

Translating English Sentences to First Order Logic

In the following, it is important to remember the precedence of the operators, which are (from
highest to lowest): ¬ (NOT), ∧ (AND), ∨ (OR), ⇒ (IMPLIES), ⇔ (EQUIV). Notice also that there
are always several (equivalent) sentences in first-order logic that correspond to a given English
sentence. We provide only one example.

All students are smart.
∀x (Student (x) ⇒ Smart (x))

There exists a student.
∃x Student(x)

There exists a smart student.
∃x (Student(x) ∧ Smart (x))

Every student loves some student.
∀x (Student(x) ⇒ ∃y (Student(y) ∧ Loves(x,y)))

Every student loves some other student.
∀x (Student(x) ⇒ ∃y (Student(y) ∧ ¬(x=y) ∧ Loves(x,y)))

There is a student who is loved by every other student.
∃x (Student(x) ∧ ∀y (Student(y) ∧ ¬(x=y) ⇒ Loves(y,x)))

Bill is a student.
Student(Bill)

Bill takes either Analysis or Geometry (but not both).
Takes(Bill,Analysis) ⇔ ¬Takes(Bill,Geometry)

Bill takes Analysis or Geometry (or both).
Takes(Bill,Analysis) ∨ Takes(Bill,Geometry)

Bill takes Analysis and Geometry.
Takes(Bill,Analysis) ∧ Takes(Bill,Geometry)

Bill does not take Analysis.
¬Takes(Bill,Analysis)

No student loves Bill.
¬∃x (Student(x) ∧ Loves(x,Bill)

Bill has at least one sister.
∃x SisterOf(x,Bill)

Bill has no sister.
¬∃x SisterOf(x,Bill)

Bill has at most one sister.
∀x ∀y (SisterOf(x,Bill) ∧ SisterOf(y,Bill) ⇒ x=y)

Bill has exactly one sister.
∃x (SisterOf(x,Bill) ∧ ∀y (SisterOf(y,Bill) ⇒ x=y))

Bill has at least two sisters
∃x ∃y (SisterOf(x,Bill) ∧ (SisterOf(y,Bill) ∧ ¬(x=y))

Every student takes at least one course.
∀x (Student(x) ⇒ ∃y (Course(y) ∧ Takes(x,y)))

Only one student failed History.
∃x (Student(x) ∧ Failed(x,History) ∧ ∀y (Student(y) ∧ Failed(y,History) ⇒ x=y))

No student failed Chemistry, but at least one student failed History.
¬∃x (Student(x) ∧ Failed(x,Chemistry)) ∧ ∃x (Student(x) ∧ Failed (x,History))

Every student who takes Analysis also takes Geometry.
∀x (Student(x) ∧ Takes(x,Analysis) ⇒ Takes(x,Geometry))

No student can fool all the other students.
¬∃x (Student(x) ∧ ∀y (Student(y) ∧ ¬(x=y) ⇒ Fools(x,y)))

