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Bayesian Networks
(= Belief Networks)

Sven Koenig, USC
Russell and Norvig, 3rd Edition, Sections 14.1-14.4

These slides are new and can contain mistakes and typos.
Please report them to Sven (skoenig@usc.edu).

Rule-Based Systems (= Production Systems)

• We now start with probabilistic knowledge representation and reasoning.
• Conclusions are often not certain

• if OfficeMachine(x) then HasEnergySource(x, WallOutlet)
• If OfficeMachine(x) then it is highly likely that HasEnergySource(x, WallOutlet)
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Bayesian Networks

• Windows 95: diagnosis of printing problems

Bayesian Networks

• Medical diagnosis
• S1, S2, …: symptoms (e.g. high temperature) or causes of diseases (e.g. age)
• D1, D2, …: diseases (e.g. flu, kidney stone, …)

S1 S2 S3 … D1 D2 D3 … P(S1, S2, S3, …, D1, D2, D3, …)

true true true … true true true … 0.0000001

… … … … … …. … …

false false false … false false false … 0.0000002
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Bayesian Networks

• Medical diagnosis
• S1, S2, …: symptoms (e.g. high temperature) or causes of diseases (e.g. age)
• D1, D2, …: diseases (e.g. flu, kidney stone, …)

• When the doctor observes presence of S1 and absence of S3, calculate 
• P(D1 | S1, NOT S3) = P(D1, S1, NOT S3) / P(S1, NOT S3)
• P(D2 | S1, NOT S3)
• P(D3 | S1, NOT S3)
• …

S1 S2 S3 … D1 D2 D3 … P(S1, S2, S3, …, D1, D2, D3, …)

true true true … true true true … 0.0000001

… … … … … …. … …

false false false … false false false … 0.0000002

Bayesian Networks

• Medical diagnosis
• S1, S2, …: symptoms (e.g. high temperature) or causes of diseases (e.g. age)
• D1, D2, …: diseases (e.g. flu, kidney stone, …)

• We need to acquire too many probabilities from the expert.
• Many of the probabilities are very close to zero and thus hard to specify 

by experts.

S1 S2 S3 … D1 D2 D3 … P(S1, S2, S3, …, D1, D2, D3, …)

true true true … true true true … 0.0000001

… … … … … …. … …

false false false … false false false … 0.0000002
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Bayesian Networks

• Medical diagnosis
• S1, S2, …: symptoms (e.g. high temperature) or causes of diseases (e.g. age)
• D1, D2, …: diseases (e.g. flu, kidney stone, …)

• Bayesian networks make use of conditional independence to specify such 
a joint probability distribution without these problems.

• Can’t we just assume, for example, pairwise independence? 
No, if diseases were independent from symptoms, then there would be no 
need to observe any symptoms to perform a medical diagnosis!

S1 S2 S3 … D1 D2 D3 … P(S1, S2, S3, …, D1, D2, D3, …)

true true true … true true true … 0.0000001

… … … … … …. … …

false false false … false false false … 0.0000002

Bayesian Networks

• Directed acyclic graph, where nodes are random variables, links are 
direct influences between random variables, and conditional 
probability tables specify probabilities

EarthquakeBurglary

JohnCalls MaryCalls

Alarm

Burglary Earthquake P(Alarm | Burglary, Earthquake)

true true P(A | B, E) = 0.95

true false P(A | B, NOT E) = 0.94

false true P(A | NOT B, E) = 0.29

false false P(A | NOT B, NOT E) = 0.001

Alarm P(JohnCalls | Alarm)

true P(J | A) = 0.90

false P(J | NOT A) = 0.05

Alarm P(MaryCalls | Alarm)

true P(M | A) = 0.70

false P(M | NOT A) = 0.01

P(Burglary)

P(B) = 0.001

P(Earthquake)

P(E) = 0.002

Remember that
P(J | A) + P(J | NOT A)

does not need to equal 1!

Expresses unmodeled causes, 
e.g. trucks passing by, etc.
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Bayesian Networks

• Can Bayesian networks represent all Boolean functions? – Yes.
f(Feature_1, …, Feature_n) ≡ some propositional sentence

YX

“And”

X Y P(“And” | X, Y)

true true 1.0

true false 0.0

false true 0.0

false false 0.0

YX

“Or”

X Y P(“Or” | X, Y)

true true 1.0

true false 1.0

false true 1.0

false false 0.0

X

“Not”
X P(“Not” | X)

true 0.0

false 1.0

Bayesian Networks

• A Bayesian network uniquely specifies a joint probability table

• P(B, E, A, J, M) = P(B) P(E) P(A | B, E) P(J | A) P(M | A) 
for all assignments of truth values to B, E, A, J and M

• P(B, NOT E, NOT A, J, NOT M) = 0.001 (1-0.002) (1-0.94) 0.05 (1 – 0.01)

EarthquakeBurglary

JohnCalls MaryCalls

Alarm

Burglary Earthquake P(Alarm | Burglary, Earthquake)

true true 0.95

true false 0.94

false true 0.29

false false 0.001

Alarm P(JohnCalls | Alarm)

true 0.90

false 0.05

Alarm P(MaryCalls | Alarm)

true 0.70

false 0.01

P(Burglary)

0.001

P(Earthquake)

0.002
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Bayesian Networks

• A joint probability table does not uniquely specify a Bayesian network 
since each way of factoring the joint probability distribution corresponds 
to one Bayesian network structure. Each resulting Bayesian network 
represents the joint probability distribution correctly for suitably 
calculated conditional probability tables.

• For example, there are 6 ways of factoring P(A, B, C), including
• P(A, B, C) = P(C | B, A) P(B, A) = P(C | B, A) P(B | A) P(A) (called the chain rule)

for all assignments of truth values to A, B and C
(corresponding to: first picking A, then picking B and finally picking C, each time 
conditioning the picked random variable on all random variables picked earlier)

• P(A, B, C) = P(A | B, C) P(B, C) = P(A | B, C) P(C | B) P(B) 
for all assignments of truth values to A, B and C
(corresponding to: first picking B, then picking C and finally picking A, each time 
conditioning the picked random variable on all random variables picked earlier)

A

B

C

B

C

A

1

3

2

1

3

2

Bayesian Networks

• The Bayesian network structure determines how many probabilities 
need to be specified for the conditional probability tables.

• Let’s choose P(A, B, C) = P(C | B, A) P(B | A) P(A). 

A

B

C

A B C P(A, B, C)

true true true 0.054

true true false 0.126

true false true 0.002

true false false 0.018

false true true 0.432

false true false 0.288

false false true 0.032

false false false 0.048

1

3

2

P(A)

0.2

A P(B | A)

true 0.9

false 0.9A B P(C | A, B)

true true 0.3

true false 0.1

false true 0.6

false false 0.4
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Bayesian Networks

• Here: P(B | A) = P(B | NOT A). 
• Thus, A and B are independent since

• P(B) = P(B AND A) + P(B AND NOT A) = 
P(B | A) P(A) + P(B | NOT A) P(NOT A) = 
P(B | A) P(A) + P(B | A) P(NOT A) =
P(B | A) (P(A) + P(NOT A)) =
P(B | A)

Bayesian Networks

• This allows us to simplify the Bayesian network, which requires the 
specification of only 6 probabilities for all conditional probability 
tables rather than 7 probabilities for the joint probability table.

A

B

C

1

3

2

P(A)

0.2

A P(B | A)

true 0.9

false 0.9A B P(C | A, B)

true true 0.3

true false 0.1

false true 0.6

false false 0.4

A

B

C

1

3

2

P(A)

0.2

A B P(C | A, B)

true true 0.3

true false 0.1

false true 0.6

false false 0.4

P(B)

0.9

Need to specify 7 probabilities for
all conditional probability tables

Need to specify only 6 probabilities for
all conditional probability tables
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Bayesian Networks

EarthquakeBurglary

JohnCalls MaryCalls

Alarm

EarthquakeBurglary

JohnCalls MaryCalls

Alarm

EarthquakeBurglary

JohnCalls MaryCalls

Alarm

Need to specify 10 probabilities for
all conditional probability tables

Need to specify 13 probabilities for
all conditional probability tables

Need to specify 31 probabilities for
all conditional probability tables

1 2

3

4

5

1 2

3

4 5

12
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4
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Bayesian Networks

• The Bayesian network structure (that is, the ordering of the random 
variables) makes a difference for how many probabilities need to be 
specified for all conditional probability tables.

• We try to find a good ordering by ordering the random variables from 
causes to effects, which typically works well.

• Example: put first the causes of diseases (e.g. “age”), then the 
diseases (e.g. “flu”), then the symptoms of the diseases (e.g. 
“cough”). Note that this cannot be done perfectly since “weight gain” 
might be the cause of a disease but also a symptom of a disease.
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Bayesian Networks

• How to create a Bayesian network with a domain expert
• Ask the expert for the random variables
• Ask the expert to order the random variables from cause to effect
• Repeatedly

• Create a node for the next random variable in the ordering
• For each previously created node

• If the expert states that there should be a link from the previously created node to the newly 
created node (because there is a “direct influence” from the previously created node to the 
newly created node), create the link

• Ask the expert for all probabilities in the conditional probability tables

Bayesian Networks

• Warning: The links in a Bayesian network do not need to go from 
causes to effects in order for the Bayesian network to be correct! 

• The links going from causes to effects just helps to keep the number 
of edges and thus the number of probabilities in all conditional 
probability tables small, which makes it easier to acquire them from 
an expert and also makes reasoning with them faster.

• In other words, it is smart but not necessary to make the links go 
from causes to effects.
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Bayesian Networks

• A node is conditionally independent of its non-descendants, 
given its parents.

• A node is conditionally independent of all other nodes, given its 
parents, children and children’s parents (that is, given its Markov 
blanket).

Bayesian Networks: D-Separation

Battery

Car Starts

IgnitionRadio Gas

Car Moves

19
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Bayesian Networks: D-Separation
Battery

Ignition

Car Starts

Battery

Ignition

Car Starts

Radio

Battery

Ignition

Radio

Battery

Ignition

Ignition

Car Starts

Gas

Ignition

Car Starts

Gas

“Battery” and 
“Car Starts” are 
not guaranteed 

to be 
independent

“Battery” and 
“Car Starts” are 
(guaranteed to 

be) conditionally 
independent 

given “Ignition”

value of random
variable is known=

“Radio” and 
“Ignition” are 

not guaranteed 
to be 

independent

“Radio” and 
“Ignition” are 

(guaranteed to 
be) conditionally 

independent 
given “Battery”

“Ignition” and 
“Gas” are 

(guaranteed to be) 
independent

(provided that
both “Car Starts” 
and “Car Moves” 

are not given)

“Ignition” and 
“Gas” are not
guaranteed to 

be conditionally 
independent 

given “Car 
Starts” (and/or 
“Car Moves”)

Case 1 Case 2 Case 3

Path blocked Path blocked Path blocked

Bayesian Networks: D-Separation

• Example for Case 3:
In the neighboring room, someone flips both a dime and a nickel. Then, 
they sound a horn if and only if exactly one of the two coins comes up 
heads. 

• “Dime: Heads” and “Nickel: Heads” are independent.
• However, they are not conditionally independent given “Horn” since

P(Dime: Heads | Horn) = ½ but
P(Dime: Heads | Nickel: Heads, Horn) = 0.

Nickel: 
Heads

Dime: 
Heads

Horn

21
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Bayesian Networks: D-Separation

value of random
variable is known=

X

Y

Z

Case 1

X

Y

Z

Case 2

X

Y

Z

Case 3

Path between
X and Z is blocked

provided that 
Y is given

Path between
X and Z is blocked

provided that 
Y is given

Path between
X and Z is blocked

provided that neither
Y nor any of its 

descendants are given

Bayesian Networks: D-Separation

• X and Y are conditionally independent given E if and only if every 
undirected path (that is, one can go either with or against the 
directed edges) between them is blocked in at least one part each.

X

Y

Water Analogy

23
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Bayesian Networks: D-Separation

• Example: Are “Radio” and “Battery” independent?

• Perhaps not: There is only one undirected path between “Radio” and 
“Battery”, and this path is not blocked. (A path that consists of one link 
only cannot be blocked.) Thus, it depends on the conditional 
probability tables whether they are independent. 

Battery

Car 
Starts

IgnitionRadio Gas

Car 
Moves

Bayesian Networks: D-Separation

• Example: Are “Radio” and “Gas” independent?

• Yes: There is only one undirected path between “Radio” and “Gas”, 
and this path is blocked because its part “IgniƟon → Car Starts ← Gas” 
is blocked. (This is the only blocked part.)

Battery

Car 
Starts

IgnitionRadio Gas

Car 
Moves
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Bayesian Networks: D-Separation

• Example: Are “Radio” and “Gas” conditionally independent given 
“Ignition” and “Car Moves”?

• Yes: There is only one undirected path between “Radio” and “Gas”, 
and this path is blocked because its part “BaƩery → IgniƟon → Car 
Starts” is blocked. (This is the only blocked part.)

Battery

Car 
Starts

IgnitionRadio Gas

Car 
Moves

Bayesian Networks: D-Separation

• Example: Are “Radio” and “Gas” conditionally independent given 
“Car Starts”?

• Perhaps not: There is only one undirected path between “Radio” and 
“Gas”, and this path is not blocked anywhere. Thus, it depends on the 
conditional probability tables whether they are conditionally independent. 

Battery

Car 
Starts

IgnitionRadio Gas

Car 
Moves
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Bayesian Networks: D-Separation

• Example: Are “Burglary” and “JohnCalls” conditionally independent 
given “Alarm”?

• This is another reason why we like Bayesian networks with few edges: 
one can read off more (conditional) independence relationships from 
the Bayesian network structure.

1 2

3

4

5

1 2

3

4 5

12

3

4

5

EarthquakeBurglary

JohnCalls MaryCalls

Alarm

EarthquakeBurglary

JohnCalls MaryCalls

Alarm

EarthquakeBurglary

JohnCalls MaryCalls

Alarm

Yes Yes Perhaps not

Bayesian Networks

• Two astronomers, in different parts of the world, make 
measurements M1 and M2 of the number of stars N in some small 
region of the sky, using their telescopes. Normally, there is a small 
possibility of error by up to one star. Each telescope can also (with a 
slightly smaller probability) be badly out of focus (events F1 and F2), 
in which case the scientist will undercount by three or more stars 
(Problem 14.12 in Russell and Norvig).

1 2

29
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Bayesian Networks

• Two astronomers, in different parts of the world, make 
measurements M1 and M2 of the number of stars N in some small 
region of the sky, using their telescopes. Normally, there is a small 
possibility of error by up to one star. Each telescope can also (with a 
slightly smaller probability) be badly out of focus (events F1 and F2), 
in which case the scientist will undercount by three or more stars.

• You want to generate the following Bayesian network since F1 and N 
cause M1 and F2 and N cause M2, so a good ordering is (for example) 
N, F1, F2, M1 and M2:

M2M1

F1 N F2
Dashed links should NOT be put in
because there is no direct influence
and they thus do not need to be put in! 

Bayesian Networks

• Two astronomers, in different parts of the world, make 
measurements M1 and M2 of the number of stars N in some small 
region of the sky, using their telescopes. Normally, there is a small 
possibility of error by up to one star. Each telescope can also (with a 
slightly smaller probability) be badly out of focus (events F1 and F2), 
in which case the scientist will undercount by three or more stars.

• Argue that the following Bayesian network structure is incorrect (that 
is, there are no conditional probability tables for it that result in a 
Bayesian network that models the described situation correctly):

M1 N M2 F2F1

31
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Bayesian Networks

• You cannot argue that the links do not go from causes to effects.
• You cannot argue that independence relationships present in the 

described situation are not present in the Bayesian network since 
they could be correctly present in the conditional probability tables.
In other words, Bayesian network topologies can express only the 
presence of independence relationships, not their absence.

Bayesian Networks

• Instead, you need to argue that the independence relationships 
present in the Bayesian network structure are not present in the 
described situation, for example:

• D-separation states that, in the Bayesian network structure, F1 and N are 
conditionally independent given M1. However, if M1 is known to be 1000 in 
the described situation, then learning that N is 2000 increases the probability 
that F1 is true to one. Thus, F1 and N are not necessarily conditionally 
independent given M1.

• D-separation states that, in the Bayesian network structure, M1 and M2 are 
independent if N is not given. However, if F1 and F2 are known to be false in 
the described situation, then learning that M1 is 1000 increases the 
probability that N is in the range 999-1001 to one, which in turn increases the 
probability that M2 is in the range 998-1002 to one. Thus, M1 and M2 are not 
necessarily independent if N is not given.
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Bayesian Networks

• There are a number of algorithms that can calculate conditional 
probabilities, such as P(D1 | S1, NOT S3), for a given Bayesian 
network. There is also good software available where one sets known 
values, e.g. S1 to true and S3 to false, and then queries other nodes, 
e.g. D1 to obtain P(D1 | S1, NOT S3).

• In the following, we are content to perform a couple of probability 
calculations by hand.

Bayesian Networks

A P(C|A)

true 0.8

false 0.3

C DA B

A P(B|A)

true 0.8

false 0.3

B P(D|B)

true 0.8

false 0.3

P(A)

0.4
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Bayesian Networks

A P(C|A)

true 0.8

false 0.3

C DA B

A P(B|A)

true 0.8

false 0.3

B P(D|B)

true 0.8

false 0.3

P(A)

0.4

• Easy probability calculations:
• P(B | NOT A) = 0.3
• P(NOT B | A) = 1 – P(B | A)
• P(NOT B | NOT A) = 1 – P(B | NOT A) = 0.7
• P(C) = P(A, C) + P(NOT A, C) = P(C | A) P(A) + P(C | NOT A) P(NOT A) =

0.8 0.4 + 0.3 0.6 = 0.5
• P(A | C) = P(A, C) / P(C) = P(C | A) P(A) / P(C) = 0.8 0.4 / 0.50 = 0.64

Bayesian Networks

A P(C|A)

true 0.8

false 0.3

C DA B

A P(B|A)

true 0.8

false 0.3

B P(D|B)

true 0.8

false 0.3

P(A)

0.4

• Probability calculations that make use of d-separation:
• P(D | A) = P(A, D) / P(A) = 

(P(A, B, D) + P(A, NOT B, D)) / P(A) = 
P(D | A, B) P(A, B) / P(A) + P(D | A, NOT B) P(A, NOT B) / P(A) =
P(D | A, B) P(B | A) + P(D | A, NOT B) P(NOT B | A) = 
P(D | B) P(B | A) + P(D | NOT B) P(NOT B | A) = 0.8 0.8 + 0.3 0.2 = 0.7, 
where P(D | A, B) = P(D | B) and P(D | A, NOT B) = P(D | NOT B) follows from 
d-separation 
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Bayesian Networks

A P(C|A)

true 0.8

false 0.3

C DA B

A P(B|A)

true 0.8

false 0.3

B P(D|B)

true 0.8

false 0.3

P(A)

0.4

• Probability calculations that make use of d-separation:
• P(B, C) = P(A, B, C) + P(NOT A, B, C) = 

P(B, C | A) P(A) + P(B, C | NOT A) P(NOT A) =
P(B | A) P(C | A) P(A) + P(B | NOT A) P(C | NOT A) P(NOT A) =
0.8 0.8 0.4 + 0.3 0.3 0.6 = 0.31,
where P(B, C | A) = P(B | A) P(C | A) and P(B, C | NOT A) = P(B | NOT A) P(C | NOT A) 
follows from d-separation

Bayesian Networks

• Whenever you need to calculate probabilities in exams, you can try to 
simply transform the given Bayesian network into a joint probability 
table and then calculate the probabilities from the joint probability 
table, which is typically conceptually very easy. In real life, however, 
the probability tables are often way to large to do this efficiently, 
which is why we learned about Bayesian networks in the first place!
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Bayesian Networks

• Want to play around with Bayesian networks?
• Go here: http://aispace.org/bayes/
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