
Neural Network Learning– Solution

1) Can a decision tree represent the Boolean function f(P,Q) ≡ P ⇒ Q? What
about a single perceptron with a step function (whose step is at zero) as thresh-
old function? What about a network of perceptrons with step functions (whose
steps are at zero) as threshold functions? Now answer the same three questions
for the Boolean function f(P,Q) ≡ P ⇔ Q.

Answer:
A decision tree to represent the Boolean function f(P,Q) ≡ P ⇒ Q:

P

Q t

ft

t f

t f

A decision tree that represents the Boolean function f(P,Q) ≡ P ⇔ Q:

P

Q

ft

t f

t f

Q

tf

t f

A single perceptron (which is trivially a network of perceptrons) with a step
function (whose step is at zero) that represents the Boolean function f(P,Q) ≡
P ⇒ Q:



P Q T (always 1)

0.5-1 1

0 = false, 1 = true

A network of perceptrons with step functions that represents the Boolean func-
tion f(P,Q) ≡ P ⇔ Q ≡ (P ⇒ Q) ∧ (Q⇒ P ):

P Q T1 (always 1)

0 = false, 1 = true

P Q T2 (always 1)

T3 (always 1)

11
-1.5

0.5-1 1 0.51 -1

A single perceptron cannot be used to represent the Boolean function f(P,Q) ≡
P ⇔ Q because the four cases (where P and Q are true or false) is not linearly
separable (similar to the XOR example in the Perceptron Learning slides).

2) Develop the training rule for a perceptron with a sigmoid function as threshold
function and the sum of errors to the power of four (instead of the sum of
squared errors) as error function.

Answer:
Terminology:

• g is the sigmoid function with g(x) = 1/(1+e−x) and its derivative g′(x) =
g(x)(1− (g(x)).

• ci is the desired value for the ith training example.

• oi is the value computed by the perceptron as the value of the ith training
example.

• wj is the weight given to the jth feature.



• fij is the value of the jth feature of the ith training example.

We use the error function E := 1/4
∑

i(ci − oi)4 = 1/4
∑

i(ci − g(
∑

j wjfij))
4

dE/dwj =
∑

i(ci − oi)3d(ci − oi)/dwj

=
∑

i(ci − oi)3d(ci − g(
∑

j wjfij))/dwj

=
∑

i(ci − oi)3(−g(
∑

j wjfij))d(
∑

j wjfij)/dwj

=
∑

i(ci − oi)3(−fijg′(
∑

j wjfij))

Thus, weight wj gets updated by gradient descent as follows (batch update),
where α is a small learning rate:

wj := wj − αdE/dwj = wj + α
∑

i fij(ci − oi)3g′(
∑

j wjfij)

If we want to update the weights one training example at a time, we use the
following (for the ith example):

wj := wj + αfij(ci − oi)3g′(
∑

j wjfij)

In this case, we need to cycle through all examples.

3) (Courtesy of Russell and Norvig) Suppose that a training set contains only a
single example, repeated 100 times. In 80 of the 100 cases, the single output
value is 1; in the other 20, it is 0. What will a neural network predict for this
example, assuming that it has been trained on all training examples and reaches
a global optimum? (Hint: To find the global optimum, differentiate the error
function and set the resulting expression to zero.)

Answer:
We determine the weights that minimize the error function. The error function
is

E = 1/2
∑

i(ci − oi)2

= 1/2(80(1− o)2 + 20(0− o)2)
= 50Output2 − 80Output+ 40

The derivative of the error with respect to the output is

dE/dOutput = 100Output− 80

Setting the derivative to zero, we find that Output = 0.8, the probabilistic
prediction P (Output = 1).

4) If we train a neural network for 1,000 epochs (one training example at a time),
does it make a difference whether we present all training examples in turn for
1000 times or whether we first present the first training example 1000 times,
then the second training example for 1000 times, and so on? Why?

Answer:
The resulting networks would be different. The error used to adjust the weights
of the network during training is based on the training examples given to it
during that epoch. In the case of all training examples presented in turn 1000



times, the error is based on the error over all examples because they are all
present during each epoch. In the case where each training example is presented
individually for 1000 times, one first reduces the error only with respect to the
first training example, then only with respect to the second training example,
and so on. The result is that the network will “forget” the earlier training
examples. As later training examples are presented, the weights will move away
from the weights necessary to classify the first training examples correctly.

5) You are given n numbers and have to determine their mean. Develop a gradient
descent rule for this purpose.

Answer:
Let x1, . . . , xn denote the given numbers, x̄ denote their mean and x̃ denote our
current estimate of their mean. A possible error function is:

Error(x̃) = 1/2(
∑

i(x̃− xi))2.
This error function is non-negative and zero exactly at the mean (that is, when
x̃ = x̄). It has exactly one global minimum, namely at the mean.

Update equation:

x̃ := x̃− αdError(x̃)

dx̃
= x̃− α1

2
2n

∑
i

(x̃− xi) = x̃+ αn
∑
i

(xi − x̃)

We can use this update equation in two different ways.

Schema 1 (batch update):

x̃ := random number

Repeatedly do:

x̃ := x̃+ αn
∑

i(xi − x̃)

Below is sample code to determine the mean of 2, 3 and 7 using Schema 1:

#include <stdio.h>

main()

{

int i;

double mean = 10.0;

double alpha = 0.0001;

double alpha_n = alpha * 3;

for (i = 0; i < 100000; ++i)

{

mean = mean + alpha_n * (

(2.0 - mean) +

(3.0 - mean) +



(7.0 - mean));

printf("%f\n", mean);

}

}

Schema 2 (one training example at a time):

x̃ := random number

Repeatedly do:

x̃ := x̃+ α(x1 − x̃)

x̃ := x̃+ α(x2 − x̃)

x̃ := x̃+ α(x3 − x̃)

. . .

Below is a sample code to determine the mean of 2, 3 and 7, using Schema 2:

#include <stdio.h>

main()

{

int i;

double mean = 10.0;

double alpha = 0.0001;

for (i = 0; i < 100000; ++i)

{

mean = mean + alpha * (2.0 - mean);

printf("%f\n", mean);

mean = mean + alpha * (3.0 - mean);

printf("%f\n", mean);

mean = mean + alpha * (7.0 - mean);

printf("%f\n", mean);

}

}

6) Explain exactly why networks of perceptrons with linear activation functions are
uninteresting (that is, networks of perceptrons where, for each perceptron, the
output is some constant times the weighted sum of the inputs). Use equations
if necessary.

Answer:
Networks of perceptrons with linear activation functions are uninteresting be-
cause a single perceptron can be used to represent a whole network of percep-
trons with linear activation functions (since a weighted sum of weighted sums
of feature values can be calculated simply as a weighted sum of feature values).



7) Does it make sense to use an inductive machine learning method if it cannot
even represent all training examples correctly?

Answer:
Yes. Machine learning methods can have small errors on both training and test
sets even if they cannot represent all training examples correctly and thus cannot
have zero errors. In fact, it is often the case that naive Bayesian classifiers,
perceptrons and other machine learning formalisms can represent the function
to be learned only “approximately”.

8) Is overfitting more or less likely when the training set is small or large? Is
overfitting more or less likely when the number of parameters to learn (such as
the number of weights in a neural network) is small or large?

Answer:
Overfitting is more likely when the training set is small and the number of
parameters is large. The larger the number of parameters to learn, the more
training examples are needed to estimate them well.

9) Design a perceptron with inputs x and y and a threshold function as activation
function whose output for a given input pair (x, y) is given by:

x

y

0
1

0.5

The line: 
y = 0.5 – 0.5x

On this side of the line, 
the perceptron outputs 0.

On this side of the line, 
the perceptron outputs 1.

Clearly specify the weights and threshold of your perceptron. Show your rea-
soning.

Answer:
We start by rearranging the terms in the formula of the line:

y = 0.5− 0.5x

0.5x+ y = 0.5

x+ 2y = 1 (only for cosmetic reasons)

We then find the inequality for the half-plane that contains exactly the points
for which the perceptron outputs 1. There are two possibilities:

x+ 2y > 1

x+ 2y < 1



We can easily determine which one is the correct one by selecting a point for
which the perceptron outputs 1, and see which inequality it satisfies. In this
instance, we can pick (0,0), which satisfies the second inequality. Therefore, we
want our perceptron to output 1 when x+2y < 1. To determine the weights and
the thresholds, we simply rearrange the inequality to be similar to the threshold
function:

x+ 2y < 1

−x− 2y > −1

So, the weight for x is −1, the weight for y is −2, and the threshold is −1. Note
that, one can multiply both weights and the threshold with the same positive
constant, and the perceptron continues to represent the same function.

10) You are given the function f(x, y) = x2 + xy + y2 and are trying to find a
local minimum using gradient descent. You randomly start with x = 1.3 and
y = 5.4. Perform the first step of gradient descent with learning rate α = 0.01.
Show the resulting values for x and y as well as all of your calculations.

Answer:
We first take the derivative of f with respect to x, and with respect to y:

df(x, y)/dx = 2x+ y

df(x, y)/dy = x+ 2y

We then write down the update rule for gradient descent:

x := x− αf(x, y)/dx = x− α(2x+ y)

y := y − αf(x, y)/dy = y − α(x+ 2y)

Plugging in the values for x, y, and α, we get the new values for x and y after
one iteration of gradient descent:

x := 1.3− 0.01(1.3× 2 + 5.4) = 1.22

y := 5.4− 0.01(1.3 + 5.4× 2) = 5.279

11) The slides on “Neural Networks” show that a neural network consisting of three
perceptrons can represent x XOR y for two inputs x and y. Show in an x-
y coordinate system for which real-valued(!) inputs x and y this particular
neural network outputs 1 and for which real-valued inputs x and y it outputs 0,
assuming that it uses a threshold function as activation function (rather than
a sigmoid function).

Answer:




