12/18/2019

Constraint Satisfaction
Sven Koenig, USC
Russell and Norvig, 3" Edition, Chapter 6

These slides are new and can contain mistakes and typos.
Please report them to Sven (skoenig@usc.edu).

State

Operators to execute

Examples

* SAT-based planning (special case of Boolean satisfiability problems)

Time 0

At(Home,0)
At(SM,0)
At(HWS,0)
Have(Milk,0)
Have(Bananas,0)
Have(Drill,0)

Go(Home,SM,0)
Go(Home,HWS,0)
Go(SM,Home,0)
Go(SM,HWS,0)
Go(HWS,Home,0)
Go(HWS,5M,0)
Buy(Milk,5M,1)
Buy(Bananas,SM,1)
Buy(Dril,HWS,1)

Time 1 Time2=T

At(Home,1) At(Home,2)

At(SM,1) At(SM,2)

At(HWS,1) At(HWS,2) A

Have(Milk, 1) Have(Milk,2) * Variables

Have(Bananas,1) Have(Bananas,2) . .

Have(Drill, 1) Have(Dril,2) * Domain for each variable: Boolean CSP
Go(Home,SM,1) * Constraints: Non-binary CSP
Go(Home, HWS,1)

Go(SM,Home, 1)

Go(SM,HWS, 1)

Go(HWS,Home,1)

Go(HWS,SM,1)
Buy(Milk,SM, 1)
Buy(Bananas,SM,1)
Buy(Dril,HWS,1)

12/18/2019

Constraint Satisfaction Problems (CSPs)

* Boolean CSP: Domains for all variables are {true, false}

* Binary CSP: Constraints are between at most two variables
* Unary constraint: A constraint involving one variable
* Binary constraint: A constraint involving two variables
* Ternary constraint: A constraint involving three variables

* Binary and Boolean CSPs (= 2-SAT problems) are polynomial time
solvable. Non-binary or non-Boolean CSPs are NP-hard to solve.

* In the following, we study binary non-Boolean CSPs.

Examples

Map coloring

|
| Northern

* Variables
| Territory . .
T Queensland * Domain for each variable
Australia ‘ SE L =N L ConstraintS
|‘ Australia | New
) | South
r_‘\wﬂlis
! Victoria '\
Tasmania

12/18/2019

Examples

* Map coloring

Western
Australia

WA € {red, green, blue}
NT € {red, green, blue}
SA € {red, green, blue}
Q € {red, green, blue}
NSW € {red, green, blue}
V € {red, green, blue}

T € {red, green, blue}

| Northern [
| Territory

‘ Queensland
‘ South Lo
Australia |

Ne;7
\ South

/\ [“\Wa}es

[Vi)
\ Victoria \

Tasmania

Examples

* Map coloring

Western
Australia

| :

\ \
| Northern

| Territory

WA € {red, green, blue}
NT € {red, green, blue}
SA € {red, green, blue}
Qe {red, green, blue} green good bad good

NSW € {red, green, blue} blue good good bad

V € {red, green, blue}
T € {red, green, blue} @7@

[y Jredgreen | e |

red bad good good

L—‘_Q‘ueensland ‘ @ @
| South Lf———-—f—ﬂé
| Australia | New
~ | South
\ [“\Wa}es 4

[Vi)
\ Victoria \

Tasmania ' @

12/18/2019

Examples

* Map coloring

|

| Northern

| Territory
Western |

Australia
‘ South Lo

WA € {red, green, blue}

NT € {red, green, blue} red red
SA € {red, green, blue}
Qe {red, green, blue} green green
NSW € {red, green, blue}

blue blue

V € {red, green, blue}
T € {red, green, blue}

SRS

— —

‘ Queensland @ -
|‘ Australia | Ne\l:

\ South
[L‘-~\Wales

_| _Vicloria \'\) J

Tasmania

©

Examples

* Eight-queens problemA

1

2 |\

12/18/2019

Examples

* Different formulations are possible for the N-queens problem.
* Formulation 1
* Variables: Location of each queen
* Domains: Set of all squares

* Constraints: Any two queens cannot attack each other or be in the same square.
* Number of states: (N2)N

¢ Formulation 2

* Variables: Occupied status for each square
* Domains: Boolean

* Constraints: Any two queens cannot attack each other. Exactly N variables have value true.
2
* Number of states: 2N

* and many others

9
Examples
* Different formulations are possible for the N-queens problem.
* Our formulation
* Variables: Column of each queen (Q1, ..., QN)
* Domains: Set of all rows {1, ..., N}
* Constraints:
* Any two queens cannot attack each other.
* Formally: Qi ¥ Qjand |Qi—Qj| #li—j| forall1<ij<N
* Number of states: NN
* We use this formulation because NN is smaller than the number of
states in the other formulations. (Take the logarithms of the three
numbers to see that.)
10

12/18/2019

Examples

* So far, we have solved these kinds of problems with hillclimbing but
hillclimbing does not search systematically, e.g. has problems
determining that there is no solution. We now look at search
approaches that are systematic but are often slower than hillclimbing.

11
Depth-First Search
depth N ~
3a3
* In the following, we study enhancements of depth-first search
12

12/18/2019

Backtracking Search

* Skip an assignment if, after the assignment, at least one constraint
between assigned variables is not satisfied.

 Backtrack once all assignments have been tried unsuccessfully.

13

Backtracking Search

| function BACKTRACKING-SEARCH(csp) returns a solution, or failure

| return BACKTRACK({ }, esp)
| function BACKTRACK (assignment, csp) returns a solution, or failure
if assigr t is complete then return assig. t
a SELECT-UNASSIGNED-VARIABLE(csp)

for each value in ORDER-DOMAIN-V ALUES(var, assignment, csp) do

if value is consistent with assignment then

| add {var = value} to assi
nferences INFERENCE((e)
1 if infere s failure then
add inferences to assignme
‘ BACKTRACK (assignmer csp)
| if result # failure then
return 7

remove {var = value} and inferences from assignn

} return f

—

[Figure 6.5 A simple backtracking algorithm for constraint satisfaction problems. The al

‘ gorithm is modeled on the recursive depth-first search of Chapter 3 By varying the functions
SELECT-UNASSIGNED-VARIABLE and ORDER DOMAIN-VALUES, we can implement the

| general-purpose heuristics discussed in the text. The function INFERENC E can optionally be
used to impose arc-, path-, or k-consistency, as desired. If a value choice leads to failure

‘ (noticed either by INFERENCE or by BACKTRACK), then value assignments (including those

L made by INFERENCE) are removed from the current assignment and a new value is tried

14

12/18/2019

Backtracking Search

15

Backtracking Search

16

12/18/2019

Backtracking Search

17

Backtracking Search

18

12/18/2019

Backtracking Search

(o] ~N)] w H w N [

19

Backtracking Search

(o] ~N)] w H w N =

20

10

12/18/2019

Backtracking Search

* Can’t place queen in c?Iurznn g Backtsracks.

7

1

’ W

3| |

21

Backtracking Search

22

11

12/18/2019

Backtracking Search

* Can’t place queen in c?Iurznn g Backtsracks.

7

1

’ W

3| |

23

Backtracking Search

24

12

12/18/2019

Backjumping

* When backtracking, do not backtrack to the preceding variable
but to the latest one that, when assigned a different value, has a
chance to avoid the empty domain of the current variable.

* Backtracking with backjumping never needs more steps than

backtracking (without backjumping) but can result in fewer steps.

25
Backjumping
* Can’t place queen in column 6. Backtrack.
1 2 3 4 5 6 7
2| i
I
4 Wy
6
7
8
26

13

12/18/2019

Backjumping

&

Backjumping

14

12/18/2019

Forward Checking

* Before assigning a value to a variable, remove all values from the
domains of the unassigned variables that are inconsistent with the
assigned value. Skip the assignment if at least one unassigned
variable has an empty domain afterward.

 Backtrack once all assignments have been tried unsuccessfully.

* Backtracking with forward checking never needs more steps than
backtracking with backjumping but can result in fewer steps.

29

Forward Checking

Q1¢e{1,2,3,4,5,6,7,8}
Q2 £{1,2,3,4,5,6,7,8}
Q3 £{1,2,3,4,5,6,7,8}
Q4 £{1,2,3,4,5,6,7,8}
Q5 £{1,2,3,4,5,6,7,8}
Q6 £1{1,2,3,4,5,6,7,8}
Q7 £{1,2,3,4,5,6,7,8}
Q8 £{1,2,3,4,5,6,7,8}

30

15

12/18/2019

Forward Checking

1 [y
2
Q1¢e{1,2,3,4,5,6,7,8}
3 Q2 €{3,4,5,6,7,8}
\ Q3¢€{2,4,56,7,8}
Q4 €{2,3,5,6,7,8}
] Qs €{2,3,4,6,7,8}
Q6 €{2,3,4,5,7,8}
; Q7 £{2,3,4,5,6,8}
Q8 €1{2,3,4,5,6,7}
7
8
31
i1 2 3 4 5 6 7 8
1| Wy
2
Q1¢e{1,2,3,4,56,7,8}
3 @ Q2 ¢{3,4,5,6,7,8}
\ Q3 €1{5,6,7,8}
Q4 €{2,6,7,8}
] Q5 €42,4,7,8)
Q6 €{2,4,5,8}
; Q7 €{2,4,5,6}
Q8 ¢1{2,4,5,6,7}
7
8
32

16

12/18/2019

Forward Checking

1 2
1|
2
Q1¢{1,2,3,4,56,7,8}
3 @ Q2 £1{3,4,5,6,7,8}
. Q3 ¢{5,6,7,8}
Q4 £{2,7,8}
s Q5 £{2,4,8}
Q6 € {4}
. Q7 £{2,4,6}
Q8¢{2,4,6,7}
7
8
33
Forward Checking
1 2
1|
2
Q1e{1,2,3,4,56,7,8}
3 @ Q2 £1{3,4,5,6,7,8}
, Q3 ¢{5,6,7,8}
Q4 £{2,7,8}
s Q5 £ {4,8}
Q6 ¢ {}
. Q7 £ {4,6}
Q8 £{4,7}
7
8
34

17

12/18/2019

Forward Checking

* Won’t be able to place1 quzeengin c40|ugnn ?

7 8
1|\
2 W
Q1¢{1,2,3,4,56,7,8}
3 @ Q2 £1{3,4,5,6,7,8}
. Q3 ¢{5,6,7,8}
Q4 £{2,7,8}
Q5 £ {4,8}
5 Wy ase)
. Q7 £ {4,6}
Q8 £ {4,7}
7
8
35
Forward Checking
1 2 3 4 5 6 7 8
1
2 W
Q1e{1,2,3,4,56,7,8}
3 @ Q2 £1{3,4,5,6,7,8}
, Q3 ¢{5,6,7,8}
Q4 £{2,7,8}
Q5 £ {4,8}
5 Wy Q6e{)
. Q7 £ {4,6}
Q8 £{4,7}
7
8
36

18

12/18/2019

Forward Checking

1

1 | Wy

2
Ql¢{1,2,3,4,5,6,7,8}

3 @ Q2 £ {3,4,5,6,7,8)
Q3 £1{5,6,7,8}

4 Q4 €{2,7,8)
Q5 £{2,4}

> Wy Q6 € {4}

6 Q7 £{2,6}
Q8 £ {2,4,6}

7 W

8

37
Arc Consistency
* Repeatedly remove a value from the domain of a variable if there
exists another variable that has no value in its domain that is
consistent with the value.
After arc consistency
X y z X y z
38

19

12/18/2019

Arc Consistency

function AC-3(csp) returns false if an inconsistency is found and true otherwise
inputs: csp, a binary CSP with components (X, D, (
local variables: queue, a queue of arcs, initially all the arcs in csp

while gueue is not empty do
Xi, X;) < REMOVE-FIRST(queue)
if REVISE(esp, X;, X;) then
if size of D, 0 then return false
for each X, in X;.NEIGHBORS - { X} do
add (X X) to queue
return /rue

function REVISE(csp, X;, X;) returns true iff we revise the domain of X
for each z in D; do
if no value y in D; allows () to satisfy the constraint between X; and X; then

delete = from D,

return revised

Figure 6.3 The arc-consistency algorithm AC-3. After applying AC-3, either every arc
Is arc-consistent, or some variable has an empty domain, indicating that the CSP cannot be
solved. The name “AC-3" was used by the algorithm’s inventor (Mackworth, 1977) because

it’s the third version developed in the paper

39

Maintaining Arc Consistency

* Before assigning a value to a variable, remove all values from the
domains of the unassigned variables that are inconsistent with the
assigned value. Then, repeatedly remove a value from the domain of
an unassigned variable if there exists another unassigned variable
that has no value in its domain that is consistent with the value.

* Skip the assignment if at least one unassigned variable has an empty
domain afterward.

 Backtrack once all assignments have been tried unsuccessfully.

 Backtracking with maintaining arc consistency never needs more
steps than backtracking with forward checking but can result in fewer
steps.

40

20

12/18/2019

Maintaining Arc Consistency

2 3 4 5 6 7 8

1 After forward propagation

2 Q1€{1,2,3,4,56,7,8}
Q2 £1{3,4,5,6,7,8}

3 Wy Q3 €{5,6,7,8}

4 Q4 £{2,7,8}
Q5€{2,4,8}
Q6 € {4}

> Wy Q7 € {2,4,6}

6 Q8 €{2,4,6,7}

7

8

41
Maintaining Arc Consistency
* Won't be able to place queen in column 4.
1 2 3 4 5 6 7 8

1 After maintaining arc consistency

2 Qle{1,2,34,5,6,7,8}
Q2 e1{3,4,5,6,7,8}

3 @ Q3¢ 1{5,6,7,8)

4 Q4 e {}
Q5 € {8}
Q6 € {4}

> Wy Q7 ¢ {2}

6 Q8 e {7}

7 Other results are possible

but at least one domain
8 .
will be empty.
42

21

12/18/2019

Maintaining Arc Consistency

1

2

3| W

4

5 Wy

6

7 Wy

8

43
Maintaining Arc Consistency
1 2 3 4 5 6 7 8

1 @ After forward propagation

2 Qle{1,2,3,4,5,6,7,8}
Q2 €{3,4,56,7,8}

3 @ Q3¢1{5,6,7,8)

4 Q4 €1{2,6,7,8}
Q5 £{2,4,7,8}

5 Q6 £ {2,4,5,8}
Q7 £{2,4,5,6}

6 @ Q8 £{2,4,5,6,7}

7

8

44

22

12/18/2019

Maintaining Arc Consistency

* Won’t be able to place queens in columns 7 and 8.
1 2 3 4 5 6 7 8

1 @ After maintaining arc consistency
2 Qle{1,2,3,4,5,6,7,8}
Q2 £{3,4,5,6,7,8}
3 Wy Q3 €{5,6,7,8}
4 Q4 e {2}
Q5 e {7}
5 Q6 € {5}
Q7 € {}
6 '@ Q8¢ {}
7 Other results are possible
but at least one domain
8 .
will be empty.
45
Maintaining Arc Consistency
1 2 3 4 5 6 7 8
1 @ After forward propagation
2 Qle{1,2,3,4,5,6,7,8}
Q2 £{3,4,5,6,7,8}
3 Wy Q3 €{5,6,7,8}
4 Q4 e {2}
Q5 e{2,4}
5 Q6 €1{2,5}
Q7 €{2,4,5,6}
6 Q8 £ {4,5,6}
7 Wy
8
46

23

12/18/2019

Maintaining Arc Consistency

* Won't be able to place1 quzeen3in c40|ugnn g

7 8

1 @ After maintaining arc consistency

2 Q1€{1,2,3,4,56,7,8}
Q2 £1{3,4,5,6,7,8}

3 Wy Q3 €{5,6,7,8}

4 Q4 e {2}
Q5 & {}

5 Q6 € {8}
Q7 e {6}

6 Q8 € {4}

7 @ Other results are possible

3 but at least one domain

will be empty.
47
Maintaining Arc Consistency
1 2 3 4 5 6 7 8

1 @ After forward propagation

2 Q1€{1,2,3,4,56,7,8}
Q2 £1{3,4,5,6,7,8}

3 Wy Q3 €{5,6,7,8}

4 Q4 £{2,6}
Q5¢e{2,4,7}

5 Q6 £{2,4}
Q7 €{2,5,6}

6 Q8 e1{2,4,5,6,7}

7

8 Wy

48

24

12/18/2019

Maintaining Arc Consistency

* Won't be able to place1 quzeen3in c40|ugnn §

7 8
1 After maintaining arc consistency
2 Q1€{1,2,3,4,56,7,8}
Q2 £1{3,4,5,6,7,8}
3 Wy Q3 €{5,6,7,8}
4 Q4 e {6}
Q5 € {4}
5 Q6 € {2}
Q7 € {5}
6 Q8 & {}
7 Other results are possible
but at least one domain
8
@ will be empty.
49
8
1 After forward propagation
2 Q1€{1,2,3,4,56,7,8}
3 Q2 £1{3,4,5,6,7,8}
Q3 e1{2,6,7,8}
4 Q4 €{3,5,7,8}
Q5 €1{2,3,6,8}
5 Q6 £1{2,3,5,7}
Q7 €1{2,3,5,6,8}
6 Q8€{23,56,7)
7
8
50

25

12/18/2019

Maintaining Arc Consistency

After maintaining arc consistency

Q1e{1,2,3,4,5,,7,8}
Q2¢e{3,4,5,6,7,8}

Q3 e{2,6,7,8}

Since any queen can attack at most Q4 € {3,5,7,8}
three squares in any column, the Q5 ¢€{2,3,6,8}
remaining queens can still be Q6 €{2,3,5,7}

placed on the board. Q7 €{2,3,5,6,8}

Q8¢e{2,3,5,6,7}

51

Maintaining Path Consistency

* Before assigning a value to a variable, remove all values from the
domains of the unassigned variables that are inconsistent with the
assigned value. Then, repeatedly remove a consistent pair of values
from the cross product of the domains of two variables if there exists
another variable that has no value in its domain that is consistent
with the pair of values.

* Skip the assignment if at least one unassigned variable has an empty
domain afterward.

 Backtrack once all assignments have been tried unsuccessfully.

* Backtracking with maintaining path consistency never needs more
steps than backtracking with maintaining arc consistency but can
result in fewer steps.

52

26

12/18/2019

Map Coloring with Two Colors

5o &)

red

green

53

Map Coloring with Two Colors

* Depth-first search

y = green z:reen z= green z:reen

54

27

12/18/2019

y = red

Map Coloring with Two Colors

* Backtracking or backjumping

z=green

z = green

55

Map Coloring with Two Colors

* Forward checking

red

green

After assigning red to x

red

green

y

z

Forward checking does not detect
that the problem is unsolvable.

red

green

56

28

12/18/2019

Map Coloring with Two Colors

* Forward checking

h Y
z
\\
v = red ,/' z = green z=red ,," \\ z = green z=red '," \\ z =green z=red \\ z = green
',l ’,l \\\ "I \\\ \\\
’I ’l \< ’/ \‘ \<
57
Map Coloring with Two Colors
* Maintaining arc consistency After assigning red to x
%)E ed % }E red
reen green
xFy x¥z
X
red red red red
green green green green
y z y z

Maintaining arc consistency detects

that the problem is unsolvable.

58

29

12/18/2019

Map Coloring with Two Colors

* Maintaining arc consistency

z z z z
A, A, x A,
N\ 7N 7N, /N
4 N, 4 N, 4 N, 4 N,
4 N, 4 N, / N, 4 N,
p =red ,/ N\ Z =green z=red N Z=green z=red . z=green z=red N\ Z = green
l’ \\ l’ \\ I' \\ l’ \\
4 N\, 4 N, 4 N, 4 N,
4 N, 4 N, 4 \, 4 \,
P’ \4 D’ \4 D/ \4 P’ \4

59

Map Coloring with Two Colors

* Maintaining path consistency After assigning red to x

f()E red

green

xFy x¥z

Depth-first search
X never gets here.
red red
green green

vz

y z

Maintaining path consistency detects

that the problem is unsolvable.

60

30

12/18/2019

Map Coloring with Two Colors

* Maintaining path consistency

x=red _
7T T TN
Y Y
”d’\\~~ ,/’ \\\\~
=red .-~ ~ = =red - ~ =
y=red . <. Y =green y=red . ~.y =green
g N 7 S~
Rad Ss z’, S
x” S a7 Sw
z z z z
N\ l“\ 7N l“\
4 N, 4 N, 4 N, 4 N,
_ / \\ _ _ / \\ _ _ '/ \\ _ _ / \\ _
p = red J \ 2 = green z=red s \ Z = green z=red S \ Z = green z=red s \ 2 = green
,l \\ ,l \\ 'I \\ ,l
4 N, 4 N, 4 \, 4
’I \‘ ’l \‘ ’/ \‘ ’l
61
- 1 Q1 - ~ Which variable

to choose here?

=1 Q1=2 ..

Which variable
2 —
Q to choose here? Q

depth N

3 a3 Q3 Q3 Q3 Q3

In which order to
try the assignments?

~ Which variable
to choose here?

Q3

62

31

12/18/2019

Constraint Satisfaction

* Which variable to choose next among all unassigned variables?
* Choose the one whose domain has the smallest cardinality.

* Break tries by choosing the one that is involved in the largest number of constraints
with other unassigned variables.

* Which value to assign to the chosen variable?

* Choose the value that rules out the fewest values for the variables that the chosen
variable has constraints with and that does not make the problem unsolvable.

* Which kind of forward or backward checks/maintenance to use?

* From least to most powerful: back jumping, forward checking, maintaining arc
consistency and maintaining path consistency. None of them are powerful enough to
eliminate the search. More powerful methods take more time and it might be faster
to do the search instead. For many problems, forward checking or maintaining arc
consistency are sufficient.

63
Constraint Satisfaction
* Want to play around with constraint satisfaction algorithms?
* Go here: http://aispace.org/constraint/

64

32

