
12/18/2019

1

STRIPS
Sven Koenig, USC

Russell and Norvig, 3rd Edition, Section 10.1

These slides are new and can contain mistakes and typos.
Please report them to Sven (skoenig@usc.edu).

Encoding Planning Problems

• Qualification problem
• Problem of specifying when an action can be applied

• Frame problem
• Problem of specifying what an action does NOT change

• Ramification problem
• Problem of specifying what changes an action makes implicitly

(e.g. when you drive a car, everything in it changes its location)

1

2

12/18/2019

2

Logic

• We could encode planning problems in some form of logic.
• In situation calculus, for example, …

• One adds an argument to each predicate that specifies the state s in which it
is true. For example,

• At(Robot, Room1, s)
• One defines Result(s,a) as a function that maps a state and operator (= action)

to the successor state resulting from applying the operator in the state. For
example,

• FORALL s FORALL a (At(Robot, Room2, Result(s,a)) EQUIV (a=Go(Room1, Room2) OR
At(Robot, Room2, s) AND NOT a=Go(Room2,Room1)))

• Then, one tries to prove whether there exists an operator sequence that
transforms the start state to the goal state. If so, one finds such an operator
sequence as a by-product of the proof.

Room1 Room2

Logic

• Reasoning in logic is very powerful but also slow.
• Furthermore, we do not want to find any operator sequence that

transforms the start state to the goal state but one of minimum (or
small) cost.

• Thus, we study efficient special-purpose knowledge representation
formalisms and reasoning procedures that represent and solve
planning problems.

3

4

12/18/2019

3

STRIPS

• STRIPS (Stanford Research Institute Problem Solver, around 1971):
AI researchers no longer use the planner but we still use versions of
the language that encodes planning problems.

• The start and goal state are sets of propositions in form of non-negated
ground(ed) predicates. A non-negated ground(ed) predicate is a predicate
name followed by a list of constants that specify the arguments. The goal
state can be partially specified.

• Operator schemata consist of a name, a set (= list) of variable names, a set of
preconditions (PRECOND) and a set of effects (EFFECTS).

• Operators are instantiated operator schemata. An instantiated operator
schema is one where each variable is bound to a constant. Variables can be
bound to ANY constant.

STRIPS

• STRIPS (Stanford Research Institute Problem Solver, around 1971):
AI researchers no longer use the planner but we still use versions of the
language that encodes planning problems.

• PRECOND is a set of non-negated predicates. A non-negated predicate is a
predicate name followed by a list of arguments that are either constants or
variables. If PRECOND of an operator unifies with a state, then the operator is
applicable in the state.

• EFFECTS is a set of (non-negated and/or negated) predicates. If an operator is
applicable in a state, then the successor state (that results from the application of
the operator in the state) is obtained from the state by adding all non-negated
predicates (= add effects) from EFFECTS and deleting all negated predicates (=
delete effects) from EFFECTS. The order of additions and deletions should not
matter.

• Our textbook uses slightly different conventions. Make sure to follow our ones.

5

6

12/18/2019

4

Simple STRIPS Example

Operator schemata:
Go(x,y) “Move Robot from x to y”

PRECOND: At(Robot, x), Unequal(x,y)
EFFECT: At(Robot, y), NOT At(Robot,x)

Push(b,x,y) “Let Robot push b from x to y”
PRECOND: At(b,x), At(Robot,x), Pushable(b), Unequal(x,y)
EFFECT: At(b,y), At(Robot,y), NOT At(b,x), NOT At(Robot,x)

Start state:
At(Robot,Room1)
At(Box,Room2)
Pushable(Box)
Unequal(Room1,Room2)
Unequal(Room2,Room1)

Goal state:
At(Box,Room1)

Room1 Room2

Simple STRIPS Example

• Comments
• Pushable(Box), Unequal(Room1,Room2) and Unequal(Room2,Room1) are in

all states that can be reached from the start state by operator applications.
Such predicates are often used to specify properties of objects, including their
types.

• Without the precondition Unequal(x,y), one could apply the operator
Go(Room1,Room1) in the start state. The order of the addition of
At(Robot,Room1) and the deletion of At(Robot,Room1) matters, which we do
not want. Thus, we prevent the application of the operator
Go(Room1,Room1) in any state via the precondition Unequal(x,y).

• Both Unequal(Room1,Room2) and Unequal(Room2,Room1) need to be part
of the start state to make it possible to apply Go(Room1,Room2) and
Go(Room2,Room1), respectively, in the appropriate states.

7

8

12/18/2019

5

Simple STRIPS Example

• Comments
• In operator schema Go(x,y), we want x and y to be rooms. We could “type”

them by adding Room(x) and Room(y) to PRECOND and Room(Room1) and
Room(Room2) to the start state. (This is how Pushable(b) is used in the
operator schema Push(b,x,y).) However, this is unnecessary here since the
precondition Unequal(x,y) is only satisfied if x and y are rooms (that is, Room1
or Room2).

• The goal state is only partially specified. We only want Box to be in Room1.
We do not care about other predicates, such as where Robot is.

More Complex STRIPS Example

• Blocks world (for which we give a minimalistic STRIPS specification)
This domain consists of a set of cube-shaped blocks sitting on a table.
The blocks can be stacked, but only at most one block can fit directly
on top of another. A robot arm can pick up a block and move it to
another position, either on the table or on top of another block. The
arm can pick up only one block at a time, so it cannot pick up a block
that has another one on it. The goal will always be to build one or
more stacks of blocks, specified in terms of which blocks are on top of
which other blocks.

D

C

A

B B

A

Start state Goal state

9

10

12/18/2019

6

More Complex STRIPS Example

Operator schemata:
MoveToBlock(b,x,y) “Move block b that is on top of x (block or table) onto top of block y”

PRECOND: On(b,x), Clear(b), Clear(y), Block(y), Unequal(b,y)
EFFECT: On(b,y), Clear(x), NOT On(b,x), NOT Clear(y)

MoveToTable(b,x) “Move block b that is on top of block x onto the table”
PRECOND: On(b,x), Clear(b), Block(x)
EFFECT: On(b,Table), Clear(x), NOT On(b,x)

Start state:
Clear(A) Clear(B)
On(A,C) On(C,D) On(D,Table) On(B,Table)
Unequal(A,B) Unequal(A,C) Unequal(A,D)
Unequal(B,A) Unequal(B,C) Unequal(B,D)
Unequal(C,A) Unequal(C,B) Unequal(C,D)
Unequal(D,A) Unequal(D,B) Unequal(D,C)
Block(A) Block(B) Block(C) Block(D)

Goal state:
Clear(A)
On(A,B)
On(B,Table)

D
C
A

B B
A

Start state Goal state

MoveToTable(b,Table) cannot be allowed
since the order of the effects does matter for it.

MoveToBlock(b,x,b) cannot be allowed
since a block cannot be put onto itself.

11

