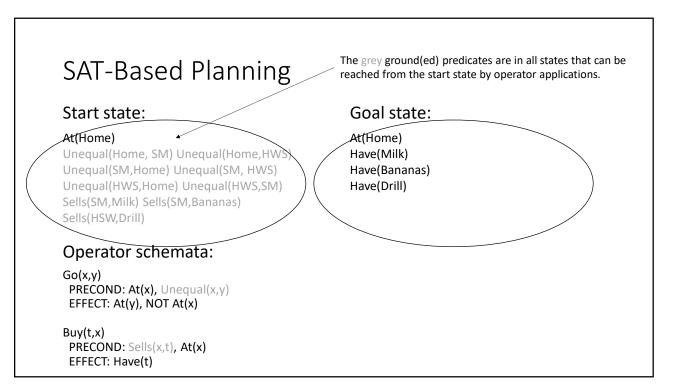
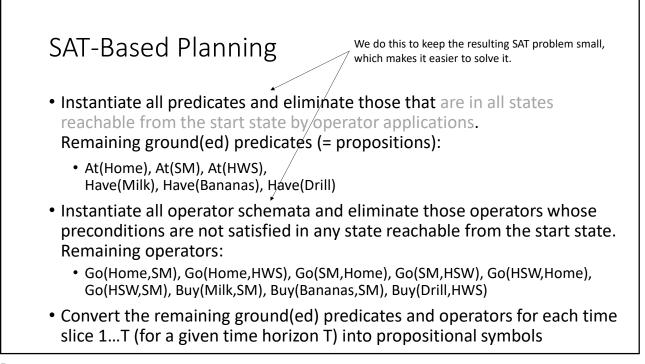
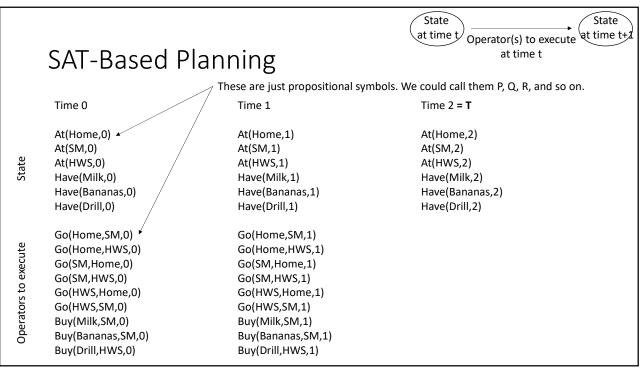
# SAT-Based Planning

Sven Koenig, USC

Russell and Norvig, 3<sup>rd</sup> Edition, Section 10.4.1


These slides are new and can contain mistakes and typos. Please report them to Sven (skoenig@usc.edu).


### 1


## SAT-Based Planning

- Planning problem (specified in STRIPS)
- SATisfiability problem (propositional sentence)
- Solution to SATisfiability problem (interpretation that makes the propositional sentence true)
- Solution to planning problem (shortest operator sequence that transforms the start state to the goal state)

| Start state:                        | Goal state:   |
|-------------------------------------|---------------|
| At(Home)                            | At(Home)      |
| Unequal(Home, SM) Unequal(Home,HWS) | Have(Milk)    |
| Unequal(SM,Home) Unequal(SM, HWS)   | Have(Bananas) |
| Unequal(HWS,Home) Unequal(HWS,SM)   | Have(Drill)   |
| Sells(SM,Milk) Sells(SM,Bananas)    |               |
| Sells(HSW,Drill)                    |               |
| Operator schemata:                  |               |
| Go(x,y)                             |               |
| PRECOND: At(x), Unequal(x,y)        |               |
| EFFECT: At(y), NOT At(x)            |               |



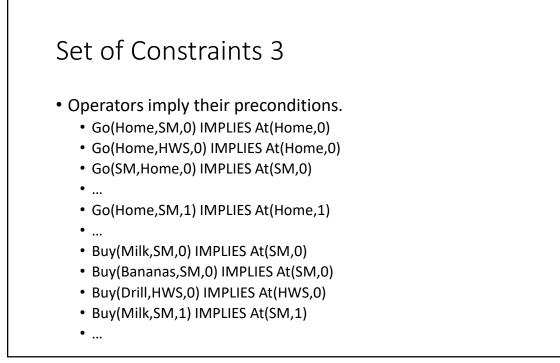


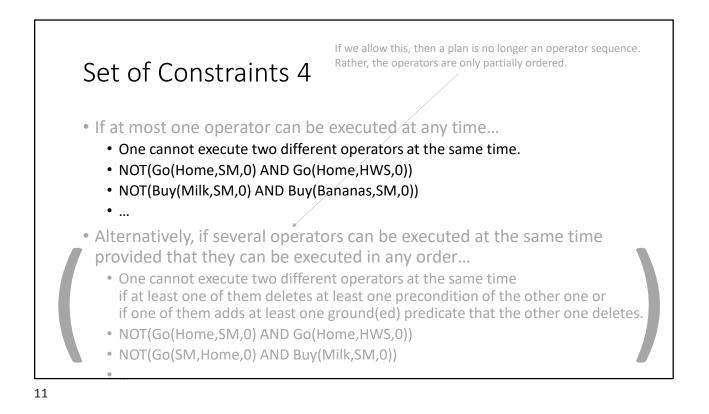


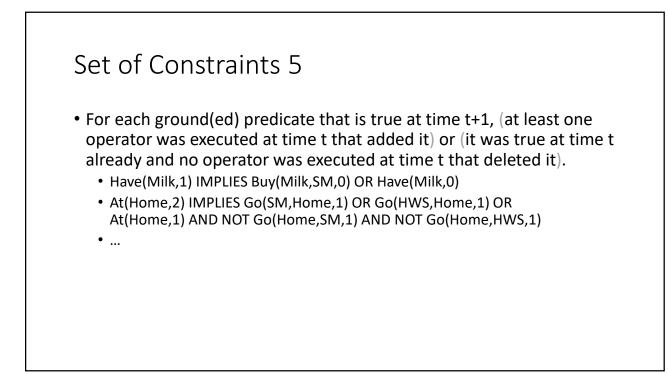
## SAT-Based Planning

- 1. Set T := 0.
- 2. Use a SAT solver to determine truth values for all propositional symbols so that they make the conjunct of the constraints on the following slides true, where the constraints use T as a parameter and are expressed as propositional sentences that need to be true.
- 3. If the SAT solver found no solution, then set T := T+1 and go to 2.
- A plan is obtained by executing the operators whose propositional symbols are true at the corresponding time steps. For example, if Go(Home,SM,0) (≡ true) then operator Go(Home,SM) should be executed at time 0. (If no operators are executed during a time step, it can be skipped.)

7


# Set of Constraints 1 • The ground(ed) predicates at time 0 correspond to the start state. At(Home,0) (that is, At(Home,0) ≡ true) NOT At(SM,0) (that is, At(SM,0) ≡ false) NOT At(HWS,0) NOT Have(Milk,0) NOT Have(Bananas,0) NOT Have(Drill,0)


## Set of Constraints 2


• The ground(ed) predicates at time T correspond to the goal state. If the goal state is only partially specified, then not all predicates at time T are assigned a truth value.

- At(Home,T)
- Have(Milk,T)
- Have(Bananas,T)
- Have(Drill,T)









## Set of Constraints 6

- For each ground(ed) predicate that is false at time t+1, (at least one operator was executed at time t that deleted it) or (it was false at time t already and no operator was executed at time t that added it).
  - NOT Have(Milk,1) IMPLIES NOT HAVE(Milk,0) AND NOT Buy(Milk,SM,0)
  - NOT At(Home,2) IMPLIES Go(Home,SM,1) OR Go(Home,HWS,1) OR NOT At(Home,1) AND NOT Go(SM,Home,1) AND NOT Go(HWS,Home,1)

• ...

13

## SAT-Based Planning

- 1. Set T := 0.
- 2. Use a SAT solver to determine truth values for all propositional symbols so that they make the conjunct of the constraints on the previous slides true, where the constraints use T as a parameter and are expressed as propositional sentences that need to be true.
- 3. If the SAT solver found no solution, then set T := T+1 and go to 2.
- A plan is obtained by executing the operators whose propositional symbols are true at the corresponding time steps. For example, if Go(Home,SM,O) (≡ true) then operator Go(Home,SM) should be executed at time 0. (If no operators are executed during a time step, it can be skipped.)

## SAT-Based Planning

- The resulting planner works well in practice.
- Issues
  - If the SAT solver is not guaranteed to find a solution even if one exists (for example, if it is based on hillclimbing with a time out), then the procedure is not guaranteed to find a shortest operator sequence.
  - If no plan exists, then the procedure will not terminate.

15