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Background
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Action Languages

m In general, action languages represent
states (using fluents) and transitions (using
actions)

Simple example in C where A is an action

caused Q if Q after Q,

caused -Q if -Q after -Q,

caused P if TRUE after Q”A. -ALA
STRIPS -- ( Fikes & Nilsson, 1971)
A,B,C -- (Gelfond & Lifschitz, 1998)

PDDL -- emerging standard for action description

AA

and P,Q are fluents. -AA A

caused P if P after P, @ @

caused -P if-P after -P, A
e9 (g
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Current Process

Assume a blocks world with 3

blocks and portion of an action
language description

Action
Language

J

caused on(B,B1) after move(B,B1)
*Moving a block B onto B1 means B is on B1 at next time step

nonexecutable move(B,B1) if on(B2,B) && on(B3,B1)

*Moving a block B onto B1 is impossible if either B or B1 have
another block on them

Grounding

on(a,a), = move(a,a), A—on(a,a), ~—-on(b,a), A—on(c,a),
A—on(a,a), A—on(b,a), A—on(c,a),

on(a,b), = move(a,b), A~—on(a,a), ~A—on(b,a), A~—on(c,a), X 3 X plan
A—on(a,b), A~—on(b,b), A—on(c,b),

U

on(a,c), = move(a,c), A~—on(a,a), ~—on(b,a), ~—on(c,a), |ength
A—on(a,c), ~—on(b,c), A~—on(c,c),

Pass to SAT Checker

©1999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

15-Jul-99



Satisfiability (SAT) Checkers

m A variety of satisfiability checkers are
available for planning problems:

* VIS -- (Brayton et al., 1996)
« SMV/NuUSMV -- (Manzo, 1998)
 WalkSAT -- (Selman et al., 1994)

m Question: How to apply satisfiability
research efficiently in the causal
planning domain in order to mitigate
state space explosion and improve
nlanning speed?
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Query Language Support

m Given a possible set of initial states and
actions --

Query languages formulate a set of queries
concerning the system’s future state

—P,Q,R (Gelfond & Lifschitz, 1998) - Query
languages for the A,B,C set of action languages

— CTL (Computational Tree Logic) - Widely used
standard in satisfiability research and logic
synthesis

—Various implementation specific query
languages developed by individual researchers
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Problems with State-of-the-Art

m State Space Explosion

 Grounded representation size dependent on plan
length, number of actions, number of fluents and
number of possible parameters

 Instantiation of all plan times results in heavy
performance penalty for replanning

m Query Languages

* Query languages vary between action languages;
leading to confusion

m Satisfiability Checking

« Usage of CNF for state encoding produces slow
satisfiability checking for large problems
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Proposed Improvements
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Proposed Theoretical Improvements

m State Space Reduction

* Innovative use of new encodings facilitated by new
satisfiability checkers

m Query Language Expressiveness
« Use of standards from other fields (e.g. CTL)

m Encoding for Satisfiability Checking
« BDD (Binary Decision Diagram)

» Efficient compact representation of states provided
by certain satisfiability tools
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State Space Reduction ()

m Expected size:
« A =# of actions at any given time
A'= Average # of possible parameters on any action A
F = # of fluent variables
F'= Average # of parameters on any action F
n = # of time steps in plan

Z(A*A,+F*F,)*n # of plan steps, n

One Plan Step

=
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State Space Reduction (ll)

m Approach: State-based Encodings

 Reduce state space by using a Finite State Machine and calculating
available next states.

 Dynamic environment = lots of replanning, current methods ground
representation of unreached states
m Impact:

— Reduces memory usage by only encoding current and next state

— Grounded state space size not related to plan length; results in a
reduction by a factor of 2n

Inputs/Initial State

Conditions Information QUpLlE
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State Space Reduction(lll)

m Most current tools:
* requires explicitly instantiation of each numerical parameter
« force relative boolean representations to describe absolute values.

m Approach: Parameterized Encoding
« does not require explicit instantiation
» allows direct representation of numerical values

m Impact:
— State space reduction of 24’

Encoding | Ground State Comments

at(x
( ,Y) at(2,0), at(2,1), at(2,2) A total of 9 variables are

(2.2)]  Explicit | at(1,0), at(1,1), at(1,2) needed.
at(0,0), at(0,1), at(0,2)

above(bottom), Absolute positioning is lost
Boolean near(left), etc. and all position is relative

at(int x, int y) Preserves positioning and
ParamEter requires one variable; increases

computation reqs.
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State Space Reduction (1V)

m Intelligent branching - (Giungchiglia,et al. 1998)

« Many current SAT planners do not differentiate between fluents
and actions when searching the state space.

m Approach:
* Note: Changes in fluents are the result of actions.

- Any fluents whose values can be deterministically chosen by
action assignments can be pruned.

m Impact:

* Reduction of 2(F*F,)where F is a deterministically derived
fluent value and F' is the average # of possible parameters.
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Query Language Expressiveness

m Approach:

« Support for standard CTL syntax provides access to
standard query representation without sacrificing
expressiveness.

 CTL Syntax:
— AF(x) - x will be always eventually true (always finally)
— AG(x) - x is always true (always globally)
— EF(x) - it is possible for x to be true (eventually finally)

— EG(x) - it is possible for x to eventually always be true
(eventually globally)

m Impact:

* Provides a common language-independent
representation accepted by many existing tools
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BDD - Binary Decision Diagram (l)

interial Loaded, —Loaded, Alive, —Alive,
caused Loaded after Load,

caused —Alive after Loaded A Shoot,
caused —Loaded after Shoot,
nonexecutable Shoot if —Loaded
nonexecutable Load A Shoot.

Loadedl T Loadedl T

©000 00
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BDD - Binary Decision Diagram (ll)

m Approach:
- BDDs supported by a variety of SAT

checkers
* Provide an efficient and compact encoding

of state

m Impact:
* Reduction in memory usage for
representing grounded states
* Faster query language checking from SAT

checkers
* Faster plan solutions from usage of SAT

checkers
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Current Implementation
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Research Leveraging Existing Tools

m VIS - A satisfiability checker and
verification tool

m C 2 An advanced action language
representation

m BLIF-MV - A logic file format that can
be accepted by VIS.

m Antlr 2 A lex/yacc type parsing tool
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Architecture

One of the available
action languages

Parser/Lexer [Antir

Grounded Instantiation/translation
Representation of action language

VIS

SAT-based Satisfiabilitv Tool Final Plan or
Representation 4 Query Answer
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Current State of Research

m Causal Parser implementation is
complete

- grounding and generation of SAT-based
representation Is being explored.

m Numerical value usage within a SAT
checker is being explored.

m Speed/size testing against other
planners remains to be done.
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Conclusions

m SAT tools have been shown to perform
efficiently when used for planning tasks.

m Improvements are possible to:
 Enhance the language expressiveness

* Improve query utilization through standards
usage

m Usage of these techniques may reduce
memory requirements and increase
speed to plan solution
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