Ontologies and Semantic Networks

Sven Koenig, USC

Russell and Norvig, 3rd Edition, Section 12.5.1

These slides are new and can contain mistakes and typos. Please report them to Sven (skoenig@usc.edu).

1

Ontology

• Ontology = a model for describing the world that consists of a set of types, properties, and relationship types

Example: Taxonomic Knowledge

- "All office machines get their energy from wall outlets."
- "All printers are office machines."
- "All laser printers are printers."
- "Hobbes is a laser printer."

• A special purpose reasoning procedure ("pointer following") makes reasoning about properties easy, using the inheritance of properties.

	rames (very similar to semantic networks)	
Tames (very similar to semantic networks)		
Printers		
SubcatOf	OfficeMachines	
SupersetOf.	{LaserPrinters InkietPrinters}	
EnergySource:	WallOutlet	
Creator:	Sven Koenig	
Date:	Sep 10, 2018	
Hobbes		
ElementOf:	LaserPrinters	
EnergyConsumption:	180 Watt/hour	
EnergyCostPerHour:	Utility:EnergyCost * this:EnergyConsumption	
Creator:	Sven Koenig	
Date:	Feb 23, 2015	

Semantic Networks and Frames

- Properties (some versus first-order logic)
 - Knowledge base (appears) easy to understand by humans but semantics is often not well defined in practice
 - Problems with multiple inheritance of incompatible properties
 - More expressive than first-order logic with regard to default reasoning and procedural attachments
 - Less expressive (or more complicated) than first-order logic with regard to some logical operators such as negation and disjunction
 - Reasoning easy to implement and efficient but limited in capability due to special-purpose reasoning procedures
 - Some reasoning (such as inheritance) is easy to explain to non-experts