
Uninformed Search– Solution

1) (Thanks to Ariel Felner.) Three missionaries and three cannibals must cross a
river from its left bank to its right bank using a boat which can carry at most
two people, under the constraint that, for both banks, if there are missionaries
present on the bank, they cannot be outnumbered by cannibals (if they were,
the cannibals would eat the missionaries). The boat cannot cross the river by
itself with no people on board. In addition, when a boat arrives at a destination
bank then anyone inside the boat is considered to be on the destination bank
(even if the boat returns to the other bank right away). How can the 6 people
move without violating the constraint?

a) Express this problem as a state space as follows: Define the different states,
define the different operators and their applicability (do not allow states that
violate the constraints) and define the start and goal states.

Answer:
One way of defining the state space is as follows.

States: We can represent a state as the 5-tuple (CL,ML, CR,MR, B) where CL

denotes the number of cannibals on the left bank, ML denotes the number of
missionaries on the left bank, CR denotes the number of cannibals on the right
bank, MR denotes the number of missionaries on the right bank, and B denotes
the position of the boat – either L (left bank) or R (right bank). Note that the
following should hold for any valid state:

CL + CR = ML +MR = 3
if ML > 0, then ML ≥ CL

if MR > 0, then MR ≥ CR

Note: One could add additional constraints (for example, if CR +MR = 0, then
B = L).

Start state: (3, 3, 0, 0, L).

Goal state: (0, 0, 3, 3, R).

Operators: We have five operators:

M : Move one missionary. Applicable if B = L and (ML = 1 or ML > CL), or
if B = R and (MR = 1 or MR > CR).

C: Move one cannibal. Applicable if B = L, CL > 0, and (MR = 0 or
MR > CR), or if (symmetric formula for B = R).

MM : Move two missionaries. Applicable if B = L and (ML = 2 or ML > CL+1),
or if (symmetric formula for B = R).

CC: Move two cannibals. Applicable if B = L, CL > 1 and (MR = 0 or
MR < CR − 1), or if (symmetric formula for B = R).



MC: Move one cannibal and one missionary. Applicable if B = L, ML > 0, and
CL > 0, or if (symmetric formula for B = R).

b) How many different states are possible?

Answer:
There are 4 different ways how we can distribute the missionaries (or cannibals)
among the two banks, and two different positions for the boat. Therefore, there
are a total of 4 × 4 × 2 = 32 states. However, some of these states violate the
constraint of the problem. Removing these states, we are left with 20 states
that do not violate the constraint, which can be calculated as follows:

If MR = 0 (and ML = 3), then CR ∈ {0, 1, 2, 3} – 4 possibilities.
If MR = 1 (and ML = 2), then CR = 1 (and CL = 2) – 1 possibility.
If MR = 2 (and ML = 1), then CR = 2 (and CL = 1) – 1 possibility.
If MR = 3 (and ML = 0), then CR ∈ {0, 1, 2, 3} – 4 possibilities.

There are only 4+1+1+4 = 10 valid distributions of missionaries and cannibals
among the two banks, and 2 positions for the boat, for a total of 10 × 2 = 20
valid states.

c) Write a shortest sequence of states (path in the state space) that will solve
the problem.

Answer:
(3, 3, 0, 0, L) (apply CM)
(2, 2, 1, 1, R) (apply M)
(3, 2, 0, 1, L) (apply CC)
(3, 0, 0, 3, R) (apply C)
(3, 1, 0, 2, L) (apply MM)
(1, 1, 2, 2, R) (apply CM)
(2, 2, 1, 1, L) (apply MM)
(0, 2, 3, 1, R) (apply C)
(0, 3, 3, 0, L) (apply CC)
(0, 1, 3, 2, R) (apply C)
(0, 2, 3, 1, L) (apply CC)
(0, 0, 3, 3, R)

2) A 4-neighbor gridworld is given below. In which order do depth-first search and
breadth-first search (both with a sensible node pruning strategy) expand the
cells when searching from s to g? Ties are broken in lexicographic order. That
is, A1 is preferred over A2 and B1, and A2 is preferred over B1.

A B C D E
1 s
2
3 g
4
5



Answer:
The node pruning strategy of breadth-first search is to prune nodes whenever
some node in the search tree is already labeled with the same state. The node
pruning strategy of depth-first search is to prune nodes whenever some node on
the same branch of the search tree is already labeled with the same state (cycle
detection).

Breadth-first search: (E1), (D1, E2), (C1, E3), (B1, C2, E4), (A1, C3, E5),
(B3, C4, D5), (A3). The parentheses group states based on their depth in the
search tree. Depending on the tie-breaking strategy, the order of expansions
can change, but only within a group.

Depth-first search: E1, D1, C1, B1, A1, (backtrack to B1 and then C1), C2,
C3, B3, A3.

3) Compare the advantages and disadvantages of breadth-first and depth-first
search and discuss to which degree pruning of tree nodes is important for them.

Answer:
In a finite state space, breadth-first search (BFS) and depth-first search (DFS)
compare as follows:

• Both breadth-first search and depth-first search can use node pruning to
decrease the number of expanded nodes and thus increase their efficiency.
Breadth-first search needs to keep more information in memory than depth-
first search and can then use more powerful node pruning strategies.

• BFS is complete (even without node pruning). DFS is not complete with-
out cycle detection and thus not complete without any node pruning.

• BFS is optimal (assuming unit-cost edges), DFS offers no such guarantee.

In a finite tree with branching factor b, goal depth d, tree depth m, BFS and
DFS compare as follows:

• In the worst case, BFS expands O(bd) states to find a solution, whereas
DFS expands O(bm) states. Therefore, since the goal depth cannot be
larger than the tree depth (that is, d ≤ m), BFS has a better worst case
performance.

• In the worst case, BFS requires memory to store O(bd) states, whereas DFS
requires memory to store only O(bm) states with an appropriate memory-
deallocation strategy.

4) Does depth-first search always terminate if there is a path of finite length from
the start to the goal? Why?

Answer:
No. If it does not use proper cycle detection, it might get stuck in a loop. Even
with cycle detection, if the state space is infinite (but there is a finite length
path from the start to the goal), DFS might get stuck exploring an infinite
subspace of the state space.



5) In Manhattan, you want to reach a given destination from your current location
with as few left turns as possible. Can this be formulated as finding a minimum
cost path in a graph? If so, how? If not, why not?

Answer:
Yes. Each state is a pair of the agent’s current location and the compass di-
rection it is facing (North, East, South or West). There are four goal states,
namely pairs of the given destination and the four compass directions. The
actions are to ‘move forward’ (cost 0, changes location depending on which way
the agent is facing, the direction the agent is facing does not change), ‘turn right
and move forward’ (cost 0) and ‘turn left and move forward’ (cost 1). If we also
want to minimize the number of edges traversed by the agent as a secondary
objective, we can instead use a cost of ε for the ‘move forward’ and ‘turn right
and move forward’ actions, where ε is smaller than 1/the number of states in
our state space. Assuming Manhattan is finite, our state space representation
is also finite.


