
12/26/2016

1

Planning Agents
Sven Koenig, USC

Russell and Norvig, 3rd Edition, Sections 2.4 and 3.1-3.2

These slides are new and can contain mistakes and typos.
Please report them to Sven (skoenig@usc.edu).

Search and Planning

Software System = Agent

Environment
Performance Measure

actsense

• We now start with (deterministic) search and planning.

12/26/2016

2

Architectures for Planning Agents
Se

ns
or

s
Se

ns
or

 in
te

rp
re

ta
tio

n

Ef
fe

ct
or

 c
on

tr
ol

Ef
fe

ct
or

s

Pe
rc

ep
ts

Ac
tio

nssequence of all
past percepts
and actions

table

sequence of all
past percepts
and actions

next
action

• Gold standard (but: results in a large table that is difficult to change)

Architectures for Planning Agents

Se
ns

or
s

Se
ns

or
 in

te
rp

re
ta

tio
n

Ef
fe

ct
or

 c
on

tr
ol

Ef
fe

ct
or

s

Pe
rc

ep
ts

Ac
tio

ns

program

• Reflex agent (“reactive planning”): often good for video games

12/26/2016

3

Architectures for Planning Agents

• An agent often does not need to remember the sequence of past
percepts and actions to perform well according to its performance
objective.

• A state characterizes the information that an agent needs to have
about the present to pick actions in the future to perform well
according to its performance objective.

• We are typically interested in minimal states.
• For example, a soda machine does not need to remember in which

order coins were inserted and in which order coins and products were
returned in the past. It only needs to remember the total amount of
money inserted by the current customer.

Architectures for Planning Agents

Se
ns

or
s

Se
ns

or
 in

te
rp

re
ta

tio
n

Ef
fe

ct
or

 c
on

tr
ol

Ef
fe

ct
or

s

Pe
rc

ep
ts

Ac
tio

ns

programstate

12/26/2016

4

Architectures for Planning Agents
Se

ns
or

s
Se

ns
or

 in
te

rp
re

ta
tio

n

Ef
fe

ct
or

 c
on

tr
ol

Ef
fe

ct
or

s

Pe
rc

ep
ts

Ac
tio

ns

program

• Planning agent

state

goal states
(or performance measure)

Examples

• What are the states, actions and action costs?

• Eight puzzle

21 3

5 6

47 8

start (= current) configuration

31 2

64 5

7 8

goal configuration

12/26/2016

5

Examples

• What are the states, actions and action costs?

• Missionaries and cannibals problem

Three missionaries and three cannibals are on the left side of a river,
along with a boat that can hold one or two people. Find the quickest
way to get everyone to the other side, without ever leaving a group of
missionaries in one place outnumbered by the cannibals in that place.

Examples

• What are the states, actions and action costs?

• Traveling salesperson problem

Visit all given cities in the plane with a shortest tour (= with the
smallest round-trip distance).

12/26/2016

6

State Spaces
21 3

5 6
47 8

2
1 3
5 6

47 8

21 3
5 6

47 8

21 3
5 6 4
7 8

2
1 3
5 6

47 8

21
35 6

47 8

21 3
5 6

47 8

21 3
5 6

47
8

21 3
5 6 4
7 8

start state

31 2
4 5 6
7 8

goal state

31 2
4 5

67 8

31 2
4 6

87
5

…

empty up: cost 1 empty down: cost 1
empty left: cost 1

empty down: cost 1 empty right: cost 1

State Spaces

• Example application of hillclimbing: Boolean satisfiability
• Find an interpretation that makes a given propositional sentence true.

• Transform the propositional sentence into conjunctive normal form, assign random truth
values to all propositional symbols, then repeatedly switch the truth value of some symbol to
decrease the number of clauses that evaluate to false.

• S (P OR Q) AND (NOT P OR NOT R) AND (P OR NOT Q OR R)

• Costs do not matter since we are not interested in finding a minimum-cost path.
• There is more than one goal state, e.g. P, Q, NOT R and P, NOT Q, NOT R.
• There is a goal test, namely whether S is true.

P, NOT Q, R

NOT P, NOT Q, R P, Q, R P, NOT Q, NOT R
…

start state = assignment of random truth values to all propositional symbols

flip P flip Q flip R

12/26/2016

7

State Spaces

• Graph
• Vertex
• Edge
• Edge cost
• Start vertex
• Goal vertex

• Solution is a
(minimum-cost)
path
from the start vertex
to any goal vertex

• State space
• State
• Action = operator = successor function succ(s,s’) ε States
• Action cost = operator cost
• Start state
• Goal state or goal test goal(s) ε {true, false}

• Solution is a
(minimum-cost)
action sequence = operator sequence
from the start state
to any goal state

