
1999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

OBDDOBDD--based Planning with Real based Planning with Real
Variables in a NonVariables in a Non--Deterministic Deterministic

EnvironmentEnvironment

Anuj Goel and K. S. Barber
Laboratory for Intelligent Processes and Systems

The University of Texas At Austin
AAAI-99 Student Poster Session

1999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

BackgroundBackground

15-Jul-991999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

Action LanguagesAction Languages

� In general, action languages represent
states (using fluents) and transitions (using
actions)

� Simple example in C where A is an action
and P,Q are fluents.
caused P if P after P,
caused -P if-P after -P,
caused Q if Q after Q,
caused -Q if -Q after -Q,
caused P if TRUE after Q^A.

� STRIPS -- (Fikes & Nilsson, 1971)
� A,B,C -- (Gelfond & Lifschitz, 1998)
� PDDL -- emerging standard for action description

-P,-Q -P,-Q

-P,-Q-P,-Q

-A,A

-A,A

-A

-A,A

A

15-Jul-991999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

Current ProcessCurrent Process

Action
Language

caused on(B,B1) after move(B,B1)
*Moving a block B onto B1 means B is on B1 at next time step

nonexecutable move(B,B1) if on(B2,B) && on(B3,B1)
*Moving a block B onto B1 is impossible if either B or B1 have

another block on them

a b
c

Grounding
on(a,a)1 ≡≡≡≡ move(a,a)0 ∧¬∧¬∧¬∧¬on(a,a)0 ∧¬∧¬∧¬∧¬on(b,a)0 ∧¬∧¬∧¬∧¬on(c,a)0

∧¬∧¬∧¬∧¬on(a,a)0 ∧¬∧¬∧¬∧¬on(b,a)0 ∧¬∧¬∧¬∧¬on(c,a)0
on(a,b)1 ≡≡≡≡ move(a,b)0 ∧¬∧¬∧¬∧¬on(a,a)0 ∧¬∧¬∧¬∧¬on(b,a)0 ∧¬∧¬∧¬∧¬on(c,a)0

∧¬∧¬∧¬∧¬on(a,b)0 ∧¬∧¬∧¬∧¬on(b,b)0 ∧¬∧¬∧¬∧¬on(c,b)0
on(a,c)1 ≡≡≡≡ move(a,c)0 ∧¬∧¬∧¬∧¬on(a,a)0 ∧¬∧¬∧¬∧¬on(b,a)0 ∧¬∧¬∧¬∧¬on(c,a)0

∧¬∧¬∧¬∧¬on(a,c)0 ∧¬∧¬∧¬∧¬on(b,c)0 ∧¬∧¬∧¬∧¬on(c,c)0

x 3 x plan
length

Pass to SAT Checker

Assume a blocks world with 3
blocks and portion of an action
language description

15-Jul-991999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

Satisfiability (SAT) CheckersSatisfiability (SAT) Checkers

� A variety of satisfiability checkers are
available for planning problems:
• VIS -- (Brayton et al., 1996)
• SMV/NuSMV -- (Manzo, 1998)
• WalkSAT -- (Selman et al., 1994)

� Question: How to apply satisfiability
research efficiently in the causal
planning domain in order to mitigate
state space explosion and improve
planning speed?

15-Jul-991999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

Query Language SupportQuery Language Support

� Given a possible set of initial states and
actions --
Query languages formulate a set of queries
concerning the system’s future state

– P,Q,R (Gelfond & Lifschitz, 1998) - Query
languages for the A,B,C set of action languages

– CTL (Computational Tree Logic) - Widely used
standard in satisfiability research and logic
synthesis

– Various implementation specific query
languages developed by individual researchers

15-Jul-991999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

Problems with StateProblems with State--ofof--thethe--ArtArt

� State Space Explosion
• Grounded representation size dependent on plan

length, number of actions, number of fluents and
number of possible parameters

• Instantiation of all plan times results in heavy
performance penalty for replanning

� Query Languages
• Query languages vary between action languages;

leading to confusion

� Satisfiability Checking
• Usage of CNF for state encoding produces slow

satisfiability checking for large problems

1999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

Proposed ImprovementsProposed Improvements

15-Jul-991999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

Proposed Theoretical ImprovementsProposed Theoretical Improvements
� State Space Reduction

• Innovative use of new encodings facilitated by new
satisfiability checkers

� Query Language Expressiveness
• Use of standards from other fields (e.g. CTL)

� Encoding for Satisfiability Checking
• BDD (Binary Decision Diagram)
• Efficient compact representation of states provided

by certain satisfiability tools

15-Jul-991999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

One Plan Step

State Space Reduction (I)State Space Reduction (I)

� Expected size:
• A = # of actions at any given time
• A'= Average # of possible parameters on any action A
• F = # of fluent variables
• F'= Average # of parameters on any action F
• n = # of time steps in plan

n)*FF*A(A*2 ′+′

Actions, AActions, AActions, AActions, AActions, A

Actions, AActions, AActions, AActions, Aparameters, A' Actions, AActions, AActions, AActions, Aparameters, A'

Actions, AActions, AActions, AActions, AFluents, F

parameters, F' parameters, F'

15-Jul-991999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

State Space Reduction (II)State Space Reduction (II)
� Approach: State-based Encodings

• Reduce state space by using a Finite State Machine and calculating
available next states.

• Dynamic environment = lots of replanning, current methods ground
representation of unreached states

� Impact:
– Reduces memory usage by only encoding current and next state
– Grounded state space size not related to plan length; results in a

reduction by a factor of 2n

FSM

Inputs/Initial
Conditions

OutputsState
Information

15-Jul-991999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

State Space Reduction(III)State Space Reduction(III)
� Most current tools:

• requires explicitly instantiation of each numerical parameter
• force relative boolean representations to describe absolute values.

� Approach: Parameterized Encoding
• does not require explicit instantiation
• allows direct representation of numerical values

� Impact:
– State space reduction of 2A'

at(x,y)

(0,0)

(2,2) Explicit

Boolean

Parameter

at(2,0), at(2,1), at(2,2)
at(1,0), at(1,1), at(1,2)
at(0,0), at(0,1), at(0,2)

above(bottom),
near(left), etc.
at(int x, int y)

A total of 9 variables are
needed.

Absolute positioning is lost
and all position is relative

Preserves positioning and
requires one variable; increases

computation reqs.

Encoding Ground State Comments

15-Jul-991999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

State Space Reduction (IV)State Space Reduction (IV)

� Intelligent branching - (Giungchiglia,et al. 1998)
• Many current SAT planners do not differentiate between fluents

and actions when searching the state space.

� Approach:
• Note: Changes in fluents are the result of actions.
• Any fluents whose values can be deterministically chosen by

action assignments can be pruned.

� Impact:
• Reduction of where F is a deterministically derived

fluent value and F' is the average # of possible parameters.
)*(2 FF ′

15-Jul-991999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

Query Language ExpressivenessQuery Language Expressiveness

� Approach:
• Support for standard CTL syntax provides access to

standard query representation without sacrificing
expressiveness.

• CTL Syntax:
– AF(x) - x will be always eventually true (always finally)
– AG(x) - x is always true (always globally)
– EF(x) - it is possible for x to be true (eventually finally)
– EG(x) - it is possible for x to eventually always be true

(eventually globally)

� Impact:
• Provides a common language-independent

representation accepted by many existing tools

15-Jul-991999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

BDD BDD -- Binary Decision Diagram (I)Binary Decision Diagram (I)

Loadi

Loadedi

Shooti

Loadedi+1

TF

Loadedi+1Loadedi+1

FTFT

F

T F

T F

T

T T T FFF

interial Loaded, ¬¬¬¬Loaded, Alive, ¬¬¬¬Alive,
caused Loaded after Load,
caused ¬¬¬¬Alive after Loaded ∧∧∧∧ Shoot,
caused ¬¬¬¬Loaded after Shoot,
nonexecutable Shoot if ¬¬¬¬Loaded
nonexecutable Load ∧∧∧∧ Shoot.

15-Jul-991999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

BDD BDD -- Binary Decision Diagram (II)Binary Decision Diagram (II)

� Approach:
• BDDs supported by a variety of SAT

checkers
• Provide an efficient and compact encoding

of state
� Impact:

• Reduction in memory usage for
representing grounded states

• Faster query language checking from SAT
checkers

• Faster plan solutions from usage of SAT
checkers

1999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

Current ImplementationCurrent Implementation

15-Jul-991999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

Research Leveraging Existing ToolsResearch Leveraging Existing Tools

� VIS ���� A satisfiability checker and
verification tool

� C ���� An advanced action language
representation

� BLIF-MV ���� A logic file format that can
be accepted by VIS.

� Antlr ���� A lex/yacc type parsing tool

15-Jul-991999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

ArchitectureArchitecture

Action LanguageAction Language

Parser/LexerParser/Lexer

Grounded
Representation

Grounded
Representation

SAT-based
Representation

SAT-based
Representation Satisfiability ToolSatisfiability Tool Final Plan or

Query Answer
Final Plan or

Query Answer

One of the available
action languages

Antlr

Instantiation/translation
of action language

VIS

15-Jul-991999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

Current State of ResearchCurrent State of Research

� Causal Parser implementation is
complete

• grounding and generation of SAT-based
representation is being explored.

� Numerical value usage within a SAT
checker is being explored.

� Speed/size testing against other
planners remains to be done.

15-Jul-991999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

ConclusionsConclusions

� SAT tools have been shown to perform
efficiently when used for planning tasks.

� Improvements are possible to:
• Enhance the language expressiveness
• Improve query utilization through standards

usage

� Usage of these techniques may reduce
memory requirements and increase
speed to plan solution

