
9/5/2021

1

Markov Decision Processes (MDPs)
and

Reinforcement Learning (RL)
Sven Koenig, USC

Russell and Norvig, 3rd Edition, Sections 17.1-17.2

These slides are new and can contain mistakes and typos.
Please report them to Sven (skoenig@usc.edu).

Decision-Theoretic (= Probabilistic) Planning

• Blocks World with 3 changes
• Blocks are either white or black, rather than named.
• The standard move actions can go wrong with probability 0.4, in which case

the moved block slips during the move and ends up on the table. If the move
actions work as intended, they take 2 minutes to execute. If they go wrong,
they take one minute to execute.

• There are also paint actions that paint any given block either white or black
without moving them. They always work as intended and take 3 minutes to
execute.

Start state Goal state

Note
• the current state is always known
• action executions can result in several outcomes
• a probability distribution over these outcomes is known
• this is a generalization of deterministic search
• we continue to assume that action costs are always strictly positive

1

2

9/5/2021

2

Evaluating Decision-Theoretic Plans

expected plan-execution cost (here: time)
6 minutes

start state

goal state

probability/cost = 1.0/3

1.0/3

start state

goal state

0.6/2

1.0/3

0.4/1

0.6/2 0.4/1

expected plan-execution cost
c1 = 5.67 minutes

Evaluating Decision-Theoretic Plans

• We assume that the expected action cost and the probability
distribution over the successor states depend only on the current
state and the action executed in it (“Markov property”). In other
words, it does not matter how the current state was reached.

• An example that illustrates the resulting independence assumptions:
• p(st+2=s’’|at+1=a’,at=a,st=s)

= Σs’ p(st+2=s’’,st+1=s’|at+1=a’,at=a,st=s)
= Σs’ p(st+2=s’’ | at+1=a’,st+1=s’,at=a,st=s) p(st+1=s’|at+1=a’,at=a,st=s)
= Σs’ p(st+2=s’’ | at+1=a’,st+1=s’) p(st+1=s’|at=a,st=s)

This is similar to deterministic search, where we assume that the
action cost and the successor state depend only on the current
state and the action executed in it.

3

4

9/5/2021

3

Evaluating Decision-Theoretic Plans

• ci = expected plan-execution cost until a goal
state is reached if one starts in state si and
follows the plan

• c1 = 0.4 (1+c2) + 0.6 (2+c3)
c2 = 0.4 (1+c2) + 0.6 (2+c3)
c3 = 1.0 (3+c4)
c4 = 0

• c1 = c2 = 5.67
c3 = 3
c4 = 0

start state

goal state

1.0/3

0.4/1

0.6/2 0.4/1

s1

s3 s2

s4

p(st+1=s3|st=s1,at=move C to D)=0.6 / c(s1,move C to D,s3)=2

0.6/2

Evaluating Decision-Theoretic Plans

• In general, one solves the following system of equations calculating
the expected plan-execution cost of decision-theoretic plans:

• ci = 0 if si is a goal state
• ci = Σk p(sk|si,a(si)) (c(si,a(si),sk) + ck) if si is not a goal state

• One solves the system of equations either with Gaussian elimination
(as on the previous slide) or as follows:

• for all i
• ci,0 = 0

• for t=0 to ꝏ
• for all i

• ci,t+1 = 0 if si is a goal state
• ci,t+1 = Σk p(sk|si,a(si)) (c(si,a(si),sk) + ck,t) if si is not a goal state

The typical termination criterion is: |ci,t+1 – ci,t| < ε for all i (for a given small positive ε).

5

6

9/5/2021

4

Decision-Theoretic Planning

Decision-Theoretic Planning

• Assumption: One has to execute actions forever if
one does not reach a goal state earlier.

• The resulting decision tree is infinite. Thus, one
cannot start at the utility nodes and propagate the
values toward the root of the decision tree.

This is similar to deterministic search.

7

8

9/5/2021

5

Decision-Theoretic Planning

The optimal actions associated with these choice nodes
are identical since the subtrees rooted in the choice
nodes are identical.
Thus, whenever the state (= configuration of blocks) is the
same, one can execute the same action.
A mapping from states to actions is called “policy.”
One only needs to consider all policies to determine a
plan with minimal expected plan-execution cost.

This is similar to deterministic search, where one only needs
to consider all paths without cycles from the start state to a
goal state to determine a plan with minimal plan-execution cost.

Decision-Theoretic Planning

• This is, for example, a policy although policies are typically written as
functions that map each state to the action that should be executed
in it.

start state

goal state

0.6/2

1.0/3

0.4/1

0.6/2 0.4/1

9

10

9/5/2021

6

Decision-Theoretic Planning

• In the deterministic case:
• Out of all possible plans, we need to consider only cycle-free paths because

there is always a cycle-free path that is cost-minimal. This insight dramatically
reduces the number of plans that we need to consider. However, it still takes
too long to consider all cycle-free paths and determine one of minimal cost.
Thus, we needed to study more sophisticated search algorithms.

• In the probabilistic case:
• Out of all possible plans, we need to consider only policies because there is

always a policy that is cost-minimal. This insight dramatically reduces the
number of plans that we need to consider. However, it still takes too long to
consider all policies and determine one of minimal expected cost. Thus, we
now study more sophisticated search algorithms (here: stochastic dynamic
programming algorithms).

Decision-Theoretic Planning

• We now study the case where we have a model available, that is,
know all actions and their effects. This model is specified as an MDP
(Markov Decision Process). We use this model for planning.

11

12

9/5/2021

7

MDP Notation

This is similar to a state space in
the context of deterministic searches.

0.4/1 0.6/2

1.0/1
0.5/1

0.5/3 = p(s3|s2,o4)/c(s2,o4,s3)

0.3/4

0.7/1
o1

o2

o3
o4

goal state

s1

s2

s3

• We do not need to label the start state since we will find a policy with
minimal expected plan-execution cost from any state to the goal state.

• The stop action is automatically assigned to all goal states (here: s3).

o51.0/5

MDP Planning

• We have a chicken-and-egg problem:
• If one knows the optimal actions (o2 in s1, o4 in s2 and stop in s3), one can

calculate the expected goal distances as shown earlier:
• c1 = 0.7 (1+c2) + 0.3 (4+c3) (= 5.08)

c2 = 0.5 (1+c1) + 0.5 (3+c3) (= 4.54)
c3 = 0

Different from deterministic search, the policy with minimal expected
plan-execution cost can have cycles, which complicates planning.

13

14

9/5/2021

8

MDP Planning

• We have a chicken-and-egg problem:
• If one knows the expected goal distances (c1=5.08 for s1, c2=4.54 for s2 and

c3=0.00 for s3), one can calculate the optimal actions by greedily assigning the
action to each state that decreases the expected goal distance the most:

• If one executes o1 [o2] in s1 and uses the given expected goal distances as expected
minimal costs to get from the resulting successor state to a goal state, then the total
expected cost to get from s1 to a goal state is 0.4 (1+c1) + 0.6 (2+c2) = 6.36 [0.7 (1+c2) +
0.3 (4+c3) = 5.08]. Since min(6.36,5.08) = 5.08, one should execute o2 in s1.

• If one executes o3 [o4] in s2 and uses the given expected goal distances as expected
minimal costs to get from the resulting successor state to a goal state, then the total
expected cost to get from s2 to a goal state is 1.0 (1+c1) = 6.08 [0.5 (1+c1) + 0.5 (3+c3) =
4.54]. Since min(6.08,4.54) = 4.54, one should execute o4 in s2.

• One should stop in s3 since s3 is a goal state.

Different from deterministic search, the policy with minimal expected
plan-execution cost can have cycles, which complicates planning.

MDP Planning

• Unfortunately, one neither knows the optimal actions nor the
expected goal distances. Thus, one needs to calculate them
simultaneously. We present two methods for doing that, namely
value iteration and policy iteration.

15

16

9/5/2021

9

MDP Planning – Value Iteration

• In general, one solves the following system of equations oldEQ for
calculating the expected plan-execution cost of policies:

• ci = 0 if si is a goal state
• ci = Σk p(sk|si,a(si)) (c(si,a(si),sk) + ck) if si is not a goal state

• In general, one solves the following system of equations EQ for
finding a policy with minimal expected plan-execution cost (where ci
is the expected goal distance of state si, that is, the expected plan-
execution cost if one starts in state si and follows the optimal policy):

• ci = 0 if si is a goal state
• ci = mina executable in si

Σk p(sk|si,a) (c(si,a,sk) + ck) if si is not a goal state

Called Bellman equations after an ex-faculty member at USC!

MDP Planning – Value Iteration

• One solves the system of equations oldEQ as follows:
• for all i

• ci,0 = 0
• for t=0 to ꝏ

• for all i
• ci,t+1 = 0 if si is a goal state
• ci,t+1 = Σk p(sk|si,a(si)) (c(si,a(si),sk) + ck,t) if si is not a goal state

• One solves the system of equations EQ as follows with value iteration:
• for all i

• ci,0 = 0
• for t=0 to ꝏ

• for all i
• ci,t+1 = 0 if si is a goal state
• ci,t+1 = mina executable in si

Σk p(sk|si,a) (c(si,a,sk) + ck,t) if si is not a goal state

The typical termination criterion is: |ci,t+1 – ci,t| < ε for all i (for a given small positive ε).

Improve
values ci,t
to values
ci,t+1 by
calculating
the actions

Pick values
ci,0

17

18

9/5/2021

10

MDP Planning – Value Iteration

• ci,t = expected plan-execution cost if one starts in state si, follows the
optimal policy, and stops in a goal state or after executing exactly t
actions (whatever comes earlier)

• ci = limt→ꝏ ci,t for all i
• If one is currently in state si and stops in goal states or after executing

exactly t actions, then one should execute action “stop” if si is a goal
state or t=0 and action
argmina executable in si

Σk p(sk|si,a) (c(si,a,sk) + ck,t-1)
otherwise.

• If one is currently in state si and stops in goal states, then one should
execute action “stop” if si is a goal state and action
argmina executable in si

Σk p(sk|si,a) (c(si,a,sk) + ck)
otherwise.

MDP Planning – Value Iteration

0.4/1 0.6/2

1.0/1
0.5/1

0.5/3 = p(s3|s2,o4)/c(s2,o4,s3)

0.3/4

0.7/1
o1

o2

o3
o4

goal state

s1

s2

s3o51.0/5

19

20

9/5/2021

11

MDP Planning – Value Iteration
c1,t c2,t c3,t

MDP Planning – Value Iteration

• If one can stop after executing exactly 3 actions, then
• first action execution (t=3): execute o2 in s1, o4 in s2 and stop in s3 (see iteration 3)
• second action execution (t=2): execute o2 in s1, o3 in s2 and stop in s3 (see iteration 2)
• third action execution (t=1): execute o1 in s1, o3 in s2 and stop in s3 (see iteration 1)

• This is not a policy!

t=
t=
t=
t=
t=
t=
t=
t=
t=
t=

c1 c2 c3

21

22

9/5/2021

12

MDP Planning – Value Iteration

• If one has to execute actions forever, then
• always (t=∞): execute o2 in s1, o4 in s2 and stop in s3 (see iteration 9999)

• This is a policy!

MDP Planning – Policy Iteration

• One solves the system of equations EQ as follows with policy iteration:
• for all i

• Pick an a0(si) from all actions executable in si so that a goal state can be reached from every state with
positive probability

• for n=0 to ꝏ
• for all i

• cn,i,0 = 0
• for t=0 to ꝏ

• for all i
• cn,i,t+1 = 0 if si is a goal state
• cn,i,t+1 = Σk p(sk|si,an(si)) (c(si,an(si),sk) + cn,k,t) if si is not a goal state

• for all i
• cn,i = limt→ꝏ cn,i,t

• for all i
• an+1(si) = stop if si is a goal state
• an+1(si) = argmina executable in si

Σk p(sk|si,a) (c(si,a,sk) + cn,k) if si is not a goal state

The typical termination criterion is: |cn,i,t+1 – cn,i,t| < ε for all i (for a given small positive ε).

The typical termination criterion is: an+1(si) = an(si) for all i.

Use an+1(si) = an(si) if an(si) is still optimal.

Evaluate
policy an(si)
by calculating
the ci

Improve
policy an(si)
to policy
an+1(si)

Pick policy
a0(si)

23

24

9/5/2021

13

MDP Planning – Policy Iteration

• If one is currently in state si and stops in goal states, then one should
execute action an(si) in state si, where n is the largest iteration.

MDP Planning – Policy Iteration

0.4/1 0.6/2

1.0/1
0.5/1

0.5/3 = p(s3|s2,o4)/c(s2,o4,s3)

0.3/4

0.7/1
o1

o2

o3
o4

goal state

s1

s2

s3o51.0/5

25

26

9/5/2021

14

MDP Planning – Policy Iteration

aiteration(s2) aiteration(s3)aiteration(s1)

MDP Planning – Policy Iteration

• If one has to execute actions forever, then
• always: execute o2 in s1, o4 in s2 and stop in s3 (see iteration 1)

• This is a policy!

aiteration(s2) aiteration(s3)aiteration(s1)

27

28

9/5/2021

15

MDP Planning with Discounting

• What if there is no goal state, that is, one has to execute actions forever?
• Consider maintenance planning for a machine that is either working or

broken.

wor-
king

bro-
ken

maintenance

no maintenance

repair

replacement

0.7/($100-$25) 0.3/($0-$25)

0.5/($100-$0) 0.5/($0-$0)

0.7/($100-$50) 0.3/($0-$50)

1.0/($100-$200)

MDP Planning with Discounting

• What if there is no goal state, that is, one has to execute actions forever?

• Every policy now has expected plan-execution cost infinity,
that is, looks equally good.

• Infinite plan-execution costs cause problems, since it is preferable to
incur, say, the infinite sequence of action costs, 1 1 1 1 1 1 … than 5 5 5 5
5 5 …!

0.4/1 0.6/2

1.0/1
0.5/1

0.5/3 = p(s3|s2,o4)/c(s2,o4,s3)

0.3/4

0.7/1
o1

o2

o3
o4

s1

s2

s3o51.0/5

29

30

9/5/2021

16

MDP Planning with Discounting

• One needs to change the planning objective, e.g. to
• minimizing the expected plan execution cost per action execution or
• minimizing the expected discounted plan execution cost.

• Minimizing the expected discounted plan execution cost is a bit
simpler, so we will do that in the following.

• Everything that we do in the following can be (and is) also done if
there are goal states even though it is not necessary.

MDP Planning with Discounting

Source: Forbes, September 15, 2011

…

31

32

9/5/2021

17

MDP Planning with Discounting

• A similar example with fewer payouts (to better fit on the slide):

Jan 1, 2012 Jan 1, 2013 Jan 1, 2014 Jan 1, 2015

$25,000 $25,000 $25,000 $25,000

MDP Planning with Discounting

• If we put $1 into a savings account with interest rate p%,
then we have $(1 + p/100) in the savings account after one year.

• We call 0 < 100/(100+p) ≤ 1 the discount factor γ (gamma).

Jan 1, 2012 Jan 1, 2013

$1 $(1 + p/100)
· (100+p)/100

· 100/(100+p)

33

34

9/5/2021

18

MDP Planning with Discounting

• A similar example with fewer payouts (to better fit on the slide):

• So, for an interest rate of 5% (that is, a discount factor of γ≈0.952),
providing an annuity of 4 payments of $25,000 each year and a lump
sum payoff of (1+ γ+ γ2+γ3) $25,000 ≈ $93,081.20 (called the total
discounted cost of the annuity) are equally preferable.

Jan 1, 2012 Jan 1, 2013 Jan 1, 2014 Jan 1, 2015

$25,000 $25,000 $25,000 $25,000

+ γ $25,000

(1+γ) $25,000

· γ
+ γ (1+γ) $25,000

(1+ γ+ γ2) $25,000

+ γ (1+ γ+ γ2) $25,000

(1+ γ+ γ2+γ3) $25,000
· γ· γ

MDP Planning with Discounting

• Assume that the discount factor γ is 0.95 and one wants to minimize
the expected discounted plan-execution cost.

• The infinite sequence of action costs 1 1 1 1 1 … has a finite(!)
discounted plan-execution cost of (1+γ+γ2+…) 1 = 1/(1-γ) 1 = 20.

• The infinite sequence of action costs 5 5 5 5 5 … has a finite(!)
discounted plan-execution cost of (1+γ+γ2+…) 5 = 1/(1-γ) 5 = 100.

• So, one now prefers the infinite sequence of action costs 1 1 1 1 1 …
over the infinite sequence of action costs 5 5 5 5 5 …!

35

36

9/5/2021

19

MDP Planning with Discounting

• A similar example with fewer payouts (to better fit on the slide):

Jan 1, 2012

$25,000

+ γ (1+ γ+ γ2) $25,000

(1+ γ+ γ2+γ3) $25,000

cost at time 2012 (t)

+ γ expected discounted plan-execution cost at time 2013 (t+1) [from time 2013 on]

expected discounted plan-execution cost at time 2012 (t) [from time 2012 on]

Earlier, we used
cost at time 2012 (t)

+ expected plan-execution cost at time 2013 (t+1) [from time 2013 on]

expected plan-execution cost at time 2012 (t) [from time 2012 on]

MDP Planning with Discounting – Value Iteration

• In general, one solves the following system of equations oldEQ’ for
calculating the expected discounted plan-execution cost of policies:

• ci = 0 if si is a goal state
• ci = Σk p(sk|si,a(si)) (c(si,a(si),sk) + γ ck) if si is not a goal state

• In general, one solves the following system of equations EQ’ for
finding a policy with minimal expected discounted plan-execution
cost (where ci is the expected discounted plan-execution cost if one
starts in state si and follows the optimal policy):

• ci = 0 if si is a goal state
• ci = mina executable in si

Σk p(sk|si,a) (c(si,a,sk) + γ ck) if si is not a goal state

37

38

9/5/2021

20

MDP Planning with Discounting – Value Iteration

• One solves the system of equations oldEQ’ as follows:
• for all i

• ci,0 = 0
• for t=0 to ꝏ

• for all i
• ci,t+1 = 0 if si is a goal state
• ci,t+1 = Σk p(sk|si,a(si)) (c(si,a(si),sk) + γ ck,t) if si is not a goal state

• One solves the system of equations EQ’ as follows with value iteration:
• for all i

• ci,0 = 0
• for t=0 to ꝏ

• for all i
• ci,t+1 = 0 if si is a goal state
• ci,t+1 = mina executable in si

Σk p(sk|si,a) (c(si,a,sk) + γ ck,t) if si is not a goal state

The typical termination criterion is: |ci,t+1 – ci,t| < ε for all i (for a given small positive ε).

Improve
values ci,t
to values
ci,t+1 by
calculating
the actions

Pick values
ci,0

MDP Planning with Discounting – Value Iteration

• ci,t = expected discounted plan-execution cost if one starts in state si ,
follows the optimal policy, and stops in a goal state or after executing
exactly t actions (whatever comes earlier).

• It holds that ci = limt→ꝏ ci,t for all i.
• If one is currently in state si and stops in goal states or after executing

exactly t actions, then one should execute action “stop” if si is a goal
state or t=0 and action
argmina executable in si

Σk p(sk|si,a) (c(si,a,sk) + γ ck,t-1)
otherwise.

• If one is currently in state si and stops in goal states, then one should
execute action “stop” if si is a goal state and action
argmina executable in si

Σk p(sk|si,a) (c(si,a,sk) + γ ck)
otherwise.

39

40

9/5/2021

21

MDP Planning with Discounting – Value Iteration

• The policy with minimal expected discounted plan-execution cost depends
on the discount factor.

• The discount factor cannot be 1 since this corresponds to finding a policy
with minimal expected plan-execution cost but, ideally, it should be close to
1 (e.g. 0.95 or 0.99).

• The smaller it is, the higher one weighs costs incurred in the immediate
future over costs incurred in the distance future.

• The discount factor can also be interpreted as the probability of not dying.
• If the interest rate is (1-γ)/γ,

then the value of receiving x dollars in a year is γ x dollars right now.
• If I die later this year with probability 1-γ and can thus no longer receive future

payoffs, then the expected value of receiving x dollars in a year is γ x dollars right now.

MDP Planning with Discounting – Policy Iteration

• One solves the system of equations EQ’ as follows with policy iteration:
• for all i

• Pick an a0(si) from all actions executable in si so that a goal state can be reached from every state with
positive probability

• for n=0 to ꝏ
• for all i

• cn,i,0 = 0
• for t=0 to ꝏ

• for all i
• cn,i,t+1 = 0 if si is a goal state
• cn,i,t+1 = Σk p(sk|si,an(si)) (c(si,an(si),sk) + γ cn,k,t) if si is not a goal state

• for all i
• cn,i = limt→ꝏ cn,i,t

• for all i
• an+1(si) = stop if si is a goal state
• an+1(si) = argmina executable in si

Σk p(sk|si,a) (c(si,a,sk) + γ cn,k) if si is not a goal state

The typical termination criterion is: |cn,i,t+1 – cn,i,t| < ε for all i (for a given small positive ε).

The typical termination criterion is: an+1(si) = an(si) for all i.

Use an+1(si) = an(si) if an(si) is still optimal.

Evaluate
policy an(si)
by calculating
the ci

Improve
policy an(si)
to policy
an+1(si)

Pick policy
a0(si)

41

42

9/5/2021

22

MDP Planning with Discounting – Policy Iteration

• If one is currently in state si and stops in goal states, then one should
execute action an(si) in state si, where n is the largest iteration.

Decision-Theoretic Planning

• We now study the case where we do not have a model available, that
is, do not know all actions and their effects. We only know which
state the agent is currently in and which actions it has available. We
thus cannot plan but we can still use reinforcement learning (RL) to
learn which action the agent should choose in its current state.

43

44

9/5/2021

23

MDP Planning with Discounting – Value Iteration

• One solves the system of equations as follows with value iteration:
• for all i

• ci,0 = 0
• for t=0 to ꝏ

• for all i
• ci,t+1 = 0 if si is a goal state
• ci,t+1 = mina executable in si

Σk p(sk|si,a) (c(si,a,sk) + γ ck,t) if si is not a goal state

q-value qt+1(si,a)

RL with Discounting – Q Learning

• The agent executes
• for all states s and actions a

• q(s,a) = 0
• s = start state of the agent
• repeat

• a =

• execute a and observe the resulting action cost c and successor state s’
• q(s,a) = q(s,a) + α (c + γ mina’ executable in s’ q(s’,a’) – q(s,a))
• s = s’

• until s is a goal state

random action executable in s with probability ε
argmina executable in s q(s,a) with probability 1-ε

If s’=si, then this is
an estimate of ci

45

46

9/5/2021

24

RL with Discounting – Q Learning

• The agent executes
• for all states s and actions a

• q(s,a) = 0
• s = start state of the agent
• repeat

• a =

• execute a and observe the resulting action cost c and successor state s’
• q(s,a) = q(s,a) + α (c + γ mina’ executable in s’ q(s’,a’) – q(s,a))
• s = s’

• until s is a goal state

random action executable in s with probability ε
argmina executable in s q(s,a) with probability 1-ε

From time to time, the agent needs to execute seemingly
suboptimal actions to explore the executable actions and
potentially discover actions that are better than the currently
seemingly best action. Thus, it needs an exploration policy.
The one used here is called ε-greedy.

Exploration (here: execute a random action)
Exploitation (execute the seemingly best action)

If s’=si, then this is
an estimate of ci

This should look familiar from gradient descent.

RL with Discounting – Q Learning

• Q(s,a) is called the q-value of action a in state s. It is an estimate of
the total expected discounted plan execution cost when executing
action a in state s and then following the optimal policy (until a goal
state is reached, if there is one). The agent should thus always
execute the action in its current state with the smallest q-value.

• RL often uses rewards instead of costs, where a reward is just a
negative cost. In this case, Q learning needs to maximize instead of
minimize.

• The learning rate 0 < α is often close to zero, the exploration
probability 0 < ε is often close to zero, and the discount factor 0 < γ <
1 is often close to one.

47

48

