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Introduction 

• Edge-constrained search methods (such as A*) 

 

– Efficient 

– Simple 

– Generic 

 

– Long and unrealistic looking paths  
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Analysis of Path Lengths 

• How much longer can the paths found by traditional 
edge-constrained search methods (= the shortest 
paths formed by grid edges) be than the shortest 
paths in the environment (= the shortest “any-angle” 
paths = the shortest paths)? 
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Analysis of Path Lengths 

• Blocked cells do not matter 

 



Analysis of Path Lengths 

• Part 1: Show that the shortest path formed by grid 
edges can traverse only grid cells traversed by the 
shortest path (= blocked cells do not matter) 

• Part 2: Determine the worst-case ratio of the length of 
the shortest path formed by grid edges and the shortest 
path 

– Optimization problem with Lagrange multipliers 

– L(x1,…,xn,l) = f(x1,…,xn) + l(g(x1,…,xn)-c) 

– Minimize f(x1,…,xn) subject to g(x1,…,xn) = c 

– f(x1,…,xn) = length of the shortest path 

– g(x1,…,xn) = length of the shortest grid path 

 



Analysis of Path Lengths 

Dimension Regular Grid Neighbors 
% Longer Than  
Shortest Path 

2D 

triangular grid 
3-neighbor 

6-neighbor 

square grid 
4-neighbor 

8-neighbor ≈ 8 

hexagonal grid 
6-neighbor 

12-neighbor 

3D cubic grid 
6-neighbor 

26-neighbor 



Analysis of Path Lengths 

• Only three types of regular (equilateral and 
equiangular) polygons can be used to tessellate 2D 
environments 

– Triangles  

– Squares 

– Hexagons 



Analysis of Path Lengths 

3-Neighbor Triangular Grid 4-Neighbor Square Grid 6-Neighbor Hexagonal Grid 

Red Arrows 

6-Neighbor Triangular Grid 8-Neighbor Square Grid 12-Neighbor Hexagonal Grid 

Red and Green Arrows 

Civilization V 



Analysis of Path Lengths 

• Only one type of regular polyhedron can be used to 
tessellate 3D environments 

– Cubes 



Analysis of Path Lengths 

6-Neighbor Cubic Grid 

Red Arrows 

26-Neighbor Cubic Grid 

Red and Green Arrows 



Analysis of Path Lengths 

Dimension Regular Grid Neighbors 
% Longer Than  
Shortest Path 

2D 

triangular grid 
3-neighbor ≈ 100 

6-neighbor ≈ 15 

square grid 
4-neighbor ≈ 41 

8-neighbor ≈ 8 

hexagonal grid 
6-neighbor ≈ 15 

12-neighbor ≈ 4 

3D cubic grid 
6-neighbor ≈ 73 

26-neighbor ≈ 13 
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Any-Angle Search 

• Two conflicting criteria 
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A* on Grid Graphs 

• A* [Hart et al. (1968)] on grid graphs 

 
 

 

 

 

 

• A* assigns two values to every vertex s 
– g(s): the length of the shortest path from the start vertex to s found so far 

– parent(s): the parent pointer used to extract the path after termination 

– Following the parents from s to the start vertex results in a path of length g(s) 
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A* on Grid Graphs 

• A* on grid graphs 
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• A* on grid graphs 
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• A* on grid graphs 
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A* on Grid Graphs 

• A* on grid graphs 

 

Goal

Start
A
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C

1 2 3 4 5

Arrows point to the parent of a vertex

Vertex currently being expanded

Parent pointer 

from now on, we will show only the cells 

Known 2D Environments 



A* on Grid Graphs 

• A* on grid graphs 

 

 

 
 

 

 

 

 

 

 

• Long and unrealistic looking path 

• Fast 

 

Goal

Start

Known 2D Environments 



A* on Visibility Graphs 
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A* on Visibility Graphs 

• A* on Visibility Graphs [Lozano-Perez et al. (1979)] 

 

 

 

 

 
 

 

 

 

 

• Shortest path 

• Slow due to many edges and line-of-sight checks 

Goal

Start

Known 2D Environments 



Any-Angle Search 
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Any-Angle Search 

• Any-angle search methods 

– Perform an A* search 

– Propagate information along grid edges  
(= small computation time) 

– Do not constrain the paths to be formed by grid edges 
(= short paths) 
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Any-Angle Search 

• Evaluation in  
known 2D environments,  
known 3D environments, and  
unknown 2D environments 

– Property 1 (Efficiency) 
Good tradeoff between computation times and path lengths 

– Property 2 (Simplicity) 
Simple to understand and implement 

– Property 3 (Generality) 
Works on every graph embedded in 2D or 3D Euclidean space 
(= Euclidean graph), that is, all discretization techniques 

Known 2D Environments 



Any-Angle Search 

• Different discretization techniques 

Start

Goal

Regular Grids 
 
Dawn of War 1 and 2 
Civilization V 
Company of Heroes 
[Champandard (2010)] 

Navigation Meshes 
 
Halo 2 
Counter-Strike: 
Source and Metroid Prime 
[Tozour (2008)] 

Circle Based Waypoint Graphs 
 
MechWarrior 4: Vengeance 

Known 2D Environments 



A* with Post Smoothing 

figure is notional 

Path Length

C
o
m

p
u

ta
ti

o
n

 T
im

e
A* on visibility graphs

A* on grid graphs

Any-Angle Find-Path

Algorithms

A* with Post Smoothing

Field D*

any-angle search 

methods 

Known 2D Environments 



A* with Post Smoothing 

• A* with Post Smoothing [Thorpe (1984), Botea et al. 
(2004), Millington (2009)] 
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A* with Post Smoothing 

• A* with Post Smoothing [Thorpe (1984), Botea et al. 
(2004), Millington (2009)] 
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• A* with Post Smoothing 
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A* with Post Smoothing 

• A* with Post Smoothing 

 

 

 

 

 
 

 

 

 

 

 

• Postprocessing often leaves path topology unchanged 

• Better to interleave the search and the optimization 

 

Known 2D Environments 



Field D* 
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Field D* 

• Field D* (a version of D* Lite) [Ferguson and Stentz, 
2005]  

Start

Goal 

Known 2D Environments 
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Field D* 

• Field D* (a version of D* Lite) 

 

• Field D* can easily take traversal costs into account 

 

• Field D* is restricted to square grids 

• Sophisticated path extraction is necessary 

• Paths have lots of small heading changes in open space 
(but could be optimized further) 

Field D* path 

Shortest path 

Known 2D Environments 

Start 

Goal 



Theta* 
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Theta* 

• A* 
– The parent of a vertex has to be its neighbor in the graph. 

–  When expanding vertex s and generating its neighbor s’,  
A* considers 
• Making s the parent of s’ (Path 1) 

• Theta* 
– The parent of a vertex does not need to be its neighbor 

– When expanding vertex s and generating its neighbor s’,  
Theta* considers 
• Making s the parent of s’ (Path 1) 

• Making the parent of s the parent of s’ (Path 2) 

• Note: Path 2 is no longer than Path 1 iff it is unblocked. 
The line-of-sight check can be performed with fast  
line-drawing algorithms from computer graphics. 

 

Known 2D Environments 

s’ 

s 

parent of s 



Theta* 

• Theta* [Nash, Daniel, Koenig and Felner, 2007] 
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Theta* 

• Theta* 
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Theta* 

• Theta* 

Start

Goal
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Path Length 

• Theta* is not guaranteed to find shortest paths since 
the parent of a vertex can only be a neighbor of the 
vertex or the parent of a neighbor 

 

 

 

 

 

 

• The length of the path is still within 0.2% of optimal 

 

Known 2D Environments 

Theta* path 
Shortest path 



Path Lengths 

Field D* A* with Post Smoothing Theta* 

• Goal vertices to which a shortest path was found 
from the center vertex 

Known 2D Environments 



Path Length 

A* on grid graphs Theta* 

Known 2D Environments 

We allow paths to 
pass through 
diagonally 
touching blocked 
cells here but this  
an be changed  
easily in the code 



Experimental Setups 

• For A* on grid graphs, we use the octile heuristics as 
h-values. For A* on visibility graphs, A* with Post 
Smoothing (= helps smoothing), Field D*, Theta* and 
Lazy Theta*, we use the straight-line distances as h-
values. 

• For A* on grid graphs, A* on visibility graphs, A* with 
Post Smoothing and Field D*, we break ties among 
vertices with the same f-values in favor of vertices 
with smaller g-values. For Theta* and Lazy Theta*, 
we break ties among vertices with the same f-values 
in favor of vertices with smaller g-values. 

 

Known 2D Environments 



Experimental Setups 

• We place the start vertex in the bottom left corner, 
the goal vertex randomly into the rightmost column 
of cells, and a one unit border of unblocked grid cells 
around the grid to ensure a path exists.  

• Other experimental setups have been used as well, 
which is important since the setup used here 
constrains the search space to the left and bottom, 
[Yap (2011), personal communication]. One could, 
for example, use randomly selected start and goal 
vertices on game maps with some randomly blocked 
cells added that simulate structures built by players 
[Yap et al. (2011)]. 
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Efficiency 

• 100 x 100 grids with 20% randomly blocked cells 

 

 

 

 

 

 

 

 

 

 

A* on grid graphs 
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Known 2D Environments 

the computation times and their relationship depend on implementation details  

(such as how the priority queue and line-of-sight checks are implemented) 



Simplicity 

A* Theta* 

Known 2D Environments 



Simplicity 

• A class project on any-angle search with Theta* was 
developed as part of the “Computer Games in the 
Classroom” initiative, see idm-lab.org/gameai 

• Used at  

– University of Nevada, Reno 

– University of Southern California 

• Online tutorial 

– AiGameDev.com 

 

Known 2D Environments 



Any-Angle Search 

Property 1: Efficiency 

Any-Angle Search Method Property 2: Simplicity Property 3: Generality 
(Any Euclidean Graph) 

A* with Post Smoothing Yes Yes 

Field D* No No 

Theta* Yes Yes 

A* on grid graphs 

A* with Post Smoothing 
Field D* 

A* on visibility graphs 
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path length / path length of shortest path 

Known 2D Environments 
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A* on Grid Graphs 

• Paths get longer and more unrealistic looking 

Dimension Regular Grid Neighbors 
% Longer Than  
Shortest Path 

2D 

triangular grid 
3-neighbor ≈ 100 

6-neighbor ≈ 15 

square grid 
4-neighbor ≈ 41 

8-neighbor ≈ 8 

hexagonal grid 
6-neighbor ≈ 15 

12-neighbor ≈ 4 

3D cubic grid 
6-neighbor ≈ 73 

26-neighbor ≈ 13 

Known 3D Environments 



A* on Grid Graphs 

• Paths get longer and more unrealistic looking 

Known 3D Environments 



A* on Visibility Graphs 

• Paths are no longer optimal 

Start

Goal

Known 3D Environments 



Field D* 

• There is a 3D version of Field D* [Carsten, Ferguson 
and Stentz (2006)], which is more complex than the 
2D version, specific to cubic grids, and cannot solve 
the optimization in closed form 

figures from the cited paper 

Known 3D Environments 



Theta* 

• Theta* applies to 3D environments without any 
modifications but the number of line-of-sight checks 
increases since there is one line-of-sight check for 
each unexpanded visible neighbor (that is, 
potentially 26 instead of 8 neighbors) 

 

3+7+7=17 line-of-sight checks 
 

1 2 43

B

C

A

sstart

sgoal

7+15+15=37 line-of-sight checks 

2
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4
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1
Upper (U)

Lower (L)

Sgoal

Sstart

Known 3D Environments 



Lazy Theta* 

• Lazy Theta* [Nash, Koenig and Tovey (2010)] 
performs one line-of-sight check only for each 
expanded vertex rather than each generated vertex 

• Lazy Theta* works in 2D and 3D environments 

Known 3D Environments 



Lazy Theta* 

• Theta* 
– When expanding vertex s and generating its neighbor s’,  

Theta* considers 
• Making s the parent of s’ (Path 1) 

• Making the parent of s the parent of s’ (Path 2) 

• Lazy Theta* 
– When expanding vertex s and generating its neighbor s’, 

Lazy Theta* makes the parent of s the parent of s’ (Path 2) 
without a line-of-sight check 

– When expanding vertex s’ and s’ does not have line-of-
sight to its parent, then Lazy Theta* makes the best 
neighbor of s’ (= the one that minimizes the g-value of s’) 
the parent of s’ (Path 1). 

– [Such a neighbor exists since s is one of them.] 

Known 3D Environments 



Lazy Theta* 

• Lazy Theta* [Nash, Koenig and Tovey (2010)]  

Goal

Start
A

B

C

1 2 3 4 5

Arrows point to the parent of a vertex

Vertex currently being expanded

Parent pointer 

Path 1 Path 2

Known 3D Environments 



Lazy Theta* 

• Lazy Theta* [Nash, Koenig and Tovey (2010)]  
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• Lazy Theta* [Nash, Koenig and Tovey (2010)]  
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• Lazy Theta* [Nash, Koenig and Tovey (2010)]  
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Lazy Theta* 

• Lazy Theta* [Nash, Koenig and Tovey (2010)]  
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Lazy Theta* 

• Lazy Theta* [Nash, Koenig and Tovey (2010)]  
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Lazy Theta* 

• Lazy Theta* [Nash, Koenig and Tovey (2010)] 

 

 

 

 
 

 

 

 

 

 

• Theta* performed 19 line-of-sight checks 

• Lazy Theta* performs 4 line-of-sight checks 

 

Start

Goal
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Path Length 

• 100 x 100 x 100 grids with randomly blocked cells 

 
 

 

 

 

 
 

 

 

 

• Percentage by how much the path length of A* on grid 
graphs is worse than the one of Theta* (left) and Lazy 
Theta* (right) 
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Line-of-Sight Checks 

• 100 x 100 x 100 grids with randomly blocked cells 

 
 

 

 

 

 
 

 

 

 

• Ratio of line-of-sight checks of Theta* and line-of-sight 
checks of Lazy Theta* 
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Computation Time 

• 100 x 100 x 100 grids with randomly blocked cells 

 
 

 

 

 

 
 

 

 

 

• Ratio of computation time of Theta* and computation 
time of Lazy Theta* 
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Weighted Lazy Theta* 

• Lazy Theta* with A*: f(s) = g(s) + h(s) 

Start Goal 
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Weighted Lazy Theta* 

• Lazy Theta* with A*: f(s) = g(s) + e∙h(s) with e > 1 

• Reduces vertex expansions and thus line-of-sight checks 

• Both reductions reduce the computation time 

 

 
Start Goal 

Known 3D Environments 



Weighted Lazy Theta* 

• Theta* and Lazy Theta* often do too much work 

 

 

 

 

 

 

• It is sufficient if there is a single path along which the 
parent is propagated (when considering Path 2) 
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Efficiency 

• Weighted Lazy Theta* expands 15 times fewer 
vertices but finds a path that is only 0.03% longer 
(which depends on how shallow the local minima are) 

Lazy Theta* 
 

Weighted Lazy Theta* with e =1.3 
 

Known 3D Environments 



Efficiency 

• 100 x 100 x 100 grids with 20% randomly blocked cells 
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Simplicity 

A* Theta* Lazy Theta* 
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Any-Angle Search 

Property 1: Efficiency 

Any-Angle Search Method Property 2: Simplicity Property 3: Generality 
(Any Euclidean Graph) 

A* with Post Smoothing Yes Yes 

3D Field D* No No 

Theta* Yes Yes 

(Weighted) Lazy Theta* Yes Yes 
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Replanning 

• Field D* and Theta* can both use incremental search 
to replan faster than from scratch (Field D* was 
designed with this in mind) but neither of them works 
for every graph embedded in 2D Euclidean space 

Unknown 2D Environments 

Target Target Target 

Target Target Target 

Robot 
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Theta* 

not covered in this talk 

Phi* 
Incremental Path Planning 

Theta* 
Path 2 

Angle Propagation Theta* 
O(1) Vertex Expansions 

Lazy Theta* 
Lazy Evaluation 

Lazy Theta*-R 
Shorter Paths 

Lazy Theta*-P 
Better Properties 

Theta*-T 
Traversal Costs 

 
Theta* Optimizations 

Branching Factors 
Key Points 

Path 3 
 

Weighted Lazy Theta* 
Optimized 



Other Any-Angle Search Methods 

any-angle search 

methods 

Accelerated A* 

figure is notional 
extensive experimental comparisons have not been performed yet  

• There are any-angle search methods for several trade 
offs between computation time and path length 



Block A* 

• Block A*  

[Yap et al. (2011)]  
– partitions a square grid into 

blocks of equal size 

– uses an A* search that expands 
blocks rather than cells  

– pre-computes (edge-
constrained or any-angle) 
paths within each block to 
speed up the A* search 

 

figure from the cited paper 



Accelerated A* 

• Accelerated A*  
[Sislak et al. (2009)]  

– Uses an adaptive step size to 
determine the neighbors of a 
vertex 

– Considers more parents than 
Theta*, namely all expanded 
vertices (using a sufficiently 
large ellipse to prune 
unpromising expanded 
vertices) 

 

 figures from the cited paper 

adaptive step size 

ellipse 



Additional Information 

• Theta* Dissertation 
– A. Nash. Any-Angle Path Planning. Dissertation. Computer Science 

Department, University of Southern California, 2012. 
(can be retrieved from idm-lab.org soon) 

 



Additional Information 

• Theta* Publications 
– K. Daniel, A. Nash, S. Koenig and A. Felner. Theta*: Any-Angle Path 

Planning on Grids. Journal of Artificial Intelligence Research, 39, 533-
579, 2010. 

– A. Nash, S. Koenig and C. Tovey. Lazy Theta*: Any-Angle Path Planning 
and Path Length Analysis in 3D. Proceedings of the AAAI Conference on 
Artificial Intelligence (AAAI), 2010.  

– A. Nash, S. Koenig and M. Likhachev. Incremental Phi*: Incremental 
Any-Angle Path Planning on Grids. Proceedings of the International 
Joint Conference on Artificial Intelligence (IJCAI), 1824-1830, 2009. 

– S. Koenig, K. Daniel and A. Nash. A Project on Any-Angle Path Planning 
for Computer Games for ‘Introduction to Artificial Intelligence’ Classes. 
Technical Report, Department of Computer Science. University of 
Southern California, Los Angeles (California), 2008. 

– A. Nash, K. Daniel, S. Koenig and A. Felner. Theta*: Any-Angle Path 
Planning on Grids. Proceedings of the AAAI Conference on Artificial 
Intelligence (AAAI), 1177-1183, 2007.  

 
 



Additional Information 

• Field D* and 3D Field D* Publications 
– J. Carsten, A. Rankin, D. Ferguson and A. Stentz: Global Planning on the 

Mars Exploration Rovers: Software Integration and Surface Testing. 
Journal of Field Robotics, 26, 337-357, 2009. 

– J. Carsten, D. Ferguson and A. Stentz. 3D Field D*: Improved Path 
Planning and Replanning in Three Dimensions. Proceedings of the 
International Conference on Intelligent Robots and Systems (IROS), 
3381-3386, 2006. 

– D. Ferguson and A. Stentz. Using Interpolation to Improve Path 
Planning: The Field D* Algorithm. Journal of Field Robotics, 23(2), 79-
101, 2006. 

– A more general closed form linear interpolation equation that can be 
used on triangular meshes was introduced in L. Sapronov and A. 
Lacaze: Path Planning for Robotic Vehicles using Generalized Field D*. 
Proceedings of the SPIE, 6962, 2010. 



Additional Information 

• Block A* Publications 
– P. Yap, N. Burch, R. Holte and J. Schaeffer: Block A*: Database-Driven 

Search with Applications in Any-Angle Path Planning. Proceedings of 
the AAAI Conference on Artificial Intelligence (AAAI), 2011. 

– P. Yap, N. Burch, R. Holte and J. Schaeffer: Any-Angle Path Planning for 
Computer Games. Proceedings of the Conference on Artificial 
Intelligence and Interactive Digital Entertainment (AIIDE), 2011. 

• Accelerated A* Publications 
– D. Sislak, P. Volf and M. Pechoucek: Accelerated A* Trajectory 

Planning: Grid-Based Path Planning Comparison. Proceedings of the 
ICAPS 2009 Workshop on Planning and Plan Execution for Real-World 
Systems, 2009. 

– D. Sislak, P. Volf and M. Pechoucek: Accelerated A* Path Planning. 
Proceedings of the International Joint Conference on Autonomous 
Agents and Multiagent Systems, 2009. 



Additional Information 

• Web Pages 
– http://idm-lab.org/project-o.html   

(lots of information, including a class project) 

– http://aigamedev.com/open/tutorials/theta-star-any-angle-paths/ 
(tutorial) 

• People 
– Alex Nash (anash@usc.edu / alexwnash@gmail.com) 

– Sven Koenig (skoenig@usc.edu) 
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