
other moves:

A B C D
1 Q3
2 Q1
3 Q4
4 Q2



2) How would you approach the Traveling Salesman Problem if we wanted to find
a good (but not necessarily the best) solution to it using hill climbing?

Answer:
We start with a random solution that visits all cities. The value function is the
total distance traveled by the salesperson. We can generate the successors of
a state by picking any two cities on the tour and exchanging them. The 2-opt
and 3-opt algorithms are more complex but very well performing hill-climbing
algorithms for the Traveling Salesperson Problem. The 2-opt algorithm was
discussed in class and picks any subpath of the tour and reverses the order of
the cities visited on this subpath.

3) What are the advantages/disadvantages of local search methods (such as hill
climbing and simulated annealing) compared to A*? For which kind of opti-
mization problems should local search be preferred?

Answer:
Local search methods are typically much faster than A*, although they do not
provide any optimality guarantees. They also use little memory, since they only
need store a single state. Local search methods are best applied to computa-
tionally hard (e.g. NP-hard) optimization problems. One thing to note is that
local search algorithms search in the space of candidate solutions. For instance,
if we apply local search to find short paths on graphs, we need to generate an
initial path (possibly by searching the graph with depth-first search or even
suboptimal versions of A* search), and then start optimizing this path. In this
scenario, local search is a poor substitute for A* search.

4) We want to find a local minima of the function f(x) = 2x3 − 3x2 − x+ 1. Start
with x = 0 and apply three iterations of the gradient descent algorithm, using
a learning rate of α = 0.2.

Answer:
Remember the update rule for the gradient descent algorithm:

x := x− αdf(x)/dx

Taking the derivative of f(x) with respect to x, we get:

df(x)/dx = 6x2 − 6x− 1

Plugging in α and df(x)/dx, our update rule becomes:

x := x− 0.2(6x2 − 6x− 1)

x := −1.2x2 + 2.2x+ 0.2

With this update rule, the first 10 iterations of gradient descent is as follows:



Iteration x f(x)
0 0.000000 1.000000
1 0.200000 0.696000
2 0.592000 -0.228443
3 1.081843 -1.060652
4 1.175593 -1.072266
5 1.127882 -1.074638
6 1.154799 -1.075492
7 1.140285 -1.075724
8 1.148327 -1.075798
9 1.143933 -1.075819

10 1.146353 -1.075826

5) What are the advantages and disadvantages of carrying over the fittest two
individuals to the next generation?

Answer:
Carrying over the fittest individuals (also known as ‘elitism’) tilts the genetic
algorithm towards local search, because the best individuals stay around to
(mostly) create more and more children very near to themselves in the genotype
space. This could make the genetic algorithm more efficient, but also can cause
it to more easily get caught in local optima.

6) What are the advantages and disadvantages of running genetic algorithms with
only mutations and no crossovers? How about only crossovers and no muta-
tions?

Answer:
Genetic algorithms without mutations cannot explore outside the possible points
in space formed by choosing any combination of parameter settings in its original
population. As individuals are weeded out, this combination reduces, ultimately
to a single individual. For instance, if the individuals are represented as bit
strings and the first bit of every individual is 0 in the first generation or becomes
0 (if all the 1’s are eliminated), then the algorithm cannot generate solutions
whose first bits are 1.

Genetic algorithms without crossovers perform purely random searches whose
children are very similar to their parents. Crossovers help rapidly transfer high-
performing parameters throughout the population, making genetic algorithms
more efficient in problems where the parameters are at least somewhat inde-
pendent of one another.

So, in general, mutations keep the search (somewhat) global and crossovers
make it more efficient.

7) How would you encode a state if you were using a genetic algorithm to solve the
Traveling Salesman Problem but only wanted to use a straightforward crossover
operation that switches prefixes of both parents’ encodings (that is, we randomly



pick a cutoff point in the encoding, use the encoding of the first parent up to
that cutoff point, and use the encoding of the second parent after that cutoff
point)?

Answer:
We can, for example, assign an integer to each city, encoding its priority. These
priorities correspond to a unique tour, where the salesman visits the cities in
the order of their priorities (breaking ties lexicographically). For this encoding,
crossovers and mutations always create tours and thus valid solutions. Compare
this encoding to one where, for each vertex, we keep the next vertex to visit. The
crossover operator would have to be defined very carefully in order to generate
valid solutions.


