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• Multi-agent path finding (MAPF)
• Given: a number of agents (each with a start and goal 

location) and a known environment
• Task: find collision-free paths for the agents from their 

start to their goal locations that minimize some objective
• Objectives

• Makespan: latest arrival time of an agent at its goal 
location

• Flowtime: sum of the arrival times of all agents at their 
goal locations

Multi-Agent Path Finding (MAPF)
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Multi-Agent Path Finding (MAPF)

• Application: Amazon fulfillment centers

[work by Kiva Systems/Amazon Robotics, not me]
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• Application: Amazon fulfillment centers

Multi-Agent Path Finding (MAPF)

[work by Kiva Systems/Amazon Robotics, not me]
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• Application: autonomous tug robots (joint with NASA Ames)

– Reduce pollution

– Reduce pollution
– Reduce energy consumption
– Reduce human danger
– Reduce human workload
– Reduce airport size 

Multi-Agent Path Finding (MAPF)

[Google Earth]

[Morris]
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Robot Agent

• Simplifying assumptions
– Point robots
– No kinematic constraints
– Discretized environment

• we use grids here but
most techniques work on
planar graphs in general

Multi-Agent Path Finding (MAPF)

4-neighbor grid

15

• Each agent moves N, E, S or W into 
an adjacent unblocked cell

• Not allowed (“vertex collision”)
– Agent 1 moves from X to Y
– Agent 2 moves from Z to Y

• Not allowed (“edge collision”)
– Agent 1 moves from X to Y
– Agent 2 moves from Y to X

• Allowed

Multi-Agent Path Finding (MAPF)

X Y Z

X Y

16

4-neighbor grid
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• Optimal MAPF algorithms
– Theorem [Yu and LaValle]: MAPF is NP-hard to solve 

optimally for makespan or flowtime minimization

• Bounded-suboptimal MAPF algorithms
– Theorem: MAPF is NP-hard to approximate within any 

factor less than 4/3 for makespan minimization on 
graphs in general

Multi-Agent Path Finding (MAPF)

[www.random-ideas.net]
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• Reduction from (≤3, =3)-SAT: It is NP-complete to determine 
whether a given (≤3, =3)-SAT instance is satisfiable

• Each clause contains at most 3 literals
• Each variable appears in exactly 3 clauses
• Each variable appears uncomplemented at least once
• Each variable appears complemented at least once

• Example: (X1X2X3)  (X1X2X3)  (X1X2X3)

Multi-Agent Path Finding (MAPF)

18
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• Example: (X1X2X3)  (X1X2X3)  (X1X2X3)

Multi-Agent Path Finding (MAPF)

19

• Example: (X1X2X3)  (X1X2X3)  (X1X2X3)

Multi-Agent Path Finding (MAPF)

20

X1 ≡ false X2 ≡ true X3 ≡ true
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• Makespan is 3 if and only if (≤3, =3)-SAT instance is satisfiable
• Makespan is 4 if and only if (≤3, =3)-SAT instance is unsatisfiable
• Any MAPF approximation algorithm with ratio 4/3 – є thus 

computes a MAPF plan with makespan 3 whenever the 
(≤3, =3)-SAT instance is satisfiable and therefore solves it

Multi-Agent Path Finding (MAPF)

21

the red and green agents
collide in the green cell at time 2

Add constraint:
the red agent is not allowed

to be in cell X at time 2

Add constraint: 
the blue agent is not allowed 
to be in cell X at time 2

Conflict-Based Search with Highways

• Conflict-based search [Sharon, Stern, Felner and Sturtevant]:
Bounded-suboptimal MAPF solver that plans for each agent 
independently

[work by Ben-Gurion University of the Negev, not me]

22

4-neighbor grid
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Conflict-Based Search with Highways

• Experience graphs [Phillips, Cohen, Chitta and Likhachev]:
Bounded-suboptimal single-agent path planner so that the 
resulting path uses edges in a given subgraph (the experience 
graph) as much as possible

[work by CMU, not me]

23

Conflict-Based Search with Highways

[work by CMU, not me]

• Graph for an A* search

• Graph relaxation for calculating the heuristics of an A* search

regular
(no highways)

highways #1 highways #2
(experience graphs)

24

suboptimality bound 4
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• Conflict-based search with highways (ECBS+HWY):
Bounded suboptimal MAPF solver
– Conflict-based search
– Experience graphs create lanes (called highways) for the 

agents to avoid head-to-head collisions, which decreases 
the computation time of conflict-based search

Conflict-Based Search with Highways

25

• Conflict-based search with highways (ECBS+HWY)
– Highways provide consistency and thus predictability of 

agent movement, which might be important for human co-
workers

– Highways do not make MAPF instances unsolvable because
they are only used as advice rather than hard constraints

Conflict-Based Search with Highways

26
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• Conflict-based search with highways (ECBS+HWY)

Conflict-Based Search with Highways

4-neighbor grid

27

• Learning highways with graphical models
• Plan a shortest path for each agent independently
• Direction vector of a cell: Average of entry and exit directions 

of each path for the given cell
• Features

• Collision?
• Direction of direction vector 

(N, E, S, W)
• Magnitude of direction vector 

> 0.5?

Conflict-Based Search with Highways

4-neighbor grid

28
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• Learning highways with graphical models
• Plan a shortest path for each agent independently
• Direction vector of a cell: Average of entry and exit directions 

of each path for the given cell
• Features

• Collision?
• Direction of direction vector 

(N, E, S, W)
• Magnitude of direction vector 

> 0.5?

Conflict-Based Search with Highways

4-neighbor grid
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• Graphical models basically encode probabilistic knowledge
– If agents collide in a cell, make it more likely that there is 

a highway in that cell
– If most agents move northward in a cell, make it more 

likely that a highway in that cell, if any, is a northward one
– If a northward highway is in a cell, make it more likely 

that highways in its northern and southern neighbors, if 
any, are also northward ones (to form a longer lane)

– If a northward highway is in a cell, make it more likely 
that highways in its western and eastern neighbors, if any, 
are southward ones (to form adjacent lanes in opposite 
directions)

Conflict-Based Search with Highways

4-neighbor grid

31

Conflict-Based Search with Highways

4-neighbor grid
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Conflict-Based Search with Highways

4-neighbor grid

ECBS(2)

iECBS(2)+HUMAN

iECS(2)+GM

33

Conflict-Based Search with Highways

4-neighbor grid

34
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Conflict-Based Search with Highways

4-neighbor grid
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• Rapid random restarts help to solve more multi-agent path 
finding problems within a given runtime limit.

• Here: We randomize the ordering in which the agents plan 
their paths in the high-level root node.

runs time limit 38 “easy” 12 “hard” 50 total

1 300 sec 100.00% 0.00% 76.00%

3 100 sec 97.65% 96.87% 97.60%

5 60 sec 98.57% 98.81% 98.70%

Conflict-Based Search with Highways

36
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Conflict-Based Search with Highways

8x4-neighbor grid

• Conflict-based search with highways (ECBS+HWY)

37

• 130 agents (half moving to the right, half moving to the left)
• Minimize flowtime with suboptimality bound 2

• Conflict-based search: 48.5 seconds
• Conflict-based search with highways: 29.1 seconds

Conflict-Based Search with Highways

38
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non-anonymous MAPF 

NP-hard

solved with A* approaches
e.g. conflict-based search or M*

anonymous MAPF 

polynomial-time solvable for 
makespan minimization

solved with flow approaches
e.g. max-flow algorithm

Extensions

39

• (Non-anonymous) MAPF
• Given: a number of agents (each with a start and goal 

location) and a known environment
• Task: find collision-free paths for the agents from their 

start to their goal locations that minimize makespan or 
flowtime

• Anonymous MAPF
• Given: a number of agents (each with a start location), an 

equal number of goal locations, and a known environment
• Task: assign a different goal location to each agent and 

then find collision-free paths for the agents from their start 
to their goal locations that minimize makespan or flowtime

Anonymous MAPF

40
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• Theorem [Yu and Lavalle]: An anonymous MAPF instance 
admits a MAPF plan with makespan at most T if and only if 
the time-expanded network with T periods admits a max 
flow of the number of agents.

[work by the University of Illinois at Urbana-Champaign, not me]

Anonymous MAPF

41

• Each agent moves N, E, S or W into 
an adjacent unblocked cell

• Not allowed (“vertex collision”)
– Agent 1 moves from X to Y
– Agent 2 moves from Z to Y

• Not allowed (“edge collision”)
– Agent 1 moves from X to Y
– Agent 2 moves from Y to X

X Y Z

X Y

t

t+1

X Y Z

t

t+1

X Y

[work by the University of Illinois at Urbana-Champaign, not me]

Anonymous MAPF

42

all edges have
capacity one
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[work by the University of Illinois at Urbana-Champaign, not me]

Anonymous MAPF

43

U V

W

X Y Z

non-anonymous MAPF 

NP-hard

solved with A* approaches
e.g. conflict-based search or M*

anonymous MAPF 

polynomial-time solvable for 
makespan minimization

solved with flow approaches
e.g. max-flow algorithm

Target Assignment and Path Finding (TAPF)

44
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Target Assignment and Path Finding (TAPF)

mix of non-anonymous and anonymous MAPF
Target Assignment and Path Finding (TAPF)

with k groups (here: 3), also called types

45

Target Assignment and Path Finding (TAPF)

Group 0: Agents that move from the packing stations to the storage locations
Group 1: Agents that move from the storage locations to Packing Station 1
Group 2: Agents that move from the storage locations to Packing Station 2
Group 3: Agents that move from the storage locations to Packing Station 3

[Wurman, D’Andrea and Mountz]

46
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• Theorem: TAPF (with k>1 groups) is NP-hard to solve 
optimally for makespan or flowtime minimization

• Theorem: TAPF (with k>1 groups) is NP-hard to approximate 
within any factor less than 4/3 for makespan minimization 
on graphs in general

Target Assignment and Path Finding (TAPF)

47

• Reduction from 2/2/3-SAT: It is NP-complete to determine 
whether a given 2/2/3-SAT instance is satisfiable

• Each variable appears in exactly 3 clauses
• Each variable appears uncomplemented in a clause of size two
• Each variable appears complemented in a clause of size two
• Each variable appears in a clause of size three

• Example: (X1X2)  (X1X3)  (X2X3)  (X1X2X3)

Target Assignment and Path Finding (TAPF)

48
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• Example: (X1X2)  (X1X3)  (X2X3)  (X1X2X3)

Target Assignment and Path Finding (TAPF)

49

• CBM combines the max-flow algorithm and conflict-based 
search to minimize makespan for TAPF instances
– CBM uses the max-flow algorithm to assign goal locations 

and plan paths for all agents in a group (to solve the 
corresponding anonymous MAPF instance)
CBM actually uses a min-cost max-flow algorithm since is 
important to choose paths that result in few collisions with 
agents from other groups

– CBM treats each group as a meta-agent and uses conflict-
based search to plan sets of paths for all meta-agents (to 
solve the corresponding non-anonymous MAPF problem)

• Theorem: CBM is complete and optimal for minimizing 
makespan for TAPF instances

Target Assignment and Path Finding (TAPF)

50
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• Experimental results

Target Assignment and Path Finding (TAPF)

CBM Mixed Integer
Program

Agents Time Success Time Success

10 0.34 100% 18.24 100%

20 0.78 100% 62.85 94%

30 1.71 100% 108.75 66%

40 2.95 100% 152.98 14%

50 5.32 100% 161.95 4%

30x30 4-neighbor grids with 10% randomly blocked cells 
and a 5-minute time limit

51

• The Package Exchange Robot Routing problem (PERR)
– Each agent carries exactly one package
– Each package needs to be delivered to a given goal location
– Two agents in adjacent locations can exchange packages

Package Exchange Robot Routing (PERR)

52
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Package Exchange Robot Routing (PERR)

MAPF PERR

53

• Theorem: All PERR instances (with k≥1 groups) are solvable 
(as long as all goal locations are different and all agents are 
in the same connected components as their goal locations)

• Theorem: Plans with polynomial makespans and flowtimes 
can be found in polynomial time.

Package Exchange Robot Routing (PERR)

54
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• Theorem: PERR (with k>1 groups) is NP-hard to solve 
optimally for makespan or flowtime minimization

• Theorem: PERR (with k>1 groups) is NP-hard to approximate 
within any factor less than 4/3 for makespan minimization 
on graphs in general

• Reductions from ≤3,=3-SAT or 2/2/3 SAT as before 
(because transfers do not help for our constructions)

Package Exchange Robot Routing (PERR)

55

• Each agent moves N, E, S or W into 
an adjacent unblocked cell

• Not allowed (“vertex collision”)
– Agent 1 moves from X to Y
– Agent 2 moves from Z to Y

• Not allowed (“edge collision”)
– Agent 1 moves from X to Y
– Agent 2 moves from Y to X

• PERR instances can be solved with versions of conflict-based 
search and multi-commodity flow algorithms

Package Exchange Robot Routing (PERR)

X Y Z

X Y

56
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• Planning uses models that are not completely accurate
– Robots are not completely synchronized
– Robots do not move exactly at the nominal speed
– Robots have unmodeled kinematic constraints
– …

• Plan execution will therefore likely deviate from the plan
• Replanning whenever plan execution deviates from the plan is 

intractable since it is NP-hard to find good plans 

Execution of MAPF Plans

57

• MAPF-POST makes use of a simple temporal network to post-
process the output of a multi-agent path finding solver in 
polynomial time to allow for plan execution on robots
– Takes into account edge lengths
– Takes into account velocity limits (for both robots and edges)
– Guarantees a safety distance among robots
– Avoids replanning in many cases

Execution of MAPF Plans

58
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Execution of MAPF Plans

4-neighbor grid

Agent 1  A  B  C  D  E  
Agent 2  B  C  F  C  D 

…

…

Precedence Graph

δ δ

δ δ

vertex = event that an agent arrives at a location

59

Execution of MAPF Plans

4-neighbor grid

Agent 1  A  B  C  D  E  
Agent 2  B  C  F  C  D 

…

…

Precedence Graph

δ δ

δ δ

Type 1 edge = order in which the same agent arrives at locations

60
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Execution of MAPF Plans

4-neighbor grid

Agent 1  A  B  C  D  E  
Agent 2  B  C  F  C  D 

…

…

Precedence Graph

δ δ

δ δ

Type 2 edge = order in which two different agents arrive at the same location

61

Execution of MAPF Plans

4-neighbor grid

Agent 1  A  B  C  D  E  
Agent 2  B  C  F  C  D 

…

…

Simple Temporal Network [Dechter, Meiri and Pearl]

δ δ

δ δ

[0,0]

[0,0]

[1,ꝏ] [1,ꝏ][2,ꝏ]

[2,ꝏ] [2,ꝏ][4,ꝏ]

[0,ꝏ]

[0,ꝏ]

[0,ꝏ]

δ/vmax
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Execution of MAPF Plans

• Minimize makespan and flowtime
– Schedule each arrival in a location as early as allowed by 

the constraints

63

Execution of MAPF Plans

• Maximize safety distance
– Assume that each agent moves with a constant velocity 

of at most vmin along every Type 1 edge
– Then, the safety distance is 2ݒߜ௠௜௡ ⁄௠௔௫ݒ

Maximize v*min

64
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Execution of MAPF Plans

• Main loop
– Run Conflict-Based Search with Highways to find a MAPF plan (slow)
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Execution of MAPF Plans

• Main loop
– Run Conflict-Based Search with Highways to find a MAPF plan (slow)
– Construct a simple temporal network for the MAPF plan

66
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Execution of MAPF Plans
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– Determine the earliest arrival times in the nodes
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Execution of MAPF Plans

• Main loop
– Run Conflict-Based Search with Highways to find a MAPF plan (slow)
– Construct a simple temporal network for the MAPF plan
– Determine the earliest arrival times in the nodes

– Calculate speeds for the robots from the earliest arrival times

68
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Execution of MAPF Plans

• Main loop
– Run Conflict-Based Search with Highways to find a MAPF plan (slow)
– Construct a simple temporal network for the MAPF plan
– Determine the earliest arrival times in the nodes

– Calculate speeds for the robots from the earliest arrival times
– Move robots along their paths in the MAPF plan with these speeds
– If plan execution deviates from the plan, then

70
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Execution of MAPF Plans

• Main loop
– Run Conflict-Based Search with Highways to find a MAPF plan (slow)
– Construct a simple temporal network for the MAPF plan
– Determine the earliest arrival times in the nodes

– Calculate speeds for the robots from the earliest arrival times
– Move robots along their paths in the MAPF plan with these speeds
– If plan execution deviates from the plan, then
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Execution of MAPF Plans

• Main loop
– Run Conflict-Based Search with Highways to find a MAPF plan
– Construct a simple temporal network for the MAPF plan
– Determine the earliest arrival times in the nodes
– If they do not exist, then 
– Calculate speeds for the robots from the earliest arrival times
– Move robots along their paths in the MAPF plan with these speeds
– If plan execution deviates from the plan, then

73

Execution of MAPF Plans

• MAPF solver: ECBS+HWY
• MAPF-POST: C++, boost graph library, Gurobi LP solver
• PC: i7-4600U 2.1 GHz, 12 GB RAM
• Terrain: 4x3 gridworld with 1m2 cells and δ = 0.4m
• Architecture: ROS with decentralized execution

– Robot controller with state [x,y,Θ] (attempts to meet deadline)
– PID controller (corrects for heading error and drift)

• Robot simulator: V-REP
• Robots: iRobot Create2 robots
• Test environment: VICON MX Motion Capture System

74
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Execution of MAPF Plans

8x4-neighbor grid

75

Planning for Delays

• Poster Presentation
– Ma, Kumar, Koenig, MAPF with Delay Probabilities
– Session “PS1: Planning,” Monday 2:00-3:30, Plaza A
– How to address delays with planning and execution 

monitoring rather than execution monitoring alone

76
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• Consider the TERMES robots

Feasibility Study: TERMES Robots

4-neighbor grid [work by Harvard University, not me]

77

• Capabilities of the TERMES robots

Feasibility Study: TERMES Robots

78
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Feasibility Study: TERMES Robots

• Difficulty

4-neighbor grid
79

Feasibility Study: TERMES Robots

• Difficulty

4-neighbor grid
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Feasibility Study: TERMES Robots

• Difficulty
– Behavior-based robotics does badly
– General-purpose planning does badly

• We need a special-purpose planner for the construction task

81

Feasibility Study: TERMES Robots

82

• Two robots cannot pass each other on a ramp. Thus, one 
needs to solve a multi-robot path-planning problem
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Single Robot Case

• Tree-based dynamic programming

1 1 1 1 1

1 1

1 3 1

1 1

1 1 1 1 1

Tower by Tower (TBT) Method

4-neighbor grid

83

Single Robot Case

• Tree-based dynamic programming

block reservoir (to get new blocks)

1

2

3

4

5

1 2 3 4 5

4-neighbor grid

84
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• Tree-based dynamic programming

1

2

3

4

5

1 2 3 4 5

Single Robot Case

4-neighbor grid

block reservoir (to get new blocks)
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Single Robot Case

• Tree-based dynamic programming

3 → 5 2 → 7

0 → ?

86
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Single Robot Case

• Tree-based dynamic programming

3 → 5 2 → 7

0 → 6 

87

Single Robot Case

• Tree-based dynamic programming

1 1 1 1 1

1 1

1 3 1

1 1

1 1 1 1 1

4-neighbor grid
88
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Single Robot Case

• Tree-based dynamic programming

1 1 1 1 1

1 1

1 3 1

1 2 1

1 1 1 1

4-neighbor grid
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Single Robot Case

• Tree-based dynamic programming

1 1 1 1 1

1 1

1 3 1

1

1 1 1 1

4-neighbor grid
90
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Single Robot Case

• Tree-based dynamic programming

1 1 1 1 1

1 1

1 3 1

1 1

1 1 1 1 1

4-neighbor grid
91

S

1

2

3

4

5

1 2 3 4 5

Number of block operations
TBT = Tower by Tower Method

RBR = Row by Row Method
MST = (Minimum) Spanning Tree Method

RMST = Reweighted (Minimum) Spanning Tree Method

Single Robot Case

4-neighbor grid

Computation time: < 5 seconds

92
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Multi-Robot Case

• Ongoing work
– Spanning trees allow for parallelism since different robots 

might be able to work on different subtrees
– Multiple robots can implement strategies that single 

robots cannot implement, for example, bucket brigades

93
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Conclusions

• The research on multi-agent path finding is joint work with H. 
Andreasson, N. Ayanian, M. Cirillo, L. Cohen, W. Hoenig, S. 
Kumar, H. Ma, F. Pecora, G. Sharon, C. Tovey, T. Uras and H. Xu

• The research on planning for the TERMES robots is joint work 
with T. Cai, S. Jung, S. Kumar and D. Zhang

• Thank you for listening!
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