
CS360 Homework 12– Solution

Constraint Satisfaction

1) Consider the following constraint satisfaction problem with variables x, y and
z, each with domain {1, 2, 3}, and constraints C1 and C2, defined as follows:

• C1 is defined between x and y and allows the pairs (1, 1), (2, 2), (3, 1), (3, 2), (3, 3).
(A pair (a, b) means that assigning x = a and y = b does not violate the
constraint. Any assignment that does not appear in the list violate the
constraint.)

• C2 is defined between y and z and allows the pairs (1, 1), (1, 2), (3, 1), (3, 2), (3, 3).

Which values does arc consistency rule out from the domain of each variable?
Suppose that we started search after establishing arc consistency, and we as-
sign x = 1. Which values does a) forward checking and b) maintaining arc
consistency rule out from the domain of each variable?

Answer:
Arc consistency first rules out y = 2 because there is no value of z that satisfies
C2 if y = 2. It then rules out x = 2 because, once y = 2 is ruled out, there is
no value of y that satisfies C1 if x = 2. Arc consistency does not rule out any
other values at this point.

If we assign x = 1 during search, forward checking rules out only y = 3 (y = 2
is already ruled out by arc consistency). Maintaining arc consistency rules out
y = 3 and z = 3.

2) Show how a single ternary constraint such as “A + B = C” can be turned into
three binary constraints by using an auxiliary variable. You may assume finite
domains. (Hint: Consider a new variable that takes on values that are pairs of
other values, and consider constraints such as “X is the first element of the pair
Y.”) Next, show how constraints with more than three variables can be treated
similarly. Finally, show how unary constraints can be eliminated by altering
the domains of variables. This completes the demonstration that any CSP can
be transformed into a CSP with only binary constraints.

Answer:
To turn a single constraint C between n variables x1, . . . , xn into n binary
constraints, we can add a new variable y whose domain is a subset of the
Cartesian product of the n variables’ domains. Namely, this subset contains
exactly the tuples < a1, . . . an > where, ∀i ∈ {1 . . . n}, ai is in the domain of
xi, and the assignment x1 = a1, . . . , xn = an is not ruled out by C. We then



add the binary constraints B1, . . . , Bn where, ∀i ∈ {1 . . . n}, Bi is a constraint
between xi and y that rules out any assignment xi = ai, y =< b1, . . . , bn > if
and only if ai 6= bi.

A unary constraint is a constraint over a single variable, ruling out some of the
values from its domain. Instead of using a unary constraint to rule out values
from the domain of a variable, we can simply remove those values from the
variable’s domain.

Search

3) Solve Problem 1 from Homework 11 for A* with a) the (consistent) Manhattan
distance heuristic and b) the straight line distance heuristic. The Manhattan
distance heuristic between two grid cells (x1, y1) and (x2, y2) is |x1−x2|+|y1−y2|
(the length of a shortest path between the two cells, assuming that there are no
obstacles on the grid). For instance, the Manhattan distance between A1 and
E3 is |1− 5|+ |1− 3| = 6. Remember to expand every state at most once.

Answer:
Manhattan distance heuristic:

A B C D E
1 2 3 4 5 6
2 3 5
3 g 1 2 4
4 1 2 3 5
5 2 3 4 5 6

Expansion order (with f values): E1 (6), D1 (6), C1 (6), B1 (6), A1 (6), C2 (6),
C3 (6), B3 (6), A3 (6)

Straight-line distance heuristic (approximately):

A B C D E
1 2 2.2 2.8 3.6 4.5
2 2.2 4.1
3 g 1 2 4
4 1 1.4 2.2 4.1
5 2 2.2 2.8 3.6 4.5

Expansion order (with f values): E1 (4.5), D1 (4.6), C1 (4.8), E2 (5.1), B1 (5.2),
C2 (5.2), A1 (6), C3 (6), B3 (6), A3 (6).

4) We are given a sequence of integers and want to sort them in ascending order.
The only operation available to us is to reverse the order of the elements in
some prefix of the sequence. For instance, by reversing the first three elements
of (1 2 3 4), we get (3 2 1 4). This problem is also known as the “pancake
flipping” problem. We model this problem as a search problem, where each
state corresponds to a different ordering of the elements in the sequence. Given



an initial sequence (2 4 1 3), in which order does A* expand the states, using the
breakpoint heuristic described below? Assume that ties are broken toward states
with larger g-values, and, if there are still ties, they are broken in lexicographic
order. That is, (2 1 4 3) is preferred to (2 4 1 3).

Breakpoint heuristic: A breakpoint exists between two consecutive integers if
their difference is more than one. Additionally, a breakpoint exists after the
last integer in the sequence if it is not the largest integer in the sequence. For
instance, in (2 1 4 3), there are two breakpoints: one between 1 and 4 (since
their difference is more than 1), the other after 3 (since it is at the end and of
the sequence and is not the largest integer in the sequence). The breakpoint
heuristic is the number of breakpoints in a given sequence. (Bonus question: Is
this heuristic a) admissible and b) consistent? Why?)

Answer:
We start with the sequence (2.4.1.3.) which has 4 breakpoints (dots represent
the breakpoints). We have only three actions available to us: reverse the order
of the first two elements, first three elements, or all the elements (reversing the
order of only the first element is pointless). The search tree is given below:

2.4.1.3. (4)

4.2 1.3. (4) 1.4.2 3. (4)

4.1 2 3. (4)

2 1.4 3. (5) 3 2 1.4 (4)

2 3.1.4 (6) 1 2 3 4 (4)

3 2.4.1. (5)

3.1.4.2. (5)

The order of expansions (and their f-values) are as follows:

(a) (2.4.1.3.) 4

(b) (1.4.2 3.) 4

(c) (4.1 2 3.) 4

(d) (3 2 1.4 ) 4

(e) (1 2 3 4 ) 4



The breakpoint heuristic is consistent (and therefore admissible). The goal state
(1 2 3 4) has no breakpoints, therefore h(goal) = 0. Each action can change the
number of breakpoints by at most 1 (reversing the first i elements can only effect
the breakpoint after i). Therefore, for any edge (s, s′), 0 ≤ h(s) ≤ 1 + h(s′)
holds.

5) Does A* always terminate if a finite-cost path exists? Why?

Answer:
No. If a state has an infinite number of successors (infinite branching factor),
A* cannot expand that state in a finite amount of time and, therefore, does not
terminate. If we assume that each state has a finite number of successors (finite
branching factor), A* may still not terminate because it can get stuck exploring
an infinite subspace of the state space. Consider the following state space with
states {sgoal, s0, s1, . . . }, and edges {(s0, sgoal), (s0, s1), (s1, s2), . . . }, where c(s0,
sgoal) = 2 and, for all i, c(si, si+1) = (1/2)i. An A* search from s0 to sgoal that
uses a 0-heuristic (h(s) = 0 for all states s) would have to expand s0, s1, . . .
before expanding sgoal (since, for all i, f(si) = 1+1/2+1/4+· · ·+(1/2)i−1 < 2 =
f(sgoal)). Since an infinite number of expansions are required before expanding
sgoal, A* does not terminate.

6) Given two consistent heuristics h1 and h2, we compute a new heuristic h3 by
taking the maximum of h1 and h2. That is, h3(s) = max(h1(s), h2(s)). Is h3

consistent? Why?

Answer:
Yes. First, for any goal state s, we show that h3(s) = 0. Since, h1 and h2 are
consistent, h1(s) = 0 and h2(s) = 0. Therefore, h3(s) = max(h1(s), h2(s)) = 0.

Then, for any edge (s, s′) in the graph, we show that 0 ≤ h3(s) ≤ c(s, s′)+h3(s
′).

Without loss of generality, assume that h1(s) ≥ h2(s) (that is, if h1(s) < h2(s),
we could simply switch h1 and h2, and continue with the proof). Then, h3(s) =
max(h1(s), h2(s)) = h1(s). Since h1 is consistent, we have:

0 ≤ h1(s) ≤ c(s, s′) + h1(s
′)

We get:

0 ≤ h3(s) = max(h1(s), h2(s)) = h1(s) ≤ c(s, s′) + h1(s
′)

≤ c(s, s′) + max(h1(s
′), h2(s

′)) = c(s, s′) + h3(s
′)

7) In the arrow puzzle, we have a series of arrows pointing up or down, and we
are trying to make all the arrows point up with a minimum number of action
executions. The only action available to us is to chose a pair of adjacent arrows
and flip both of their directions. Using problem relaxation, come up with a
good heuristic for this problem.



Answer:
We can relax the problem by allowing our action to flip the directions of any
two arrows, instead of two adjacent arrows. In this case, we need to use at
least d number of arrows pointing down / 2 e actions, which can be used as a
consistent heuristic to solve the original problem.

8) Explain why heuristics obtained via problem relaxation are not only admissible
but also consistent.

Answer:
Relaxing a problem means creating a supergraph of the state space by adding
extra edges to the original graph of the state space and using goal distances
on this supergraph as heuristics for an A* search in the original graph. We
start by showing that the goal distances in the supergraph form a consistent
heuristic for the supergraph. The goal distance of the goal is 0, so h(goal) = 0.
For any edge (s, s′) of the supergraph, 0 ≤ h(s) ≤ c(s, s′) + h(s′) because,
otherwise, h(s) would not be the goal distance of s, since there were a shorter
path to the goal via s′. Since the edges in the original graph is a subset of the
edges in the supergraph, for all edges (s, s′) of the original graph, 0 ≤ h(s) ≤
c(s, s′) + h(s′).

9) What are the advantages and disadvantages of a) uniform-cost search and b)
greedy best-first search over A* search?

Answer:
The only advantage uniform-cost search has is that it does not have to compute a
heuristic (which can be very expensive in some domains). Both search methods
guarantee optimality.

Greedy best-first search offers no optimality guarantees, although it typically
finds solutions with many fewer node expansions and thus much faster than A*.

10) Give a simple example that shows that A* with inconsistent but admissible
heuristic values is not guaranteed to find a cost-minimal path if it expands
every state at most once.

Answer:

B

S

A

C

G

2

h(B) = 1

h(C) = 0

2

h(A) = 3

h(G) = 0

h(S) = 4

11

1



In this example (where the heuristic is admissible but not consistent), when
searching for a path from S to G, the states are expanded in the following order
(parentheses show f-values):

S (0 + 4 = 4)
B (2 + 1 = 3)
C (3 + 0 = 3)
A (1 + 3 = 4)
G (5 + 0 = 5)

Note that expanding A finds a shorter path from S to C, but this is not re-
flected in the solution since C was expanded before A and we are not allowed
to expand a state more than once.

11) Solve Problem 1 from Homework 11 for Iterative Deepening search.

Answer:
In the solution below, we use ‘∗’ to mark nodes that are at the depth-limit for
the current iteration of Iterative Deepening search.

Expansion order in 1st iteration (depth 0): E1∗.

Expansion order in 2nd iteration (depth 1): E1, D1∗, E2∗.

Expansion order in 3rd iteration (depth 2): E1, D1, C1∗, E2, E3∗.

Expansion order in 4th iteration (depth 3): E1, D1, C1, B1∗, C2∗, E2, E3, E4∗.

Expansion order in 5th iteration (depth 4): E1, D1, C1, B1, A1∗, C2, C3∗, E2,
E3, E4, E5∗.

Expansion order in 6th iteration (depth 5): E1, D1, C1, B1, A1, C2, C3, B3∗,
C4∗, E2, E3, E4, E5, D5∗.

Expansion order in 7th iteration (depth 6): E1, D1, C1, B1, A1, C2, C3, B3,
A3∗.

Note that the nodes marked with ∗ also mark the first time that they are
expanded. If we list the nodes in the order that they are first expanded, we get:

E1, D1, E2, C1, E3, B1, C2, E4, A1, C3, E5, B3, C4, D5, A3.

This is equivalent to the BFS expansion order.


