
Any-Angle Search
Case Study: Theta*

slides by Alex Nash

anash@usc.edu / alexwnash@gmail.com
with contributions by Sven Koenig

skoenig@usc.edu

mailto:anash@usc.edu
mailto:alexwnash@gmail.com
mailto:skoenig@usc.edu

Table of Contents

o Introduction

o Analysis of Path Lengths

o Any-Angle Search Methods

o Known 2D Environments

o Known 3D Environments

o Unknown 2D Environments (1 slide only)

o Conclusion

Introduction

[from JPL] Warcraft II

Introduction

Warcraft II

Introduction

Warcraft II

Introduction

Warcraft II

Introduction

Warcraft II

Introduction

Warcraft II

Introduction

[Paul Tozour]

Introduction

• Edge-constrained search methods (such as A*)

– Efficient

– Simple

– Generic

– Long and unrealistic looking paths

Table of Contents

o Introduction

o Analysis of Path Lengths

o Any-Angle Search Methods

o Known 2D Environments

o Known 3D Environments

o Unknown 2D Environments (1 slide only)

o Conclusion

Analysis of Path Lengths

• How much longer can the paths found by traditional
edge-constrained search methods (= the shortest
paths formed by grid edges) be than the shortest
paths in the environment (= the shortest “any-angle”
paths = the shortest paths)?

Analysis of Path Lengths

• Blocked cells do not matter

Analysis of Path Lengths

• Blocked cells do not matter

Analysis of Path Lengths

• Blocked cells do not matter

Analysis of Path Lengths

• Blocked cells do not matter

Analysis of Path Lengths

• Part 1: Show that the shortest path formed by grid
edges can traverse only grid cells traversed by the
shortest path (= blocked cells do not matter)

• Part 2: Determine the worst-case ratio of the length of
the shortest path formed by grid edges and the shortest
path

– Optimization problem with Lagrange multipliers

– L(x1,…,xn,l) = f(x1,…,xn) + l(g(x1,…,xn)-c)

– Minimize f(x1,…,xn) subject to g(x1,…,xn) = c

– f(x1,…,xn) = length of the shortest path

– g(x1,…,xn) = length of the shortest grid path

Analysis of Path Lengths

Dimension Regular Grid Neighbors
% Longer Than
Shortest Path

2D

triangular grid
3-neighbor

6-neighbor

square grid
4-neighbor

8-neighbor ≈ 8

hexagonal grid
6-neighbor

12-neighbor

3D cubic grid
6-neighbor

26-neighbor

Analysis of Path Lengths

• Only three types of regular (equilateral and
equiangular) polygons can be used to tessellate 2D
environments

– Triangles

– Squares

– Hexagons

Analysis of Path Lengths

3-Neighbor Triangular Grid 4-Neighbor Square Grid 6-Neighbor Hexagonal Grid

Red Arrows

6-Neighbor Triangular Grid 8-Neighbor Square Grid 12-Neighbor Hexagonal Grid

Red and Green Arrows

Civilization V

Analysis of Path Lengths

• Only one type of regular polyhedron can be used to
tessellate 3D environments

– Cubes

Analysis of Path Lengths

6-Neighbor Cubic Grid

Red Arrows

26-Neighbor Cubic Grid

Red and Green Arrows

Analysis of Path Lengths

Dimension Regular Grid Neighbors
% Longer Than
Shortest Path

2D

triangular grid
3-neighbor ≈ 100

6-neighbor ≈ 15

square grid
4-neighbor ≈ 41

8-neighbor ≈ 8

hexagonal grid
6-neighbor ≈ 15

12-neighbor ≈ 4

3D cubic grid
6-neighbor ≈ 73

26-neighbor ≈ 13

Table of Contents

o Introduction

o Analysis of Path Lengths

o Any-Angle Search Methods

o Known 2D Environments

o Known 3D Environments

o Unknown 2D Environments (1 slide only)

o Conclusion

Any-Angle Search

• Two conflicting criteria

Path Length

C
o
m

p
u

ta
ti

o
n

 T
im

e

A* on visibility graphs

A* grid graphs

figure is notional

A* on grid graphs

Known 2D Environments

A* on Grid Graphs

Goal

Start

Known 2D Environments

A* on Grid Graphs

• A* [Hart et al. (1968)] on grid graphs

• A* assigns two values to every vertex s
– g(s): the length of the shortest path from the start vertex to s found so far

– parent(s): the parent pointer used to extract the path after termination

– Following the parents from s to the start vertex results in a path of length g(s)

Goal

Start
A

B

C

1 2 3 4 5

Known 2D Environments

A* on Grid Graphs

• A* on grid graphs

Goal

Start

Arrows point to the parent of a vertex

Vertex currently being expanded

A

B

C

1 2 3 4 5

Parent pointer

Known 2D Environments

A* on Grid Graphs

• A* on grid graphs

Goal

Start

Arrows point to the parent of a vertex

Vertex currently being expanded

A

B

C

1 2 3 4 5

Parent pointer

Known 2D Environments

A* on Grid Graphs

• A* on grid graphs

Goal

Start
A

B

C

1 2 3 4 5

Arrows point to the parent of a vertex

Vertex currently being expanded

Parent pointer

Known 2D Environments

A* on Grid Graphs

• A* on grid graphs

Goal

Start
A

B

C

1 2 3 4 5

Arrows point to the parent of a vertex

Vertex currently being expanded

Parent pointer

from now on, we will show only the cells

Known 2D Environments

A* on Grid Graphs

• A* on grid graphs

• Long and unrealistic looking path

• Fast

Goal

Start

Known 2D Environments

A* on Visibility Graphs

Path Length

C
o
m

p
u

ta
ti

o
n

 T
im

e

A* on visibility graphs

A* grid graphs

figure is notional

A* on grid graphs

Known 2D Environments

A* on Visibility Graphs

• A* on Visibility Graphs [Lozano-Perez et al. (1979)]

• Shortest path

• Slow due to many edges and line-of-sight checks

Goal

Start

Known 2D Environments

Any-Angle Search

Path Length

C
o
m

p
u

ta
ti

o
n

 T
im

e
A* on visibility graphs

A* on grid graphs

Any-Angle Find-Path

Algorithms

any-angle search

methods

figure is notional

Known 2D Environments

Any-Angle Search

• Any-angle search methods

– Perform an A* search

– Propagate information along grid edges
(= small computation time)

– Do not constrain the paths to be formed by grid edges
(= short paths)

Known 2D Environments

Any-Angle Search

• Evaluation in
known 2D environments,
known 3D environments, and
unknown 2D environments

– Property 1 (Efficiency)
Good tradeoff between computation times and path lengths

– Property 2 (Simplicity)
Simple to understand and implement

– Property 3 (Generality)
Works on every graph embedded in 2D or 3D Euclidean space
(= Euclidean graph), that is, all discretization techniques

Known 2D Environments

Any-Angle Search

• Different discretization techniques

Start

Goal

Regular Grids

Dawn of War 1 and 2
Civilization V
Company of Heroes
[Champandard (2010)]

Navigation Meshes

Halo 2
Counter-Strike:
Source and Metroid Prime
[Tozour (2008)]

Circle Based Waypoint Graphs

MechWarrior 4: Vengeance

Known 2D Environments

A* with Post Smoothing

figure is notional

Path Length

C
o
m

p
u

ta
ti

o
n

 T
im

e
A* on visibility graphs

A* on grid graphs

Any-Angle Find-Path

Algorithms

A* with Post Smoothing

Field D*

any-angle search

methods

Known 2D Environments

A* with Post Smoothing

• A* with Post Smoothing [Thorpe (1984), Botea et al.
(2004), Millington (2009)]

Goal

Start
A

B

C

1 2 3 4 5

Known 2D Environments

A* with Post Smoothing

• A* with Post Smoothing [Thorpe (1984), Botea et al.
(2004), Millington (2009)]

Goal

Start
A

B

C

1 2 3 4 5

Known 2D Environments

A* with Post Smoothing

• A* with Post Smoothing

Goal

Start
A

B

C

1 2 3 4 5

Known 2D Environments

A* with Post Smoothing

• A* with Post Smoothing

Goal

Start
A

B

C

1 2 3 4 5

Known 2D Environments

A* with Post Smoothing

• A* with Post Smoothing

Goal

Start

Known 2D Environments

A* with Post Smoothing

• A* with Post Smoothing

• Postprocessing often leaves path topology unchanged

• Better to interleave the search and the optimization

Known 2D Environments

Field D*

Path Length

C
o
m

p
u

ta
ti

o
n

 T
im

e
A* on visibility graphs

A* on grid graphs

Any-Angle Find-Path

Algorithms

A* with Post Smoothing

Field D*

any-angle search

methods

figure is notional

Theta*

Known 2D Environments

Field D*

• Field D* (a version of D* Lite) [Ferguson and Stentz,
2005]

Start

Goal

Known 2D Environments

Field D*

• Field D* (a version of D* Lite)

Start

Known 2D Environments

Field D*

• Field D* (a version of D* Lite)

Start

Known 2D Environments

Field D*

• Field D* (a version of D* Lite)

Start

Known 2D Environments

Field D*

• Field D* (a version of D* Lite)

Start

Known 2D Environments

Field D*

• Field D* (a version of D* Lite)

• Field D* can easily take traversal costs into account

• Field D* is restricted to square grids

• Sophisticated path extraction is necessary

• Paths have lots of small heading changes in open space
(but could be optimized further)

Field D* path

Shortest path

Known 2D Environments

Start

Goal

Theta*

Path Length

C
o
m

p
u

ta
ti

o
n

 T
im

e
A* on visibility graphs

A* on grid graphs

Any-Angle Find-Path

Algorithms

A* with Post Smoothing

Field D*

Theta*

figure is notional

any-angle search

methods

Known 2D Environments

Theta*

• A*
– The parent of a vertex has to be its neighbor in the graph.

– When expanding vertex s and generating its neighbor s’,
A* considers
• Making s the parent of s’ (Path 1)

• Theta*
– The parent of a vertex does not need to be its neighbor

– When expanding vertex s and generating its neighbor s’,
Theta* considers
• Making s the parent of s’ (Path 1)

• Making the parent of s the parent of s’ (Path 2)

• Note: Path 2 is no longer than Path 1 iff it is unblocked.
The line-of-sight check can be performed with fast
line-drawing algorithms from computer graphics.

Known 2D Environments

s’

s

parent of s

Theta*

• Theta* [Nash, Daniel, Koenig and Felner, 2007]

Goal

Start
A

B

C

1 2 3 4 5

Arrows point to the parent of a vertex

Vertex currently being expanded

Parent pointer

Known 2D Environments

Theta*

• Theta*

Goal

Start
A

B

C

1 2 3 4 5

Arrows point to the parent of a vertex

Vertex currently being expanded

Parent pointer

Path 1 Path 2

Known 2D Environments

Theta*

• Theta*

Goal

Start
A

B

C

1 2 3 4 5

Arrows point to the parent of a vertex

Vertex currently being expanded

Parent pointer

Path 1 Path 2

Known 2D Environments

Theta*

• Theta*

Goal

Start
A

B

C

1 2 3 4 5

Arrows point to the parent of a vertex

Vertex currently being expanded

Parent pointer

Path 1 Path 2

Known 2D Environments

Theta*

• Theta*

Goal

Start
A

B

C

1 2 3 4 5

Arrows point to the parent of a vertex

Vertex currently being expanded

Parent pointer

Path 1 Path 2

Known 2D Environments

Theta*

• Theta*

Goal

Start
A

B

C

1 2 3 4 5

Arrows point to the parent of a vertex

Vertex currently being expanded

Parent pointer

Path 1 Path 2

Known 2D Environments

Theta*

• Theta*

Goal

Start
A

B

C

1 2 3 4 5

Arrows point to the parent of a vertex

Vertex currently being expanded

Parent pointer

Path 1 Path 2

Known 2D Environments

Theta*

• Theta*

Goal

Start
A

B

C

1 2 3 4 5

Arrows point to the parent of a vertex

Vertex currently being expanded

Parent pointer

Path 1 Path 2

Known 2D Environments

Theta*

• Theta*

Start

Goal

A

B

C

1 2 3 4 5

Arrows point to the parent of a vertex

Vertex currently being expanded

Parent pointer

Path 1 Path 2

Known 2D Environments

Theta*

• Theta*

Start

Goal

Known 2D Environments

Path Length

• Theta* is not guaranteed to find shortest paths since
the parent of a vertex can only be a neighbor of the
vertex or the parent of a neighbor

• The length of the path is still within 0.2% of optimal

Known 2D Environments

Theta* path
Shortest path

Path Lengths

Field D* A* with Post Smoothing Theta*

• Goal vertices to which a shortest path was found
from the center vertex

Known 2D Environments

Path Length

A* on grid graphs Theta*

Known 2D Environments

We allow paths to
pass through
diagonally
touching blocked
cells here but this
an be changed
easily in the code

Experimental Setups

• For A* on grid graphs, we use the octile heuristics as
h-values. For A* on visibility graphs, A* with Post
Smoothing (= helps smoothing), Field D*, Theta* and
Lazy Theta*, we use the straight-line distances as h-
values.

• For A* on grid graphs, A* on visibility graphs, A* with
Post Smoothing and Field D*, we break ties among
vertices with the same f-values in favor of vertices
with smaller g-values. For Theta* and Lazy Theta*,
we break ties among vertices with the same f-values
in favor of vertices with smaller g-values.

Known 2D Environments

Experimental Setups

• We place the start vertex in the bottom left corner,
the goal vertex randomly into the rightmost column
of cells, and a one unit border of unblocked grid cells
around the grid to ensure a path exists.

• Other experimental setups have been used as well,
which is important since the setup used here
constrains the search space to the left and bottom,
[Yap (2011), personal communication]. One could,
for example, use randomly selected start and goal
vertices on game maps with some randomly blocked
cells added that simulate structures built by players
[Yap et al. (2011)].

Known 2D Environments

Efficiency

• 100 x 100 grids with 20% randomly blocked cells

A* on grid graphs

A* with Post Smoothing
Field D*

A* on visibility graphs

Theta*

co
m

p
u

ta
ti

o
n

 t
im

e

path length / path length of shortest path

Known 2D Environments

the computation times and their relationship depend on implementation details

(such as how the priority queue and line-of-sight checks are implemented)

Simplicity

A* Theta*

Known 2D Environments

Simplicity

• A class project on any-angle search with Theta* was
developed as part of the “Computer Games in the
Classroom” initiative, see idm-lab.org/gameai

• Used at

– University of Nevada, Reno

– University of Southern California

• Online tutorial

– AiGameDev.com

Known 2D Environments

Any-Angle Search

Property 1: Efficiency

Any-Angle Search Method Property 2: Simplicity Property 3: Generality
(Any Euclidean Graph)

A* with Post Smoothing Yes Yes

Field D* No No

Theta* Yes Yes

A* on grid graphs

A* with Post Smoothing
Field D*

A* on visibility graphs

Theta* co
m

p
u

ta
ti

o
n

 t
im

e

path length / path length of shortest path

Known 2D Environments

Table of Contents

o Introduction

o Analysis of Path Lengths

o Any-Angle Search Methods

o Known 2D Environments

o Known 3D Environments

o Unknown 2D Environments (1 slide only)

o Conclusion

A* on Grid Graphs

• Paths get longer and more unrealistic looking

Dimension Regular Grid Neighbors
% Longer Than
Shortest Path

2D

triangular grid
3-neighbor ≈ 100

6-neighbor ≈ 15

square grid
4-neighbor ≈ 41

8-neighbor ≈ 8

hexagonal grid
6-neighbor ≈ 15

12-neighbor ≈ 4

3D cubic grid
6-neighbor ≈ 73

26-neighbor ≈ 13

Known 3D Environments

A* on Grid Graphs

• Paths get longer and more unrealistic looking

Known 3D Environments

A* on Visibility Graphs

• Paths are no longer optimal

Start

Goal

Known 3D Environments

Field D*

• There is a 3D version of Field D* [Carsten, Ferguson
and Stentz (2006)], which is more complex than the
2D version, specific to cubic grids, and cannot solve
the optimization in closed form

figures from the cited paper

Known 3D Environments

Theta*

• Theta* applies to 3D environments without any
modifications but the number of line-of-sight checks
increases since there is one line-of-sight check for
each unexpanded visible neighbor (that is,
potentially 26 instead of 8 neighbors)

3+7+7=17 line-of-sight checks

1 2 43

B

C

A

sstart

sgoal

7+15+15=37 line-of-sight checks

2

3

4

A

B

C

1
Upper (U)

Lower (L)

Sgoal

Sstart

Known 3D Environments

Lazy Theta*

• Lazy Theta* [Nash, Koenig and Tovey (2010)]
performs one line-of-sight check only for each
expanded vertex rather than each generated vertex

• Lazy Theta* works in 2D and 3D environments

Known 3D Environments

Lazy Theta*

• Theta*
– When expanding vertex s and generating its neighbor s’,

Theta* considers
• Making s the parent of s’ (Path 1)

• Making the parent of s the parent of s’ (Path 2)

• Lazy Theta*
– When expanding vertex s and generating its neighbor s’,

Lazy Theta* makes the parent of s the parent of s’ (Path 2)
without a line-of-sight check

– When expanding vertex s’ and s’ does not have line-of-
sight to its parent, then Lazy Theta* makes the best
neighbor of s’ (= the one that minimizes the g-value of s’)
the parent of s’ (Path 1).

– [Such a neighbor exists since s is one of them.]

Known 3D Environments

Lazy Theta*

• Lazy Theta* [Nash, Koenig and Tovey (2010)]

Goal

Start
A

B

C

1 2 3 4 5

Arrows point to the parent of a vertex

Vertex currently being expanded

Parent pointer

Path 1 Path 2

Known 3D Environments

Lazy Theta*

• Lazy Theta* [Nash, Koenig and Tovey (2010)]

Goal

Start
A

B

C

1 2 3 4 5

Arrows point to the parent of a vertex

Vertex currently being expanded

Parent pointer

Path 1 Path 2

Known 3D Environments

Lazy Theta*

• Lazy Theta* [Nash, Koenig and Tovey (2010)]

Goal

Start
A

B

C

1 2 3 4 5

Arrows point to the parent of a vertex

Vertex currently being expanded

Parent pointer

Path 1 Path 2

Known 3D Environments

Lazy Theta*

• Lazy Theta* [Nash, Koenig and Tovey (2010)]

Goal

Start
A

B

C

1 2 3 4 5

Arrows point to the parent of a vertex

Vertex currently being expanded

Parent pointer

Path 1 Path 2

Known 3D Environments

Lazy Theta*

• Lazy Theta* [Nash, Koenig and Tovey (2010)]

Goal

Start
A

B

C

1 2 3 4 5

Arrows point to the parent of a vertex

Vertex currently being expanded

Parent pointer

Path 1 Path 2

Known 3D Environments

Lazy Theta*

• Lazy Theta* [Nash, Koenig and Tovey (2010)]

Goal

Start
A

B

C

1 2 3 4 5

Arrows point to the parent of a vertex

Vertex currently being expanded

Parent pointer

Path 1 Path 2

Known 3D Environments

Lazy Theta*

• Lazy Theta* [Nash, Koenig and Tovey (2010)]

Goal

Start
A

B

C

1 2 3 4 5

Arrows point to the parent of a vertex

Vertex currently being expanded

Parent pointer

Path 1 Path 2

Known 3D Environments

Lazy Theta*

• Lazy Theta* [Nash, Koenig and Tovey (2010)]

Goal

Start
A

B

C

1 2 3 4 5

Arrows point to the parent of a vertex

Vertex currently being expanded

Parent pointer

Path 1 Path 2

Known 3D Environments

Lazy Theta*

• Lazy Theta* [Nash, Koenig and Tovey (2010)]

Goal

Start
A

B

C

1 2 3 4 5

Arrows point to the parent of a vertex

Vertex currently being expanded

Parent pointer

Path 1 Path 2

Known 3D Environments

Lazy Theta*

• Lazy Theta* [Nash, Koenig and Tovey (2010)]

Start

Goal

A

B

C

1 2 3 4 5

Arrows point to the parent of a vertex

Vertex currently being expanded

Parent pointer

Path 1 Path 2

Known 3D Environments

Lazy Theta*

• Lazy Theta* [Nash, Koenig and Tovey (2010)]

• Theta* performed 19 line-of-sight checks

• Lazy Theta* performs 4 line-of-sight checks

Start

Goal

Known 3D Environments

Path Length

• 100 x 100 x 100 grids with randomly blocked cells

• Percentage by how much the path length of A* on grid
graphs is worse than the one of Theta* (left) and Lazy
Theta* (right)

1.07

1.072

1.074

1.076

1.078

1.08

1.082

1.084

1.086

0 5 10 20 30

% Blocked

%
 A

*
is

 w
o

rs
e

Theta*

Lazy Theta*

b
et

te
r

percentage of blocked cells

Known 3D Environments

0

2

4

6

8

10

12

14

16

18

20

0 5 10 20 30

% Blocked

R
a
ti

o
 o

f
L

O
S

 C
h

e
c
k
s

Line-of-Sight Checks

• 100 x 100 x 100 grids with randomly blocked cells

• Ratio of line-of-sight checks of Theta* and line-of-sight
checks of Lazy Theta*

percentage of blocked cells

b
et

te
r

fo
r

La
zy

 T
h

et
a*

Known 3D Environments

Computation Time

• 100 x 100 x 100 grids with randomly blocked cells

• Ratio of computation time of Theta* and computation
time of Lazy Theta*

b
et

te
r

fo
r

La
zy

 T
h

et
a*

0

1

2

3

4

5

6

7

0 5 10 20 30

% Blocked

R
a
ti

o
 o

f
C

o
m

p
u

ta
ti

o
n

 T
im

e
s

percentage of blocked cells

Known 3D Environments

Weighted Lazy Theta*

• Lazy Theta* with A*: f(s) = g(s) + h(s)

Start Goal

Known 3D Environments

Weighted Lazy Theta*

• Lazy Theta* with A*: f(s) = g(s) + e∙h(s) with e > 1

• Reduces vertex expansions and thus line-of-sight checks

• Both reductions reduce the computation time

Start Goal

Known 3D Environments

Weighted Lazy Theta*

• Theta* and Lazy Theta* often do too much work

• It is sufficient if there is a single path along which the
parent is propagated (when considering Path 2)

Goal

Start
A

B

C

1 2 3 4 5

Known 3D Environments

Efficiency

• Weighted Lazy Theta* expands 15 times fewer
vertices but finds a path that is only 0.03% longer
(which depends on how shallow the local minima are)

Lazy Theta*

Weighted Lazy Theta* with e =1.3

Known 3D Environments

Efficiency

• 100 x 100 x 100 grids with 20% randomly blocked cells

0.01

0.1

1

10

0.9 0.95 1

Path Length / Length of Shortest Grid Path

C
o

m
p

u
ta

ti
o

n
 T

im
e

A*

A* PS

Lazy Theta*

Basic Theta*

Lazy Theta* with w=1.2

A* on grid graphs

A* with Post Smoothing

Basic Theta*
Lazy Theta*

Weighted Lazy Theta* with e=1.2 co
m

p
u

ta
ti

o
n

 t
im

e

path length / path length of shortest grid path

Known 3D Environments

Simplicity

A* Theta* Lazy Theta*

Known 3D Environments

Any-Angle Search

Property 1: Efficiency

Any-Angle Search Method Property 2: Simplicity Property 3: Generality
(Any Euclidean Graph)

A* with Post Smoothing Yes Yes

3D Field D* No No

Theta* Yes Yes

(Weighted) Lazy Theta* Yes Yes

0.01

0.1

1

10

0.9 0.95 1

Path Length / Length of Shortest Grid Path

C
o

m
p

u
ta

ti
o

n
 T

im
e

A*

A* PS

Lazy Theta*

Basic Theta*

Lazy Theta* with w=1.2

A* with Post Smoothing

A* on grid graphs

Theta*
Lazy Theta*

Weighted Lazy Theta with e=1.2 co
m

p
u

ta
ti

o
n

 t
im

e

path length / path length of shortest grid path

Known 3D Environments

Table of Contents

o Introduction

o Analysis of Path Lengths

o Any-Angle Search Methods

o Known 2D Environments

o Known 3D Environments

o Unknown 2D Environments (1 slide only)

o Conclusion

Replanning

• Field D* and Theta* can both use incremental search
to replan faster than from scratch (Field D* was
designed with this in mind) but neither of them works
for every graph embedded in 2D Euclidean space

Unknown 2D Environments

Target Target Target

Target Target Target

Robot

Table of Contents

o Introduction

o Analysis of Path Lengths

o Any-Angle Search Methods

o Known 2D Environments

o Known 3D Environments

o Unknown 2D Environments (1 slide only)

o Conclusion

Theta*

not covered in this talk

Phi*
Incremental Path Planning

Theta*
Path 2

Angle Propagation Theta*
O(1) Vertex Expansions

Lazy Theta*
Lazy Evaluation

Lazy Theta*-R
Shorter Paths

Lazy Theta*-P
Better Properties

Theta*-T
Traversal Costs

Theta* Optimizations

Branching Factors
Key Points

Path 3

Weighted Lazy Theta*
Optimized

Other Any-Angle Search Methods

any-angle search

methods

Accelerated A*

figure is notional
extensive experimental comparisons have not been performed yet

• There are any-angle search methods for several trade
offs between computation time and path length

Block A*

• Block A*

[Yap et al. (2011)]
– partitions a square grid into

blocks of equal size

– uses an A* search that expands
blocks rather than cells

– pre-computes (edge-
constrained or any-angle)
paths within each block to
speed up the A* search

figure from the cited paper

Accelerated A*

• Accelerated A*
[Sislak et al. (2009)]

– Uses an adaptive step size to
determine the neighbors of a
vertex

– Considers more parents than
Theta*, namely all expanded
vertices (using a sufficiently
large ellipse to prune
unpromising expanded
vertices)

 figures from the cited paper

adaptive step size

ellipse

Additional Information

• Theta* Dissertation
– A. Nash. Any-Angle Path Planning. Dissertation. Computer Science

Department, University of Southern California, 2012.
(can be retrieved from idm-lab.org soon)

Additional Information

• Theta* Publications
– K. Daniel, A. Nash, S. Koenig and A. Felner. Theta*: Any-Angle Path

Planning on Grids. Journal of Artificial Intelligence Research, 39, 533-
579, 2010.

– A. Nash, S. Koenig and C. Tovey. Lazy Theta*: Any-Angle Path Planning
and Path Length Analysis in 3D. Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI), 2010.

– A. Nash, S. Koenig and M. Likhachev. Incremental Phi*: Incremental
Any-Angle Path Planning on Grids. Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), 1824-1830, 2009.

– S. Koenig, K. Daniel and A. Nash. A Project on Any-Angle Path Planning
for Computer Games for ‘Introduction to Artificial Intelligence’ Classes.
Technical Report, Department of Computer Science. University of
Southern California, Los Angeles (California), 2008.

– A. Nash, K. Daniel, S. Koenig and A. Felner. Theta*: Any-Angle Path
Planning on Grids. Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), 1177-1183, 2007.

Additional Information

• Field D* and 3D Field D* Publications
– J. Carsten, A. Rankin, D. Ferguson and A. Stentz: Global Planning on the

Mars Exploration Rovers: Software Integration and Surface Testing.
Journal of Field Robotics, 26, 337-357, 2009.

– J. Carsten, D. Ferguson and A. Stentz. 3D Field D*: Improved Path
Planning and Replanning in Three Dimensions. Proceedings of the
International Conference on Intelligent Robots and Systems (IROS),
3381-3386, 2006.

– D. Ferguson and A. Stentz. Using Interpolation to Improve Path
Planning: The Field D* Algorithm. Journal of Field Robotics, 23(2), 79-
101, 2006.

– A more general closed form linear interpolation equation that can be
used on triangular meshes was introduced in L. Sapronov and A.
Lacaze: Path Planning for Robotic Vehicles using Generalized Field D*.
Proceedings of the SPIE, 6962, 2010.

Additional Information

• Block A* Publications
– P. Yap, N. Burch, R. Holte and J. Schaeffer: Block A*: Database-Driven

Search with Applications in Any-Angle Path Planning. Proceedings of
the AAAI Conference on Artificial Intelligence (AAAI), 2011.

– P. Yap, N. Burch, R. Holte and J. Schaeffer: Any-Angle Path Planning for
Computer Games. Proceedings of the Conference on Artificial
Intelligence and Interactive Digital Entertainment (AIIDE), 2011.

• Accelerated A* Publications
– D. Sislak, P. Volf and M. Pechoucek: Accelerated A* Trajectory

Planning: Grid-Based Path Planning Comparison. Proceedings of the
ICAPS 2009 Workshop on Planning and Plan Execution for Real-World
Systems, 2009.

– D. Sislak, P. Volf and M. Pechoucek: Accelerated A* Path Planning.
Proceedings of the International Joint Conference on Autonomous
Agents and Multiagent Systems, 2009.

Additional Information

• Web Pages
– http://idm-lab.org/project-o.html

(lots of information, including a class project)

– http://aigamedev.com/open/tutorials/theta-star-any-angle-paths/
(tutorial)

• People
– Alex Nash (anash@usc.edu / alexwnash@gmail.com)

– Sven Koenig (skoenig@usc.edu)

http://idm-lab.org/project-o.html
http://idm-lab.org/project-o.html
http://idm-lab.org/project-o.html
http://idm-lab.org/project-o.html
http://idm-lab.org/project-o.html
http://aigamedev.com/open/tutorials/theta-star-any-angle-paths/
http://aigamedev.com/open/tutorials/theta-star-any-angle-paths/
http://aigamedev.com/open/tutorials/theta-star-any-angle-paths/
http://aigamedev.com/open/tutorials/theta-star-any-angle-paths/
http://aigamedev.com/open/tutorials/theta-star-any-angle-paths/
http://aigamedev.com/open/tutorials/theta-star-any-angle-paths/
http://aigamedev.com/open/tutorials/theta-star-any-angle-paths/
http://aigamedev.com/open/tutorials/theta-star-any-angle-paths/
http://aigamedev.com/open/tutorials/theta-star-any-angle-paths/
mailto:anash@usc.edu
mailto:alexwnash@gmail.com
mailto:skoenig@usc.edu

Acknowledgements

• Ideas and Technical Comments
– Kenny Daniel

– Ariel Felner

– Maxim Likhachev

– Xiaoxun Sun

– Craig Tovey

– Peter Yap

– William Yeoh

– Xiaoming Zheng

Acknowledgements

• Research Support
– NSF (in part while serving at NSF)

– ARO under grant number W911NF-08-1-0468

– ONR under grant number N00014-09-1-1031

– Northrop Grumman via a fellowship to Alex Nash

– Nathan Sturtevant by providing game maps at movingai.com

• The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or
implied, of the sponsoring organizations, agencies, companies or the U.S. government.

