
Tutorial on Auction-Based Agent Coordination at AAAI 2006

Abstract 

Teams of agents are more robust and potentially more efficient than single agents. However, coordinating teams of agents so that they can
successfully complete their mission is a challenging task. This tutorial will cover one way of efficiently and effectively coordinating teams of
agents, namely with auctions. Coordination involves the allocation and execution of individual tasks through an efficient (preferably
decentralized) mechanism. The tutorial on "Auction-Based Agent Coordination" covers empirical, algorithmic, and theoretical aspects of
auction-based methods for agent coordination, where agents bid on tasks and the tasks are then allocated to the agents by methods that resemble
winner determination methods in auctions. Auction-based methods balance the trade-off between purely centralized coordination methods which
require a central controller and purely decentralized coordination methods without any communication between agents, both in terms of
communication efficiency, computation efficiency, and the quality of the solution.

The tutorial will use the coordination of a team of mobile robots as a running example. Robot teams are increasingly becoming a popular
alternative to single robots for a variety of difficult tasks, such as planetary exploration or planetary base assembly. The tutorial covers
auction-based agent coordination using examples of multi-robot routing tasks, a class of problems where a team of mobile robots must visit a
given set of locations (for example, to deliver material at construction sites or acquire rock probes from Martian rocks) so that their routes are
optimized based on certain criteria, for example, minimize the consumed energy, completion time, or average latency. Examples of multi-robot
routing tasks include search-and-rescue in areas hit by disasters, surveillance, placement of sensors, material delivery, and localized
measurements. We also discuss agent-coordination tasks from domains other than robotics. We give an overview of various auction-based
methods for agent coordination, discuss their advantages and disadvantages and compare them to each other and other coordination methods. The
tutorial also covers recent theoretical advances (including constant-factor performance guarantees) as well as experimental results and
implementation issues.

Intended Audience 

The tutorial makes no assumptions about the background of the audience, other than a very general understanding of algorithms, and should be of
interest to all researchers who are interested in robotics, autonomous agents and multi-agent systems. Thus, the tutorial is appropriate
undergraduate and graduate students as well as researchers and practitioners who are interested in learning more about how to coordinate teams of
agents using auction-based mechanisms.

Additional Information 

For pointers to lots of additional material visit the tutorial webpage:

idm-lab.org/auction-tutorial.html (scroll to the bottom)
metropolis.cta.ri.cmu.edu/markets/wiki

For questions or requests for additional information, please send email to Sven Koenig (skoenig@usc.edu).

Speakers

The speakers will be Bernardine Dias, Sven Koenig, Michail Lagoudakis, Robert Zlot, Nidhi Kalra, and Gil Jones. The presented material is
provided by the researchers listed below and includes material by their co-workers A. Stentz, D. Kempe, A. Meyerson, V. Markakis, A. Kleywegt
and C. Tovey. Special thanks go to Anthony Stentz, a research professor with the Robotics Institute of Carnegie Mellon University and the
associate director of the National Robotics Engineering Consortium at Carnegie Mellon University, and Craig Tovey, a professor in Industrial and
System Engineering at Georgia Institute of Technology.

Bernardine Dias (Carnegie Mellon University, USA) 
www.ri.cmu.edu/people/dias_m.html 

M. Bernardine Dias is research faculty at the Robotics Institute at Carnegie Mellon University. Her research interests are in
technology for developing communities, multirobot coordination, space robotics, and diversity in computer science. Her
dissertation developed the TraderBots framework for market-based multirobot coordination and she has published
extensively on a variety of topics in robotics. 

E. Gil Jones (Carnegie Mellon University, USA) 
www.ri.cmu.edu/people/jones_edward.html 

E. Gil Jones is a Ph.D. student at the Robotics Institute at Carnegie Mellon University. His primary interest is market-based
multi-robot coordination. He received his BA in Computer Science from Swarthmore College in 2001, and spent two years
as a software engineer at Bluefin Robotics in Cambridge, Mass. 



Nidhi R. Kalra (Carnegie Mellon University, USA) 
www.cs.cmu.edu/~nidhi/ 

Nidhi R. Kalra is a Ph.D. student at the Robotics Institute at Carnegie Mellon University. She is interested in developing
coordination strategies for robots working on complex real-world problems. To this end, she is developing the market-based
Hoplites framework for tight multirobot coordination. 

Pinar Keskinocak (Georgia Institute of Technology, USA) 
www.isye.gatech.edu/people/faculty/Pinar_Keskinocak/home.html 

Pinar Keskinocak is an associate professor at Georgia Institute of Technology. She is interested in electronic commerce,
routing and scheduling applications, production planning, multi-criteria decision making, approximation algorithms, and
their application to a variety of problems. Pinar has published extensively in operation research. 

Sven Koenig (University of Southern California, USA) 
idm-lab.org 

Sven Koenig is an associate professor at the University of Southern California. From 1995 to 1997, Sven demonstrated that
it is possible to combine ideas from different decision-making disciplines by developing a robust mobile robot architecture
based on POMDPs from operations research. Since then, he has published over 100 papers in robotics and artificial
intelligence, continuing his interdisciplinary research. 

Michail G. Lagoudakis (Technical University of Crete, Greece) 
www.intelligence.tuc.gr/~lagoudakis/ 

Michail G. Lagoudakis is an assistant professor at the Technical University of Crete. He is interested in machine learning
(reinforcement learning), decision making under uncertainty, numeric artificial intelligence, as well as robots and other
complex systems. He has published extensively in artificial intelligence and robotics. 

Robert Zlot (Carnegie Mellon University, USA) 
www.cs.cmu.edu/~robz/ 

Robert Zlot is a PhD student at the Robotics Institute at Carnegie Mellon University, where he earned a Master’s degree in
Robotics in 2002. Robert’s main interests are in multirobot coordination and space robotics. His current research focuses on
market-based algorithms for tasks that exhibit complex structure. 
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Tutorial Guidelines

There are no prerequisites.
We proceed in very small steps.
We want everyone to understand everything.
Please ask if you have questions.

3

Structure of the Tutorial

Overview
Auctions in Economics 
Theory of Robot Coordination with Auctions

Auctions and task allocation
Analytical results

Practice of Robot Coordination with Auctions
Implementations and practical issues
Planning for market-based teams
Heterogeneous domains

Conclusion
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A Typical Coordination Task:
Multi-Robot Routing

Agents=Robots, Tasks=Targets
A team of robots has to visit given targets 
spread over some known or unknown terrain. 
Each target must be visited by one robot.
Examples: 

Planetary surface exploration
Facility surveillance
Search and rescue

5

A Typical Coordination Task:
Multi-Robot Routing Assumptions

The robots are identical.
The robots know their own location.
The robots know the target locations.
The robots might not know where obstacles are.
The robots observe obstacles in their vicinity.
The robots can navigate without errors.
The path costs satisfy the triangle inequality.
The robots can communicate with each other.

6

A Typical Coordination Task:
Multi-Robot Routing
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A Typical Coordination Task:
Multi-Robot Routing

8

A Typical Coordination Task:
Multi-Robot Routing

(a possible solution, not necessarily the optimal one)
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A Typical Coordination Task:
MiniSum Team Objective
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A Typical Coordination Task:
Multi-Robot Routing

Multi-robot routing is related to …
… Vehicle/Location Routing Problems
… Traveling Salesman Problems (TSPs)
… Traveling Repairman Problems

except that the robots …
… do not necessarily start at the same location
… are not required to return to their start location
… do not have capacity constraints

11

A Typical Coordination Task:
Multi-Robot Routing

USC’s Player/Stage robot simulator
12

Auctions for Robot Coordination:
Overview 

Agent coordination

agents
tasks
cost

Auctions

bidders
items
currency
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Auctions for Robot Coordination:
Advantages

Auctions are an effective and practical approach to 
agent-coordination.
Auctions have a small runtime.

Auctions are communication efficient:
information is compressed into bids

Auctions are computation efficient: 
bids are calculated in parallel

Auctions result in a small team cost.
Auctions can be used if the terrain or the 
knowledge of the robots about the terrain 
changes.

14

Auctions for Robot Coordination:
Known Terrain

15

Auctions for Robot Coordination:
Known Terrain

16

Auctions for Robot Coordination:
Unknown Terrain

17

Auctions for Robot Coordination:
Unknown Terrain

18

Auctions for Robot Coordination:
Overview of the Tutorial
There are some experimental results in the literature on 
agent coordination with auctions. Some publications 
report good team performance, others do not.
We want to lay a firm theoretical foundation for agent 
coordination with auctions. Auction theory from 
economics is insufficient for such a foundation because 
we are dealing with cooperative (not: competitive) 
situations.
We want to show experimentally that auctions can be 
successfully applied to a variety of agent-coordination 
problems.
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Auctions for Robot Coordination:
Disciplines

artificial intelligence
(agents) robotics

economics

20

Auctions for Robot Coordination:
Who are we?

We are researchers from two different groups 
with active research on auctions who have 
never published together.
One of the groups is at CMU, with 
research(ers)  centered on robotics.
The other group is distributed across different 
universities, with research(ers) in artificial 
intelligence, robotics, economics and 
theoretical computer science.

21

Structure of the Tutorial

Overview
Auctions in Economics
Theory of Robot Coordination with Auctions

Auctions and task allocation
Analytical results

Practice of Robot Coordination with Auctions
Implementations and practical issues
Planning for market-based teams
Heterogeneous domains

Conclusion
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Structure of the Tutorial

We now give an overview of the results of 
research on auctions in economics.
We then explain why we can build on that 
research but need additional results to apply 
auctions to agent coordination.

23

Going once, …
going twice, ...

What is an auction?

Definition [McAfee & McMillan, JEL 1987]: 
a market institution with an explicit set of rules 
determining resource allocation and prices on the basis 
of bids from the market participants.

Examples:

24

Why are we interested in auctions?

Auctions have been widely used for many years...
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Why are we interested in auctions?

... and many commodities
Antiques and art
Livestock and other agricultural produce
Real estate
Mineral and timber rights
Radio frequencies
Diamonds
Corporate stock
Treasury bonds
Used automobiles
Wives and slaves
Body parts and human tissue!!

26

Pricing models

Posted prices
Static
Dynamic

Change dynamically over time
Customized pricing

Price discovery mechanisms
Negotiations
Auctions

27

Why auctions?

For object(s) of unknown value
Mechanized

reduces the complexity of negotiations
ideal for computer implementation

Creates a sense of “fairness” in allocation when 
demand exceeds supply

28

Auction formats

Seller

Buyers

Sellers

RFP

Buyer

Auction Reverse
Auction

Double Auction
Exchange

Sellers

Buyers

59

Auction design
AUCTION FORMAT
Open vs. closed
Ascending vs. descending
Simultaneous vs. sequential
Single vs. multi-round

BIDDING RULES
Price-quantity schedules
Bid components
Bundle, Combinatorial
Activity rules

CLEARING
Winner determination 
or matching
Who pays and how much?
Clear timing

PARTICIPATION RULES
Participant requirements
Preferred bidding status
Fees

INFORMATION
Goods/services
Bids
Participants
Transaction history

60

Bidding strategies

At which auctions to participate?
Participation cost, auction duration, number of bidders

When to bid?
How much to bid? (price and/or quantity)

Effects of synergies or economies of scale
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Important issues on designing auctions 
with human participants 
“Efficient” allocation:
the bidders who values an item most gets it

Incentives for truthful bidding
Maximize the auctioneer’s revenue
Things to avoid:

Collusion
If some bidders collude, they might do better by lying. 
Collusion among buyers, sellers, and/or auctioneer.

Hide-in-the-grass strategy
Predatory bidding
Jump bidding
Shilling
Bid shielding 
Winner’s curse

62

Differences of auctions with robot 
participants
Robots don’t game the system, e.g. by bidding 
untruthfully. They bid as we ask them to!
Robots do not intentionally “hide” information and 
thus do not have privacy concerns.
Robots do not have inherent utilities 
(preferences). We define their utilities so that the 
result of the auction serves a common “team”
objective.
Robots don’t care if the outcome is not “fair.”

63

Structure of the Tutorial

Overview
Auctions in Economics
Theory of Robot Coordination with Auctions

Auctions and task allocation
Analytical results

Practice of Robot Coordination with Auctions
Implementations and practical issues
Planning for market-based teams
Heterogeneous domains

Conclusion
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Outline

Common auction mechanisms used for 
agent coordination
Protocols and practical issues

65

Types of Auction Mechanisms

Mechanism for allocating items (= goods, tasks, 
resources, …) for agent coordination

Single seller, multiple buyers
Seller wants to acquire the maximum amount of 
revenue from the bidders for items (e.g., contract 
tasks for the minimum cost)

Open-cry vs. sealed bid
Reserve prices

66

Types of Auction Mechanisms

Common auction types for agent coordination
Single-item auctions
Multi-item auctions
Combinatorial auctions

We will use the example of tasks for during the 
descriptions of the protocols
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Single-Item Auctions
Auctioneer is selling a single task
First-price auction

Protocol: Each bidder submits a bid containing a single 
number representing its cost for the task. The bidder with 
the lowest bid wins and is awarded the task, agreeing to 
perform it for the price of its bid.

Vickrey (second-price) auction
Protocol: Same as above, but bidder with the lowest bid 
agrees to perform task for the price of the second-lowest 
bidder’s bid.
Incentive compatible.

Which mechanism?
Doesn’t matter if robots bid truthfully

68

Multi-Item Auctions

Protocol: Auctioneer offers a set of t tasks. Each bidder may 
submit bids on some/all of the tasks. The auctioneer awards 
one or more tasks to bidders, with at most one task awarded to 
each bidder.

No multiple awards: bids do not consider cost 
dependencies.

Protocol may specify a fixed number of awards, e.g.:
1) m tasks awarded, 1 ≤ m ≤ #bidders
2) Every bidder awarded one task (m = #bidders)
3) The one best award  (m = 1)

For 2) the assignment can be done optimally [Gerkey and Matarić 04]

Greedy algorithm common: Award the lowest bidder with 
the associated task, eliminate that bidder and task from 
contention, and repeat until you run out of tasks or bidders.

69

Combinatorial Auctions
Protocol: Auctioneer offers a set of tasks T. Each bidder may submit 
bids on any task bundles (subsets of T), and the auctioneer awards a 
combination of bundles to multiple bidders (at most one bundle 
awarded per bidder).  The awards should maximize the revenue for
the auctioneer.
Exponential number of bundles, 2|T|

Winner determination is NP-hard 
But, fast optimal winner determination algorithms exist that take 
advantage of the sparseness of the bid set [e.g. CABOB, Sandholm 2002]

Number of bundles can be reduced
Auctioneer: only allow certain bundles

Roles [Hunsberger and Grosz 00]

Rings or nested structure [Rothkopf et al. 98]

Bidders: task clustering algorithms [Berhault et al. 03, Dias et al. 02, Nair et al. 02]

Clustering (spanning tree, greedy nearest neighbor)
Limit bundle size
Recursive max graph cuts 70

Auctions for Robot Coordination:
Types of auctions

We now discuss 3 auction types in more detail
Parallel Auctions
Combinatorial Auctions
Sequential Auctions

71

Parallel Auctions:
Procedure

Each robot bids on each target in independent and 
simultaneous auctions.
The robot that bids lowest on a target wins it.
Each robot determines a cost-minimal path to visit all 
targets it has won and follows it.

72

Parallel Auctions:
Example

Each robot bids on a target the minimal path cost it 
needs from its current location to visit the target.
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Parallel Auctions:
Example

86

109

107

90

2121

85

23

27

41

107

109

91 37

Each robot bids on a target the minimal path cost it 
needs from its current location to visit the target.

74

Parallel Auctions:
Example

Bid on A: 86
Bid on B: 91
Bid on C: 23
Bid on D: 37

A

B

C

D
Bid on A: 90
Bid on B: 85
Bid on C: 41
Bid on D: 27

Each robot bids on a target the minimal path cost it 
needs from its current location to visit the target.

75

Parallel Auctions:
Example

A

B

C

D

76

Parallel Auctions:
Example

77

Parallel Auctions:
Example

It often does not make sense to send different robots 
to the same cluster of targets.

78

Parallel Auctions:
Example

Minimal team cost (above) is not achieved.
The team cost resulting from parallel auctions is large 
because they cannot take synergies between targets 
into account.
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Parallel Auctions:
Synergies

80

Parallel Auctions:
Synergies

41 4

81

Parallel Auctions:
Synergies

B C

Bid on A: 5
Bid on B: 4
Bid on C: 4

A

Each robot bids on a target the minimal path cost it 
needs from its current location to visit the target.

82

Parallel Auctions:
Positive Synergy

A B

Smallest path cost to visit A: 5
Smallest path cost to visit B: 4
Smallest path cost to visit A and B: 5

smallest path cost to visit A and B
<

smallest path cost to visit A + smallest path cost to visit B

(example: a cake is worth more than the sum of its ingredients)

83

Parallel Auctions:
Negative Synergy

B C

Smallest path cost to visit B: 4
Smallest path cost to visit C: 4
Smallest path cost to visit B and C:12

smallest path cost to visit B and C
>

smallest path cost to visit B + smallest path cost to visit C

(example: two cars are worth less than the sum of the individual cars) 84

Parallel Auctions:
Positive and Negative Synergies

B C

Bid on A: 5
Bid on B: 4
Bid on C: 4

A
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Parallel Auctions:
Summary

Ease of implementation: simple
Ease of decentralization: simple
Bid generation: cheap
Bid communication: cheap
Auction clearing: cheap
Team performance: poor

no synergies taken into account

86

Ideal Combinatorial Auctions:
Procedure

Each robot bids on all bundles (= subsets) of targets. 
Each robot wins at most one bundle, so that the 
number of targets won by all robots is maximal and, 
with second priority, the sum of the bids of the 
bundles won by robots is as small as possible.
Each robot determines a cost-minimal path to visit all 
targets it has won and follows it.
Example: [Berhault et. al. 2003]

87

Ideal Combinatorial Auctions:
Synergies

B C

Bid on {A}: 5 Bid on {A,B}: 5
Bid on {B}: 4 Bid on {A,C}: 13
Bid on {C}:: 4 Bid on {B,C}: 12

Bid on {A,B,C}: 13

A

Each robot bids on a bundle the minimal path cost it 
needs from its current location to visit all targets that 
the bundle contains. 88

Ideal Combinatorial Auctions:
Example

A

B

C

D

Bid on {A}: 86
Bid on {B}: 91
Bid on {C}: 23
Bid on {D}: 37

Bid on {A,B}: 107
Bid on {A,C}: 130
Bid on {A,D}: 146 
Bid on {B,C}: 132
Bid on {B,D}: 144
Bid on {C,D}: 44

Bid on {A,B,C}: 151
Bid on {A,B,D}: 165
Bid on {A,C,D}: 153
Bid on {B,C,D}: 151

Bid on {A,B,C,D}: 172

Bid on {A}: 90
Bid on {B}: 85
Bid on {C}: 41
Bid on {D}: 27

Bid on {A,B}: 106
Bid on {A,C}: 148
Bid on {A,D}: 13
Bid on {B,C}: 150
Bid on {B,D}: 134
Bid on {C,D}: 48

Bid on {A,B,C}: 169
Bid on {A,B,D}: 155
Bid on {A,C,D}: 155
Bid on {B,C,D}: 157

Bid on {A,B,C,D}: 176

89

Ideal Combinatorial Auctions:
Example

A

B

C

D

90

Ideal Combinatorial Auctions:
Example

The team cost resulting from ideal combinatorial 
auctions is minimal since they take all synergies 
between targets into account, which solves an NP-hard 
problem. The number of bids is exponential in the 
number of targets. Bid generation, bid communication 
and winner determination are expensive.
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Combinatorial Auctions:
Procedure

Each robot bids on some bundles (= sets) of targets. 
Each robot wins at most one bundle, so that the 
number of targets won by all robots is maximal and, 
with second priority, the sum of the bids of the 
bundles won by robots is as small as possible.
Each robot determines a cost-minimal path to visit all 
targets it has won and follows it.
The team cost resulting from combinatorial auctions 
then is small but can be suboptimal. Bid generation, 
bid communication and winner determination are still 
relatively expensive.
Example: [Berhault et. al. 2003]

92

Combinatorial Auctions:
Bidding Strategies

Which bundles to bid on is mostly unexplored in 
economics because good bundle-generation 
strategies are domain dependent. For example, 
one wants to exploit the spatial relationship of 
targets for multi-robot routing tasks.
Good bundle-generation strategies

generate a small number of bundles
generate bundles that cover the solution space
generate profitable bundles
generate bundles efficiently

93

Combinatorial Auctions:
Domain-Independent Bundle Generation
Dumb bundle generation bids on all bundles (sort-of).

THREE-COMBINATION
Bid on all bundles with 3 targets or less

Note: It might be impossible to allocate all targets. 

94

Combinatorial Auctions:
Domain-Dependent Bundle Generation
Smart bundle generation bids on clusters of targets.

GRAPH-CUT
Start with a bundle that contains all targets.
Bid on the new bundle.
Build a complete graph whose vertices are the 
targets in the bundle and whose edge costs 
correspond to the path costs between the vertices.
Split the graph into two sub graphs along (an 
approximation of) the maximal cut.
Recursively repeat the procedure twice, namely 
for the targets in each one of the two sub graphs.

95

Combinatorial Auctions:
Domain-Dependent Bundle Generation

96

Combinatorial Auctions:
Domain-Dependent Bundle Generation
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Combinatorial Auctions:
Domain-Dependent Bundle Generation

Cut = two sets that partition the vertices of a graph
Maximal cut = maxcut = cut that maximizes the sum 
of the costs of the edges that connect the two sets of 
vertices
Finding a maximal cut is NP-hard and needs to get 
approximated.

maximal cut

98

Combinatorial Auctions:
Domain-Dependent Bundle Generation

99

Combinatorial Auctions:
Domain-Dependent Bundle Generation

100

Combinatorial Auctions:
Domain-Dependent Bundle Generation

101

Combinatorial Auctions:
Domain-Dependent Bundle Generation

102

Combinatorial Auctions:
Domain-Dependent Bundle Generation

Submit bids for the following bundles
{A}, {B}, {C}, {D}
{A,B}, {C,D}
{A,B,C,D}

A

B

C

D
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Combinatorial Auctions:
Experiments in Known Terrain

3 robots in known terrain with 5 clusters of 4 targets 
each (door are closed with 25 percent probability)

184.4 
(due to discretization issues)

N/Aoptimal (MIP) = ideal 
combinatorial auctions

184.11112.1combinatorial auctions with 
GRAPH-CUT

247.920506.5combinatorial auctions with 
THREE-COMBINATION

426.5635.1parallel single-item auctions

SUMnumber of 
bids

104

Combinatorial Auctions:
Summary

Ease of implementation: difficult
Ease of decentralization: unclear (form robot groups)
Bid generation: expensive

Bundle generation: expensive (can be NP-hard)
Bid generation per bundle: ok (NP-hard)

Bid communication: expensive
Auction clearing: expensive (NP-hard)
Team performance: very good (optimal)

many (all) synergies taken into account

Use a smart bundle generation method.
Approximate the various NP-hard problems.

105

Sequential Auctions:
Procedure

Parallel Auctions
Ease of implementation: simple
Ease of decentralization: simple
Bid generation: cheap
Bid communication: cheap
Auction clearing: cheap
Team performance: poor

Combinatorial Auctions
Ease of implementation: difficult
East of decentralization: unclear
Bid generation: expensive
Bid communication: expensive
Auction clearing: expensive
Team performance: “optimal”

Sequential auctions provide a good trade-off
between parallel auctions and combinatorial 
auctions.

106

Sequential Auctions:
Procedure

There are several bidding rounds until all targets 
have been won by robots. Only one target is won in 
each round. 
During each round, each robot bids on all targets not 
yet won by any robot. The minimum bid over all 
robots and targets wins. (The corresponding robot 
wins the corresponding target.) 
Each robot determines a cost-minimal path to visit 
all targets it has won and follows it.
Example: [Lagoudakis et al. 2004, Tovey et al. 2005]

107

Sequential Auctions:
Synergy

B CA

Bid on A: 5
Bid on B: 4
Bid on C: 4

Each robot bids on a target the increase in minimal path 
cost it needs from its current location to visit all of the 
targets it has won if it wins the target (BidSumPath). We 
give more details on this bidding rule later.

108

Sequential Auctions:
Synergy

B CA

Each robot bids on a target the increase in minimal path 
cost it needs from its current location to visit all of the 
targets it has won if it wins the target (BidSumPath). We 
give more details on this bidding rule later.
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Sequential Auctions:
Synergy

B CA

Bid on A: 1
Bid on C: 8

Each robot bids on a target the increase in minimal path 
cost it needs from its current location to visit all of the 
targets it has won if it wins the target (BidSumPath). We 
give more details on this bidding rule later. 

110

Sequential Auctions:
Example

A

B

C

D

Bid on A: (86)
Bid on B: (91)
Bid on C: 23

Bid on D: (37)

Bid on A: (90)
Bid on B: (85)
Bid on C: (41)
Bid on D: 27

111

Sequential Auctions:
Example

A

B

C

D

Bid on A: (107)
Bid on B: (109)

Bid on D: 21

Bid on A: (90)
Bid on B: (85)
Bid on D: (27)

112

Sequential Auctions:
Example

A

B

C

D

Bid on A: (109)
Bid on B: 107

Bid on A: (90)
Bid on B: 85

113

Sequential Auctions:
Example

A

B

C

D
Bid on A: 21

Bid on A: 109

114

Sequential Auctions:
Example

A

B

C

D
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Sequential Auctions:
Example

116

Sequential Auctions:
Procedure

Each robot needs to submit only one of its lowest bid. 
Each robot needs to submit a new bid only directly 
after the target it bid on was won by some robot 
(either by itself or some other robot).
Thus, each robot submits at most one bid per round, 
and the number of rounds equals the number of 
targets. Consequently, the total number of bids is no 
larger than the one of parallel auctions, and bid 
communication is cheap.
The bids that do not need to be submitted were 
shown in parentheses in the example.

117

Sequential Auctions:
Example

The team cost resulting from sequential  auctions is 
not guaranteed to be minimal since they take some 
but not all synergies between targets into account. 

we increased
this distance

118

Sequential Auctions:
Summary

Ease of implementation: relatively simple
Ease of decentralization: simple
Bid generation: cheap (to be discussed later)
Bid communication: cheap
Auction clearing: cheap
Team performance: very good

some synergies taken into account

119

Sequential Auctions:
Derivation of Bidding Rules

We suggest to use hill climbing to automatically 
derive bidding rules for sequential auctions for a 
given team objective.
Let a robot win a target so that some measure of the 
team cost increases the least.

Robot r bids on target t the difference in the 
minimal measure of the team cost for the given 
team objective between the allocation of targets to 
all robots that results from the current allocation if 
robot r wins target t and the one of the current 
allocation. (Targets not yet won by robots are 
ignored.)

120

Sequential Auctions:
Derivation of Bidding Rules

Path bidding rules (“direct approach”)
Find paths directly
Will be explained in this tutorial

Tree bidding rules (“indirect approach”)
Find trees and convert them to paths
Similar, will not be explained in this tutorial
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Sequential Auctions:
Derivation of Path Bidding Rules

Measure of the team cost = team cost
We suggest to use hill climbing to automatically 
derive bidding rules for sequential auctions for a 
given team objective.
Let a robot win a target so that the team cost
increases the least.

Robot r bids on target t the difference in the 
minimal team cost for the given team objective 
between the allocation of targets to all robots that 
results from the current allocation if robot r wins 
target t and the minimal team cost of the current 
allocation. (Targets not yet won by robots are 
ignored.) 122

Sequential Auctions:
Derivation of Path Bidding Rules

We now show that robots can implement the resulting 
bidding rules in form of a sequential auction without 
having to know which targets the other robots have 
won already.

123

Sequential Auctions:
Derivation of Path Bidding Rules

MiniSum
Minimize the sum of the path costs over all robots
Minimization of total energy or distance
Application: planetary surface exploration

MiniMax
Minimize the maximum path cost over all robots 
Minimization of total completion time (makespan)
Application: facility surveilance, mine clearing

MiniAve
Minimize the average arrival time over all targets 
Minimization of average service time (flowtime)
Application: search and rescue

124

A Typical Coordination Task:
MiniSum Team Objective

1
1

1

1
2

3

1

2

2

4 2

1

3

2

3
1

4
1

1 1

2

2

10

10

4

2

15

10+10+2+4+15 = 41
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Sequential Auctions:
Derivation of Path Bidding Rules

MiniSum = energy or distance

How much to
bid on target A?

A 126

Sequential Auctions:
Derivation of Path Bidding Rules

MiniSum = energy or distance

A
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Sequential Auctions:
Derivation of Path Bidding Rules

MiniSum = energy or distance

minus

128

Sequential Auctions:
Derivation of Path Bidding Rules

MiniSum = energy or distance

minus

129

Sequential Auctions:
Derivation of Path Bidding Rules

MiniSum = energy or distance

minus

minimal path cost the robot needs 
from its current location to visit all 
targets it has won if it wins the 
target that it bids on

minimal path cost the robot needs 
from its current location to visit all 
targets it has won so far

minus

130

Sequential Auctions:
Derivation of Path Bidding Rules

MiniSum = energy or distance
Bid the increase in the minimal path cost the robot 
needs from its current location to visit all targets it has 
won if it wins the target it is bids on (BidSumPath), 
which is exactly the common-sense bidding rule used 
earlier.

minus
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Sequential Auctions:
Derivation of Path Bidding Rules

MiniSum
Minimize the sum of the path costs over all robots
Minimization of total energy or distance
Application: planetary surface exploration

MiniMax
Minimize the maximum path cost over all robots 
Minimization of total completion time (makespan)
Application: facility surveilance, mine clearing

MiniAve
Minimize the average arrival time over all targets 
Minimization of average service time (flowtime)
Application: search and rescue

132

A Typical Coordination Task:
MiniMax Team Objective

max(10,10,2,4,15) = 15
1

1

1

1
2

3

1

2

2

4 2
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2

3
1

4
1

1 1

2

2

10

10

4

2

15
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Sequential Auctions:
Derivation of Path Bidding Rules

MiniMax = makespan
Bid the minimal path cost the robot needs from its 
current location to visit all targets it has won if it wins 
the target it is bids on (BidMaxPath), which balances 
the path costs of all robots.

134

Sequential Auctions:
Derivation of Path Bidding Rules

MiniSum
Minimize the sum of the path costs over all robots
Minimization of total energy or distance
Application: planetary surface exploration

MiniMax
Minimize the maximum path cost over all robots 
Minimization of total completion time (makespan)
Application: facility surveilance, mine clearing

MiniAve
Minimize the average arrival time over all targets 
Minimization of average service time (flowtime)
Application: search and rescue
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A Typical Coordination Task:
MiniAve Team Objective

(1+2+3+4+6+9+10+1+4+…)/22 = 5.8
1

2
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2

3
1

4
1
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2
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Sequential Auctions:
Derivation of Path Bidding Rules

MiniAve = flowtime
Bid the increase in the minimal sum of arrival times 
the robot needs from its current location to visit all 
targets it has won if it wins the target it is bids on 
(BidAvePath).

137

Sequential Auctions:
Derivation of Path Bidding Rules

Finding the minimal path cost for visiting a given set 
of targets is NP-hard. We therefore use the 
polynomial-time cheapest insertion heuristic (or more 
sophisticated heuristics based on two-opt, a TSP hill-
climbing method).

minus

min( )

138

Sequential Auctions:
Comparison of Bidding Rules

BidSumPath, BidMaxPath, BidAvePath
Computation: local
Optimal bids: NP-hard
Convention: simple TSP insertion heuristic
Optimal conversion: none

BidSumTree, BidMaxTree, BidAveTree
Computation: local

Optimal bids: polynomial

Optimal conversion: NP-hard

Convention: simple MST heuristic
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Structure of the Tutorial

Overview
Auctions in Economics
Theory of Robot Coordination with Auctions

Auctions and task allocation
Analytical results

Practice of Robot Coordination with Auctions
Implementations and practical issues
Planning for market-based teams
Heterogeneous domains

Conclusion
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Complexity of Auction Mechanisms

Time complexity (amount of computation)
bid valuation in a single auction
winner determination in a single auction
number of auctions required to sell all tasks

Communication complexity (message bandwidth)
call for bids
bid submission
awarding tasks to winners

may or may not inform losers in addition to winners

Solution Quality (team cost)

141

Time Complexity

n = # of items
r = # of bidders
b = # of submitted bid bundles (combinatorial auctions)
m = max # of awards per auction (multi-item auctions), 1 ≤ m ≤ r
v / V = time required for item/bundle valuation (domain dependent)

* - [Gerkey and Matarić IJRR 23(9), 2004]
** - [Sandholm, Artificial Intelligence 135(1), 2002] 142

Communication Complexity

n = # of items
r = # of bidders
m = max # of awards per auction (multi-item auctions), 1 ≤ m ≤ r

“winners” = auctioneer only informs the winners of auctions
“winners + losers” = auctioneer also informs the losers that they’ve lost

= worst-case message bandwidth

143

Multi-Robot Routing:
Optimal Solutions through MIP

Use of Mixed Integer Programming (MIP) and CPLEX 
to solve multi-robot routing problems optimally for 
MiniSum, MiniMax, and MiniAve

Index sets and constants:

VR = Set of robot vertices
VT = Set of target vertices
c(i,j) = Path cost from vertex i to vertex j

Variables:

xij = Is vertex j visited by some robot directly after
vertex i? (1 = yes, 0 = no)

144

Multi-Robot Routing:
Optimal MiniSum Solution

(C1)

(C2)

(C3)
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Multi-Robot Routing:
MIP Constraints

Constraints (C1) 
Each target vertex is entered exactly once

Constraints (C2) 
Each (robot or target) vertex is left at most once

Constraints (C3) 
There are no subtours (= cycles)

146

Multi-Robot Routing:
Optimal MiniSum Solution

Objective only

147

Multi-Robot Routing:
Optimal MiniSum Solution

Objective and constraint C1 only

(a possible solution, not necessarily the optimal one)
148

Multi-Robot Routing:
Optimal MiniSum Solution

Objective and constraints C1 and C2 only

(a possible solution, not necessarily the optimal one)

149

Multi-Robot Routing:
Optimal MiniSum Solution

Objective and constraints C1, C2 and C3

(a possible solution, not necessarily the optimal one)
150

Multi-Robot Routing:
Limitations of the MIP formulation

The number of subtour elimination constraints (C3) is 
exponential in the number of targets.
The MIPs are more complex for team objectives 
different from MiniSum.
Only small multi-robot routing problems can be 
solved optimally with MIP methods, even after tuning 
them (for example, by using cutting plane 
techniques).
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Multi-Robot Routing:
Hardness of Optimal Solutions

Task allocation in general is NP-hard
Only small multi-robot routing problems can be solved 
optimally since MiniSum, MiniMax, MiniAve are NP-
hard even if the terrain is completely known. The 
reduction is from Hamiltonian Path.
Multi-robot routing problems resemble vehicle routing 
problems, which are notoriously harder than TSPs.
We cannot hope to minimize the team cost of realistic 
multi-robot routing problems in realistic running times.
We hope for a small, possibly suboptimal team costs
(for example, within a constant factor from optimal).
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Sequential Auctions:
Suboptimal Team Performance

BidSumPath/Tree ≥ factor 1.5 away from MiniSum
BidMaxPath/Tree ≥ factor 3 away from MiniMax
BidAvePath/Tree ≥ factor 2 away from MiniAve

Optimal MiniSum
BidSumPath/Tree,
BidMaxPath/Tree,
BidAvePath/Tree

What is the best possible and the best known of the worst case?

153

Sequential Auctions:
Theoretical Analysis

3 team objectives for multi-robot routing
MiniSum, MiniMax, MiniAve

6 bidding rules for multi-robot routing
3 path bidding rules, one for each team objective

BidSumPath, BidMaxPath and BidAvePath
3 tree bidding rules, one for each team objective

BidSumTree, BidMaxTree and BidAveTree
18 lower and upper bounds on team performance

worst-case cost ratio 
compared to optimal cost
first theoretical guarantees for auction-based coordination

154

Sequential Auctions:
Analytical Results

n robots and m targets

cost ratio = 
team cost resulting from bidding rule

minimum team cost

155

Sequential Auctions:
Analytical Results

n robots and m targets

cost ratio = 
team cost resulting from bidding rule

minimum team cost

156

Sequential Auctions:
Proof Technique for Upper Bounds

cost-minimal edge 
across the cut

targets won targets not yet won

edges chosen by 
the bidding rule

*)( cSc α≤∆

∑≤ *)( cSc α
)MSF(cα≤

)Optimum(cα≤

cut separating the targets
won by robots from the targets
not yet won by any robot

BidSumPath
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Sequential Auctions:
Analytical Results

n robots and m targets

cost ratio = 
team cost resulting from bidding rule

minimum team cost
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Sequential Auctions:
Proof Technique for Lower Bounds

Constant factor guarantees do not exist for 
BidMaxPath/Tree and BidAvePath/Tree
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Sequential Auctions:
Proof Technique for Lower Bounds

Constant factor guarantees do not exist for 
BidMaxPath/Tree and BidAvePath/Tree
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Sequential Auctions:
Proof Technique for Lower Bounds

Constant factor guarantees do not exist for 
BidMaxPath/Tree and BidAvePath/Tree
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Sequential Auctions:
Analytical Results

n robots and m targets

cost ratio = 
team cost resulting from bidding rule

minimum team cost

162

Sequential Auctions:
Observations

Looking at team objectives
Best guarantees offered for MiniSum
MiniSum: constant-factor (2) approximation
MiniMax: linear in the number of robots
MiniMax: linear in the number of targets

Looking at bidding rules
Best guarantees given by BidSumPath, BidSumTree
Each rule is best for the corresponding objective
Exception: BidAvePath, BidAveTree
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Sequential Auctions:
Experimental Evidence

Experimental Performance
Bounds = extreme cases
Experiments = average cases
Bidding rules perform better in practice

Experimental Bounds
Much smaller than the theoretical worst-case
Within a factor of 1.4 in most cases

Time Complexity
Path rules are more expensive
Tree rules are more efficient
Path rules result in somewhat better performance

164

Sequential Auctions:
Experimental Comparison

SUM = 271.04

optimal (MIP)
= ideal combinatorial auctions

SUM = 279.62

sequential 
auctions

parallel 
auctions

SUM = 426.98

165

Sequential Auctions:
Appropriateness of Bidding Rules

SUM = 182.50
MAX = 113.36
AVE = 48.61

BidSumPath
(for energy)

SUM = 218.12
MAX = 93.87
AVE = 46.01

BidMaxPath
(for makespan)

SUM = 269.27
MAX = 109.39
AVE = 45.15

BidAvePath
(for flowtime)

pictures are from USC’s Player/Stage robot simulator
166

Sequential Auctions:
Results for Path Bidding Rules

2 robots and 10 unclustered targets
known terrain of size 51×51

55.45109.34189.15optimal (MIP) 
= ideal 

combinatorial 
auctions

59.12128.45219.16BidAvePath

61.39125.84219.15BidMaxPath
79.21168.50193.50BidSumPath
AVEMAXSUM

167

Sequential Auctions:
Results for Path Bidding Rules

2 robots and 10 clustered targets
known terrain of size 51×51

47.6385.86132.06optimal (MIP) 
= ideal 

combinatorial 
auctions

49.15100.56157.29BidAvePath
57.3890.10144.84BidMaxPath
62.4797.17134.18BidSumPath
AVEMAXSUM
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Structure of the Tutorial

Overview
Auctions in Economics 
Theory of Robot Coordination with Auctions

Auctions and task allocation
Analytical results

Practice of Robot Coordination with Auctions
Implementations and practical issues
Planning for market-based teams
Heterogeneous domains

Conclusion
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Outline

What are the practical issues that we 
encounter when implementing 
market-based coordination on a team 
of robots?

We will focus on:
Dynamic environments
Robustness to failures
Uncertainty

171

Market-Based Robot Implementations

Several domains: 
Distributed sensing, Mapping, Exploration, 
Surveillance, Perimeter Sweeping, Assembly, 
Box Pushing, Reconnaissance, Soccer, and 
Treasure Hunt
Some approaches have been demonstrated on 
multiple domains: 
TraderBots and MURDOCH
A variety of cost/reward models, bidding 
strategies, and auction-clearing mechanisms 
are used
No clear guidelines for how to pick the best 
approach for a given domain or application

172

Deciding which approach to use

Some comparative studies: Gerkey and Matarić, 
Dias and Stentz, and Rabideau et al.
Market-based approaches do well in these 
comparative studies
Different application requirements and tradeoffs in 
implementation make it difficult to construct a 
single market-based approach that can be 
successful in all domains
A well-designed market-based approach with 
sufficient plug-and-play options for altering 
different tradeoffs can be successful in a wide 
range of applications

173

Some considerations when designing 
your coordination approach
How dynamic is your environment?
What are your requirements for robustness?
How reliable is your information?
How will you balance scalability vs. solution quality?
What type of information will you have access to?
What resources/capabilities does your team 
possess?
What do you want to optimize?
How often will your mission/tasks change?
What guarantees do you require?

174

Dynamic Environments

175

Characteristics of dynamic environments

Unreliable/incomplete 
information
Changing/moving obstacles
Changing task requirements
Changing limited resources 
and capabilities
Evolving ad-hoc teams



25

176

In the real world 
things always 

break!

Robustness

177

Generally a team is robust if it can …

Operate in dynamic environments
Provide a basic level of capability without 
dependence on communication, but improve 
performance if communication is possible
Respond to new tasks, modified tasks, or 
deleted tasks during execution
Survive loss (or malfunction) of one or more 
team members and continue to operate 
efficiently

178

Categories of Failure

Communication Failure

Partial Robot Malfunction

Robot Death

179

Dealing with communication 
failures

Acknowledgements can help 
ensure task completion but delay 
task allocation
Tradeoff between repeated tasks 
and incomplete tasks
Message loss often results in loss 
in solution quality

180

Example

-10

-5

0

5

10

15

20

25

30

35

-5 0 5 10 15

25m

45m

Nominal case: 23 goals assigned
Note: Some assigned tasks may not be 
completed due to dynamic conditions

181

Example

2.021.05159100% msg. loss
0.722.3315180% msg. loss
0.725.3916260% msg. loss
0.724.01014950% msg. loss
2.024.7315340% msg. loss
0.324.0514020% msg. loss
2.021.012121Nominal
+/-Mean+/-MeanDescription

Tasks Completed (#)
(23 assigned)

Cost (m)

100
110
120
130
140
150
160
170

0 20 40 60 80 100

Percentage of lost messages (%)
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ta

l s
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io

n 
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st
 (m

)

Acknowledgements help ensure task completion
Repeated tasks vs. incomplete tasks
Message loss results in loss of efficiency but tasks 
are completed if resources permit
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Dealing with partial malfunctions

Identifying the malfunction may be done as an 
individual or as a team
Key advantage is that malfunctioning teammate 
can re-auction tasks it cannot complete
If complete failure (robot death) is anticipated, a 
quicker allocation method should be chosen
Possible new tasks can be generated to 
enable recovery from malfunction
Malfunctions often results in loss in 
solution quality

183

Example

Nominal Performance Partial Malfunction

1.022.05140Partial Failure

2.021.012121Nominal

+/-Mean+/-MeanDescription

Tasks Completed 
(#)

(23 assigned)

Cost (m)

Laser failure or gyro error 
is detected
Robot greedily auctions 
all its tasks to other robots

184

Dealing with robot death

Detecting the death must be done by the team
Can detect potential deaths by keeping track of 
communication links
Need to seek confirmation of suspected deaths
Need to query other robots about tasks assigned 
to dead robot(s) and repair subcontract links
If no new contract can be made, the owner of the 
task must complete it

185

Example

186

Example

X

X

187

Uncertainty
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Uncertain and changing environments

Robots discover that a task cannot be executed for 
the bid cost
Robots auction the task to another robot, default, or 
execute at a loss (learning to estimate better in the 
future)

A

B

Robot A encounters
obstacle, making Task 1 
more costly than 
expected

Robot A sells Task 1 to
Robot B

1

189

New, deleted, and changing tasks

New tasks trigger new auction rounds
Tasks can be re-prioritized by changing revenue function
Tasks can be deleted – compensation may be necessary
Subcontracting can help deal with changing situation

A

B

A

B

Robot A is
committed to
execute Task 1

Task 2 appears
which is worth
10X revenue, but
Tasks 1 and 2 
must be executed
exclusively

Robot A sells Task 1 to B
so that it can purchase 
Task 2—even though B
requires higher cost
than A to execute Task 1

1

2 2

1
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Example: Imperfect information
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Example: Unknown world 

192

Open Challenges
Benchmarks for effective comparisons of coordination 
approaches
Detailed guidelines for designing a market-based coordination 
approach for a given application domain
Improved robustness (efficient detection of failures and 
cooperative recovery strategies)
Effective information-sharing using market-based approaches
Demonstrated coordination of large teams using market-based 
approach
Demonstrated effective learning applied to market-based 
coordination of teams
Varied and rigorous testing in a variety of application domains

193

Structure of the Tutorial

Overview
Auctions in Economics
Theory of Robot Coordination with Auctions

Auctions and task allocation
Analytical results

Practice of Robot Coordination with Auctions
Implementations and practical issues
Planning for market-based teams
Heterogeneous domains

Conclusion
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Outline

Where do typical multirobot planning issues 
arise in market-based systems?  How are 
they incorporated into the market framework?
Task Allocation

who does each task?
Complex Task Allocation and Decomposition

who does the task, and how is the task achieved?
Tight Coordination

how to accomplish joint tasks that may require 
close interaction?

195

Task Allocation

196

Task Allocation
How is the general problem different from previous multirobot 
routing example?

Agents may have different cost functions
There may be constraints between tasks
Tasks may be distributed across agents and may need to be 
reallocated
Agents may need to form subteams to complete some tasks
We may be dealing with roles (allocated for an indeterminate 
amount of time)
The environment may be extremely unknown or dynamic

197

Task Allocation Definition #1
Given

a set of tasks, T
a set of agents, A
a cost function ci: 2T→R∪ {∞} (states the cost agent i incurs by handling a 
subset of tasks)
an initial allocation of tasks among agents <T1

init , …, T|A|
init >, where 

∪ Ti
init=T and Ti

init∩Tj
init for all i ≠ j

Find
the allocation <T1 , …, T|A| > that minimizes ∑ci(Ti)

[T. Sandholm, Contract Types for Satisficing Task Allocation: I Theoretical Results, AAAI Spring Symposium, 1998]

Extended from “Task Oriented Domains”
here, cost function is assumed to be symmetric and finite

[Rosenschein and Zlotkin, A Domain Theory for Task Oriented Negotiation, IJCAI, 1993]

198

Task Allocation Definition #2
Given

a set of tasks, T
a set of robots, R
ℜ = 2R is the set of all possible robot subteams
a cost function cr:2T→R+∪ {∞} (states the cost subteam r incurs by 
handling a subset of tasks)

Then
an allocation is a function A:T→ℜ mapping each task to a subset of 
robots

or, equivalently
ℜ T is the set of all possible allocations

Find
the allocation A*∈ ℜ T that minimizes a global objective function
C: ℜ T →R+∪ {∞} 

[Dias, Zlot, Kalra, Stentz, Market-based Multirobot Coordination: A Survey and Analysis, Proceedings of 
the IEEE Special Issue on Multi-robot Systems, 2006] 199

What’s missing?

Tasks T and robots R may be changing over time
Can represent as T(t) and R(t)  

Robots can only be in one subteam
Cost function of a subteam can change if one or more 
members are performing other tasks individually or as part 
of other subteams
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A taxonomy

Single-task robots (ST) vs multi-task robots (MT)
ST: each robot is capable of handling only one task at a time
MT: robots can execute multiple tasks simultaneously

Single-robot tasks (SR) vs multi-robot tasks (MR) 
SR: Each task requires exactly one robot
MR: Tasks may require more than one robot

Instantaneous assignment (IA) vs time-extended assignment (TA)
IA: Available information on tasks/robots/environment permits only an instantaneous allocation of 
tasks to robots and no planning for future allocations
TA: More information is available (e.g. a full list of tasks, or a model of how they will arrive) and 
robots can plan into the future (e.g. can maintain schedules or task sequences)

[Gerkey and Matarić, A Formal Analysis and Taxonomy of Task Allocation in Multi-robot Systems, IJRR, 23(9), 2004]

201

Example: MURDOCH
Multirobot box-pushing and loosely-coupled tasks

Box pushing: one watcher, two pushers
Loosely-coupled: tracking, monitoring, cleanup

Single task auctions: each task is auctioned when 
introduced, available robots bid, task awarded

Available robots: have not committed to any other tasks
Heterogeneous robots: participation by resource-centric 
publish/subscribe protocol

ST-SR-IA (with online tasks)
Solution quality: 3-competitive (utility maximization only)

[Gerkey and Matarić, IEEE Trans. R&A 2002 / IJRR 2004]
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Example: M+
Load transfer, hospital servicing

task precedence constraints
Negotiation protocol - distributed auction

Available robots announce bids for executable tasks (those with 
precedence constraints satisfied)
Robot with the lowest cost awarded the task, although it can transfer to 
another robot with a lower cost before execution
one-task lookahead

SR-ST-TA*
[Botelho and Alami, ICRA 1999]

= executable

= complete
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Example: TraderBots

Distributed sensing, exploration, area 
reconnaissance, treasure hunt
SR-ST-TA

Task scheduling and sequencing (unlimited 
lookahead)

1) Multi-task auctions (OpTraders)
Greedy clearing algorithm: 2-approximation (one-shot, 
no iteration)

Optimal clearing algorithm possible in polynomial time
MAPA - maximum number of awards per auction

Increasing MAPA → poorer solution quality but faster allocation 
[Dias et al., i-SAIRAS 03]
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TraderBots (cont’d)

2) Distributed / peer-to-peer auctions (RoboTraders)
Multi-task auctions with MAPA = 1
Anytime / local search algorithm
Task reallocation for unknown / dynamic environments 
Optimal solution guaranteed in a finite number of trades with a 
sufficiently expressive set of contract types [Sandholm, AAAI Spring Symp. 98]

Single-task; Multi-task; Swap; Multi-party (OCSM)
In a limited number of rounds, combinations of single- and multi-task 
contracts performed best [Andersson and Sandholm, ICDCS 00]

Allowing non-individual rational trades can lead to better solutions [Vidal, 
AAMAS 02]

Other P2P-trading examples: TRACONET [Sandholm, IWDAI 93], swap-based 
protocol [Golfarelli 97], UAV application [Lemaire, ICRA 02]
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TraderBots (cont’d)

3) Leaders [Dias and Stentz, IROS 02]

Optimize allocations/plans within subgroups
“pockets” of centralized optimization

Example: leader collects task info from a subgroup; holds a 
combinatorial exchange; if a better solution is found, leader 
retains the surplus as profit

[Dias et al., multiple publications 1999-2006]
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Example: Multi-robot tasks 
(MR-ST-IA)

How to form coalitions / subteams?

Robots must hire helpers to move found objects
Foraging [Guerrero and Oliver, CCIA 03]

Auctioneer chooses subteam based on robot capabilities / 
costs

Subgroup accepts or rejects task
Furniture moving [Lin and Zheng, ICRA 05]

Subteams agree upon “plays” before sending bid to auctioneer
Treasure hunt [Jones et al, ICRA 06]
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Summary: Task Allocation
Covered applications: box-pushing, distributed sensing, 
surveillance, load transfer, hospital servicing, foraging, furniture 
moving, treasure hunt
Different mechanisms are used in different scenarios; choice 
depends on:

Quality/scalability tradeoff
Uncertainty / dynamicity of environment
Task constraints/duration
Ability to plan / replan
Required speed of allocation
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Complex Task Allocation

209

Complex Task Allocation

What’s different from previous problems?
Tasks may be complex or abstract so
subtasks that need to be allocated might not 
be specifically predefined
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Complex Tasks

Simple tasks can be executed in a straightforward, 
prescriptive manner (e.g. plan a path from point A to 
point B)
Complex tasks

Tasks that have many potential solution strategies
Abstract description
Often involves solving an NP-hard problem

We’ll focus on: complex tasks that can be 
decomposed into multiple inter-related subtasks
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Example: Area Reconnaissance
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Complex Task Allocation

Complex task Simple tasks

Problem: how can we know how to decompose the complex task(s) 
efficiently before we know which robots are going to be assigned the 

resulting simple tasks?
213

Complex Task Allocation
Complex task Complex task Complex task

Simple tasks Simple tasksSimple tasks

Problem: how can we know how to best allocate the complex tasks if we 
don’t yet know how they will be decomposed?
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Task Trees
abstract/complex

primitive/simple
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Task Tree Auctions

Task trees are traded on the market
Bids are placed for tasks at any level of a task tree
First pass: bid on auctioneers plan (valuation)
Second pass: redecompse abstract tasks (decomposition)

Avoids premature commitment on allocation and decomposition 
decisions
Mechanism enables:

Tasks can be reallocated or redecomposed
Robots can develop their own plans for complex tasks
Subtasks of a single complex task can be shared among multiple robots

[Zlot and Stentz, ICRA 2005 / IJRR 2006]
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Small example

c

d a

b

robot 2 robot 1$10

$20 $15

Area 1
$40

OP B
$25

OP A
$20

(robot 1 plan)

Area 1
$25

OP C
$20

OP D
$10

(robot 2 plan)

robot 3
$11

OP C
$11

Area 1
$21

OP B
$40

OP A
$30

Area 1
$50

$20

$30

$40 $25

$20
$20

$40 $25 $21

Total cost of plan:
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Comparison to Single-Level Simple 
Task Allocation
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Field Experiments

219

Summary: Complex Task Allocation

Application: area reconnaissance
If tasks are complex, can incorporate task 
decomposition into the allocation mechanism

If agents have different preferences on the 
possible task decompositions, outcome can be 
made more efficient by coupling task 
allocation and decomposition
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Tight Coordination
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Loose v Tight Coordination
Loose:

task can be completed by 
a single agent
task easily decomposed 
into discrete subtasks
teammates coordinate 
during decomposition, 
allocation but not during 
execution
Research Question: Who 
does which task?
e.g. exploration, Burgard
et. al., ICRA 2000

Tight:
task requires participation 
from multiple agents
task not easily decomposed 
into subtasks
teammates coordinate during 
all stages of task and 
continuously coordinate 
during execution
Research Question: Who 
does what and how?
e.g. box carrying, Caloud et. 
al., IROS 1990

222

Tight Coordination
Informally, we say that robot A coordinates with robot B if 
it considers the state of B when choosing its own. This 
coordination is tight if A considers B’s state at a high 
frequency throughout execution.
Example: following a teammate: continuously observe B’s 
position and adjust trajectory

B

A
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Approach I: 

Achieve tight coordination indirectly through task 
allocation

Role of Market: allocate IA tasks.

Benefit: the auction provides a simple interface 
between robots

Drawback: Limited applicability (to tasks where 
robots don’t need to directly interact)
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Box Pushing, Gerkey & Matarić, ICRA 2001

Goal: move box to goal using “watcher” and 2 “pushers”
IDEA: facilitate a form of indirect coordination by selecting 
new tasks according to success of previous actions
Market-based Approach

continuously auction ‘push-right-side’ and ‘push-left-side’
tasks
tasks are very short lived
new task depends on success of previous task

Observations
actions of one pusher certainly affects actions of other
pushers never interact directly, just via watcher & tasks
mission could be completed by single pusher & watcher
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Exploration, Lemaire et. al., ICRA 2004

Goal: traverse route while maintaining 
communication with base station
IDEA: encode planning/coordination into tasks.
Market-based Approach

simplify exploration task: fixed, known trajectory
simplify relay task: stay in fixed location for fixed 
duration

Observations
actions of explorer determine task of relay robot
robots do not interact after allocation phase
Similar to Murdoch approach for box pushing
Limited approach to constrained exploration problem
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Approach II: 

Achieve tight coordination using reactive approach

Role of Market: allocate roles to robots.

Benefit: reactive approaches can work very well for 
tight coordination

Drawback: limited applicability (to tasks where 
interactions are simple)
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Construction Simmons et. al. NRL, Wshp 2002

Goal: dock a beam using a crane, roving eye, precise 
manipulator
IDEA: hybrid approach - use auctions to assign tasks, 
achieve tight coordination with reactive approach. 
Similar to other MR tasks 
Market-based Approach

auction tasks such as “watch fiducials” and “push 
beam”

Observations:
robots must interact closely on tight sense-act loop
achieved using simple reactive approach (simple 
interactions only)
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Approach III:

Achieve tight coordination by buying and selling joint 
plans online

Role of Market: determine when joint plans are 
required, make contracts between teammates during 
execution

Benefit: can handle complex tight coordination tasks

Drawback: may be very complex
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Constrained Exploration

Explore an environment while maintaining 
communication contact with base station
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Complex Tight Coordination
Tight coordination to 
ensure current 
constraints are met

Extensive coordination 
of plans to ensure that 
future constraints are 
met

Cannot be encoded as 
task allocation
Too complex for reactive 
approach
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Perimeter Sweeping, Exploration -
Kalra et. al.,  ICRA 2005

Goal: perimeter sweeping & constrained exploration

Q1: How do we decide what a robot should do if task 
is not decomposable into independent subtasks? 

IDEA 1: evaluate cost and revenue of actions
i.e. every action has cost and revenue, not just every 
task
this allows evaluation of action at fine granularity
and we no longer need to define problems as set of 
finite tasks
e.g. instead of profit(path-to-city-a), profit(path)
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Kalra et. al. (cont)

Q2: How do we incorporate constraints 
between robots into cost/revenue function?

IDEA 2: couple cost and revenue between 
robots

i.e. profit of A’s actions depends on B’s 
simultaneous actions 
e.g. if robot A loses comms with teammate B, 
both incur cost
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Kalra et. al. (cont)
Q3: How do we make this tractable?
IDEA 3: decouple robots’ planning whenever 
possible, auction joint plans when necessary

e.g. robots A & B frequently share their intended 
actions
each chooses its own trajectory while considering the 
other’s expected trajectory
when constraint violation is expected, they propose 
and bid on joint plans that solve the constraints.
related to use of leaders/opportunistic centralization in 
TraderBots
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Summary

Choice approach depends on:
Type of tight coordination

Can it be encoded as a task allocation problem?
Is coordination simple enough to use a reactive 
approach?

Quality of solution desired
Are benefits of a complex approach “worth it”?
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Structure of the Tutorial

Overview
Auctions in Economics
Theory of Robot Coordination with Auctions

Auctions and task allocation
Analytical results

Practice of Robot Coordination with Auctions
Implementations and practical issues
Planning for market-based teams
Heterogeneous domains

Conclusion
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Section Outline

Overview of heterogeneous Teams and the domains 
in which they operate
Market-based allocation for heterogeneous teams

Special requirements for human-multirobot teams
Conclusions
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Heterogeneous Teams In Action

Construction (1)
Urban Search and Rescue

Real Robots (2)
Simulated (3)

Planetary Exploration (4)
Treasure Hunt (5)
Robocup Segway League (6)

(1)

(2)

(4)

(3)

(6)

(1) F. Heger, L. Hiatt, B.P. Sellner, R. Simmons, and S. Singh. “Results in Sliding Autonomy for Multi-robot Spatial Assembly”, 
Proceedings of the 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space, September, 2005.

(2) http://www.itl.nist.gov/iaui/vvrg/hri/IMAGESusar.html
(3) N. Schurr, J. Marecki, P. Scerri, J.P. Lewis and M. Tambe. "The DEFACTO System: Training Tool for Incident Commanders" 

Innovative Applications of Artificial Intelligence, 2005.
(4) J. Schneider, D. Apfelbaum, D. Bagnell, R. Simmons, “Learning Opportunity Costs in Multi-Robot Market Based Planners”, 

International Conference on Robotics and Automation, 2005. 
(5) E.G. Jones, B. Browning, M.B. Dias, B. Argall, M. Veloso, and A. Stentz, “Dynamically formed heterogeneous robot teams 

performing tightly-coupled tasks”, to appear in Proceedings of the IEEE International Conference on Robotics and Automation 
(ICRA), 2006.

(6) B. Argall, Y. Gu, B. Browning, and M. Veloso. The First Segway Soccer Experience: Towards Peer-to-Peer Human-Robot 
Teams. Carnegie Mellon University, 2005.  Image from http://www.cs.cmu.edu/~coral-downloads/segway/images/ .
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Heterogeneous Teams

Members of team are equipped differently, have different 
skills, or play different roles.
Why heterogeneous teams?

For complex missions, many specialists better than a few 
generalists

In TRESTLE, 3 different robots preferred to a single 
monolithic construction robot.
For USAR, robots need different form factors and sensing 
modalities

Specialists often easier to design than generalists.
Enabling coordinated heterogeneous teams means easier 
reuse across applications

TRESTLE “Roving Eye” broadly useful
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Heterogeneous Teams

● How does a heterogeneous domain differ 
from multirobot routing?
– Completing different tasks may now require 

using a number of different capabilities (instead 
of simply visiting a target).

– Agents may have capabilities that make them 
better suited to address some tasks than others 
(instead of all agents being identical)

– We now have to consider capabilities when 
forming bids and awarding auctions (instead of 
only considering a metric like cost)
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Allocation for Heterogeneous Teams

Allocation requires reasoning about different robots’
capabilities.
Markets well suited for allocation in these domains

Each bid can encapsulate a robot’s ability to complete the 
task.

Robots need not bid if they can’t do the task.
Individual robot needs only to be able to assess its own 
abilities and resources.

Auctioneer can award task only based on bids, not individual 
knowledge of individual capabilities.

Valuation of different allocations difficult
For a visual inspection task should a very busy Binocular 
Roving-Eye bid lower or higher than an idle Pioneer with a 
web cam?
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Human as Leader Example

Human operator and a team of fire truck robots are 
tasked with extinguishing fires in a city

Goal of domain to prevent as much damage as 
possible to burning buildings

Domain work flow:
Human operator discovers a fire 
Operator generates a fire-fighting task parameterized 
with building location, magnitude of the fire, and 
estimated building value
Human sends task to autonomous dispatcher
Dispatcher determines which fire truck robot should 
attend to the fire
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Human Perspective

Human operator(s) trying to accomplish some task
Operator generates tasks to address domain 
requirements

Task is fully parameterized
Description
Value function

Task gets executed by some agent in the system
Operator does not care which agent completes the 
task

Allocation solution for generated tasks should 
maximize over operator’s preferences
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Allocation Perspective

Tasks periodically arrive in a stream
Rate of arrival may be governed by some distribution

Tasks should be allocated to maximize some 
objective function

Some tasks more important in objective function
A task’s value has a temporal component

Maximum value given for immediate completion
Value for completion degrades as a function of time

Objective function may have additional components
Cost of resources
Penalty for failure to complete allocated task by a 
deadline
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Using Market-based Allocation

Translate from objective value to market currency
Offer rewards offered for task completion

Maximum reward given for immediate completion
Reward decays, mirroring decay of task value in the 
objective function

Self-interested agents attempt to accumulate as 
much reward as possible
As tasks are issued by the operator, auction is 
conducted
Allocation strategy awards task to highest positive 
bidder

If no agent has a positive bid, task goes unallocated
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Incorporating human preferences

Instantiating human preference in an objective 
function can be difficult

Literature scarce on this topic, but for interesting 
analysis see D. Wolpert, K. Tumer. “An Introduction to Collective Intelligence” NASA 
tech rep NASA-ARC-IC-99-63, 2000. 

Many interactions between objective function and 
solution quality

Success of allocation strategy contingent on 
many factors

System load
Types of tasks (values and rates of decay)
Learning capabilities of agents

Can we somehow incorporate user feedback?
What happens when the human is part of the team?
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Conclusions

Many interesting domains require interfacing 
humans with team of robots, or generally 
interfacing different types of agents with each 
other.
If we can express human preference in an 
objective function, then we can construct a 
reasonable market-based allocation approach.
Task valuation is difficult for domains with 
heterogeneous agents, especially with  online 
tasks; learning valuations in such domains 
seems a fruitful research direction.
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Structure of the Tutorial

Overview
Auctions in Economics
Theory of Robot Coordination with Auctions

Auctions and task allocation
Analytical results

Practice of Robot Coordination with Auctions
Implementations and practical issues
Planning for market-based teams
Human-multirobot domains

Conclusion
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Conclusions

Auctions are indeed a promising means of 
coordinating teams of agents (including 
robots).
In particular, auctions can be an effective and 
practical approach to multi-robot routing.
There are lots of opportunities for further 
research on agent coordination with auctions.
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Conclusions

There is a workshop on Auction 
Mechanisms for Robot Coordination at AAAI 
2006 that you might want to participate in!

Additional material can be found at:
idm-lab.org/auction-tutorial.html (scroll to the bottom)
metropolis.cta.ri.cmu.edu/markets/wiki
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