12/18/2019

Neural Networks
Sven Koenig, USC

Russell and Norvig, 3™ Edition, Sections 18.7.1-18.7.4

These slides are new and can contain mistakes and typos.
Please report them to Sven (skoenig@usc.edu).

Inductive Learning for Classification

* Labeled examples

Fearss [fewez | |

true true true
true false false
false true false

Learn f(Feature_1, Feature_2) = Class from
f(true, true) = true
f(true, false) = false
f(false, true) = false
The function needs to be consistent with all labeled examples
and should make the fewest mistakes on the unlabeled examples.

* Unlabeled examples

Fears s [fewez s |

false false ?

12/18/2019

Example: Neural Network Learning

 Can perceptrons represent all Boolean functions? — no!
f(Feature_1, ..., Feature_n) = some propositional sentence

* An XOR cannot be represented with a single perceptron!

X1

10 °
OO1 o0
0 1 X,

Example: Neural Network Learning

 Can perceptrons represent all Boolean functions? — no!
f(Feature_1, ..., Feature_n) = some propositional sentence

* An XOR cannot be represented with a single perceptron!

* However,
* XOR(x,y) = (x AND NOT y) OR (NOT x AND y).
* AND, OR and NOT can be represented with single perceptrons.

* Thus, XOR can be represented with a network of perceptrons
(also called a neural network).

* Neural networks can represent all Boolean functions!

12/18/2019

Example: Neural Network Learning

x 0-1

y 0-1

Example: Neural Network Learning

* We will use “three-layer” feed-forward networks as network topology.

Input “layer”
(not really a layer)

Hidden layer

Output layer

12/18/2019

Example: Neural Network Learning

* Neural networks can automatically discover useful representations.

* If there are too few perceptrons in the hidden layer, the neural
network might not be able to learn a function that is consistent with
the labeled examples.

* |f there are too many perceptrons in the hidden layer, then the neural
network might not be able to generalize well, that is, make few
mistakes on the unlabeled examples.

C e | odenvaes | owput |
10000000 0.89 0.04 0.08 10000000
01000000 0.15 0.99 0.99 01000000
00100000 0.01 0.97 0.27 00100000
00010000 0.99 0.97 0.71 00010000
00001000 0.03 0.05 0.02 00001000
00000100 0.01 0.11 0.88 00000100
00000010 0.80 0.01 0.98 00000010
00000001 0.60 0.94 0.01 00000001

12/18/2019

m hidden values m

10000000 1 0 0 10000000
01000000 0 1 1 01000000
00100000 0 1 0 00100000
00010000 1 1 1 00010000
00001000 0 0 0 00001000
00000100 0 0 1 00000100
00000010 1 0 1 00000010
00000001 1 1 0 00000001

9

Example: Neural Network Learning
10

12/18/2019

Example: Neural Network Learning

11

Example: Neural Network Learning

* One can use non-binary inputs. However, avoid operating in the (red)
region where small changes in the input cause large changes in the
output. Rather, use several outputs by using several perceptrons in
the output layer.

g(x) *

12

12/18/2019

Example: Neural Network Learning

* Example with real-values inputs and outputs: early autonomous driving

brightness of pixels in the image (each input = one pixel) brightness of pixels in the image (each input = one pixel)

steering direction [0 = sharp left .. 1 = sharp right] sharp left left center right sharp right

to determine a unique steering direction,
fit a Gaussian to the outputs

13
Example: Neural Network Learning
Z (2) wy
* Backpropagation algorithm in =3, wga, a=glin)
(see handout for details) (1) w;
* Minimize Error := 0.5 %, (y,— a,)? =2 w3 2= glin)
for a single labeled example
with the approximation of gradient descent (for a small positive learning
rate a), where y, is the desired ith output for the labeled example
* (1) d Error / d w; := - A[i] a;, where A[i] := (y; — a;) g’(in;) «— ba:lcfo"ryatZﬁ];fempeeffg;‘ﬁgs”
* (2) d Error / d w; := - A[j] a,, where A[j] := 2, Ali] w; g’(in;)
* The errors are “propagated back” from the outputs to the inputs,
hence the name “backpropagation”
14

12/18/2019

* Backpropagation algorithm

function BACK-PROP-LEARNING(examples. network) returns a neural network
inputs: ezamples, a set of examples, each with input vector x and output vector y

local variables: A, a vector of errors, indexed by network node

for each weight w; ; in network do
w;,j — a small random number
repeat

Example: Neural Network Learning

Note: This pseudo code from Russell and Norvig

network a multilayer network with I lnyers, weights . acivation function g 3 edition is wrong in the textbook, so be careful

here!

for each example (x,y) in ezamples do
/ » Propagate the inputs forward to compute the outputs */
for each node i in the input layer do
a4 — i
for /=2to L do
for each node j in layer £ do
ing—3, wij a
aj — g(in;)
/ * Propagate deltas backward from output layer to input layer x /
for each node j in the output layer do
Alj] = o/ (ing) % (us — a5)
for(=L—1to1ldo
for each node 7 in layer £ do
Al —¢'(in) 3, wis AL
/* Update every weight in network using deltas * /
for each weight w; ; in network do
wij—wij + a x a; x Afj]

— called one epoch

until some stopping criterion is satisfied
return network

15

10:00am
10:02am
10:04am
10:05am

We want:

%: Heads; %: Tails

Example: Neural Network Learning

* Overfitting (= adapting to sampling noise)

Heads
Tails
Tails

Heads

We get the decision tree:
time

10:0}ém 10:04am
4

Heads Tails Tails Heads

16

12/18/2019

Example: Neural Network Learning

* Cross validation by splitting the labeled examples into a training set
(often 2/3 of the examples) and a test set (often 1/3 of the examples),
using only the training set for learning and only the test set to decide

when to stop learning

Error

stop learning here
(but be careful of small bumps)

Error on the test set

Error on the training set

Epochs

17

Example: Neural Network Learning

* An urban legend (likely):

There's a story that's passed around to illustrate the ways machine learning can pick
up on features in your dataset that you didn't expect, and probably gained the most
exposure through Yudkowsky using it in "Artificial Intelligence as a Positive and
Negative Factor in Global Risk" (pdf, 2008):

Once upon a time, the US Army wanted to use neural networks to
automatically detect camouflaged enemy tanks. The researchers trained a
neural net on 50 photos of camouflaged tanks in trees, and 50 photos of
trees without tanks. Using standard techniques for supervised learning,
the researchers trained the neural network to a weighting that correctly
loaded the training set—output "yes" for the 50 photos of camouflaged
tanks, and output "no" for the 50 photos of forest. This did not ensure, or
even imply, that new examples would be classified correctly. The neural
network might have "learned" 100 special cases that would not
generalize to any new problem. Wisely, the researchers had originally
taken 200 photos, 100 photos of tanks and 100 photos of trees. They had
used only 50 of cach for the training set. The researchers ran the neural
network on the remaining 100 photos, and without further training the
neural network classified all remaining photos correctly. Success
confirmed! The researchers handed the finished work to the Pentagon,
which soon handed it back, complaining that in their own tests the neural
network did no better than chance at discriminating photos.

Tt turned out that in the researchers' dataset, photos of camouflaged tanks
had been taken on cloudy days, while photos of plain forest had been
taken on sunny days. The neural network had learned to distinguish
cloudy days from sunny days, instead of distinguishing camouflaged
tanks from empty forest.

https://www.jefftk.com/p/detecting-tanks

18

12/18/2019

Example: Decision Tree (and Rule) Learning

* Overfitting can also occur for decision tree learning.

* During decision tree learning, prevent recursive splitting on features that are
not clearly relevant, even if the examples at a decision tree node then have
different classes.

» After decision tree learning, recursively undo splitting on features close to the
leaf nodes of the decision tree that are not clearly relevant even if the
examples at a decision tree node then have different classes (back pruning).

19

Example: Neural Network Learning

* Properties (some versus decision trees)
* Deal easily with real-valued feature values
* Are very tolerant of noise in feature and class values of examples
* Make classifications that are difficult to explain (even to experts!)
* Need a long learning time

* “Neural networks are the 2" best way of doing just about anything”

* Early applications
* Pronunciation (cat vs. cent)
* Handwritten character recognition
* Face detection

20

10

12/18/2019

Example: Neural Network Learning

* Deep neural networks (deep learning)

10x4x10x5 - :
Input State l Fully connected |
| ReLU LSTM S 512x1
5X2X5X644, SIx1 > 2 1x1 Sigmoid
Conv3D 2x1x2x256, Fully connected (has block
|has_bloc
Conv3D —
3x1x3x256 1
5x2x5x128i XIXoX Ix1x1x512 512x1 |ReLU 512x1 { 512x1, SI2x1y 7
Soply (Somsh Cony3D | Fully connected Fully connected | | Fully connected | { Fully connected
Ix1x1x512 . .
3x1x3x256l ‘/ , SOftmaxLlS‘xl l 1x1 1x1 lSlgmmd
Conv3D Conv3D Flatten-
ReLU " ReLU | Policy Value is_built

21

Example: Neural Network Learning

* Want to play around with neural network learning?
* Go here: http://aispace.org/neural/
* Or here: http://playground.tensorflow.org/

* Want to look at visualizations?
* Go here: http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

22

11

