
1999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

OBDDOBDD--based Planning with Real based Planning with Real
Variables in a NonVariables in a Non--Deterministic Deterministic

EnvironmentEnvironment

Anuj Goel and K. S. Barber
Laboratory for Intelligent Processes and Systems

The University of Texas At Austin
AAAI-99 Student Poster Session

1999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

BackgroundBackground

15-Jul-991999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

Action LanguagesAction Languages

� In general, action languages represent
states (using fluents) and transitions (using
actions)

� Simple example in C where A is an action
and P,Q are fluents.
caused P if P after P,
caused -P if-P after -P,
caused Q if Q after Q,
caused -Q if -Q after -Q,
caused P if TRUE after Q^A.

� STRIPS -- (Fikes & Nilsson, 1971)
� A,B,C -- (Gelfond & Lifschitz, 1998)
� PDDL -- emerging standard for action description

-P,-Q -P,-Q

-P,-Q-P,-Q

-A,A

-A,A

-A

-A,A

A

15-Jul-991999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

Current ProcessCurrent Process

Action
Language

caused on(B,B1) after move(B,B1)
*Moving a block B onto B1 means B is on B1 at next time step

nonexecutable move(B,B1) if on(B2,B) && on(B3,B1)
*Moving a block B onto B1 is impossible if either B or B1 have

another block on them

a b
c

Grounding
on(a,a)1 ≡≡≡≡ move(a,a)0 ∧¬∧¬∧¬∧¬on(a,a)0 ∧¬∧¬∧¬∧¬on(b,a)0 ∧¬∧¬∧¬∧¬on(c,a)0

∧¬∧¬∧¬∧¬on(a,a)0 ∧¬∧¬∧¬∧¬on(b,a)0 ∧¬∧¬∧¬∧¬on(c,a)0
on(a,b)1 ≡≡≡≡ move(a,b)0 ∧¬∧¬∧¬∧¬on(a,a)0 ∧¬∧¬∧¬∧¬on(b,a)0 ∧¬∧¬∧¬∧¬on(c,a)0

∧¬∧¬∧¬∧¬on(a,b)0 ∧¬∧¬∧¬∧¬on(b,b)0 ∧¬∧¬∧¬∧¬on(c,b)0
on(a,c)1 ≡≡≡≡ move(a,c)0 ∧¬∧¬∧¬∧¬on(a,a)0 ∧¬∧¬∧¬∧¬on(b,a)0 ∧¬∧¬∧¬∧¬on(c,a)0

∧¬∧¬∧¬∧¬on(a,c)0 ∧¬∧¬∧¬∧¬on(b,c)0 ∧¬∧¬∧¬∧¬on(c,c)0

x 3 x plan
length

Pass to SAT Checker

Assume a blocks world with 3
blocks and portion of an action
language description

15-Jul-991999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

Satisfiability (SAT) CheckersSatisfiability (SAT) Checkers

� A variety of satisfiability checkers are
available for planning problems:
• VIS -- (Brayton et al., 1996)
• SMV/NuSMV -- (Manzo, 1998)
• WalkSAT -- (Selman et al., 1994)

� Question: How to apply satisfiability
research efficiently in the causal
planning domain in order to mitigate
state space explosion and improve
planning speed?

15-Jul-991999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

Query Language SupportQuery Language Support

� Given a possible set of initial states and
actions --
Query languages formulate a set of queries
concerning the system’s future state

– P,Q,R (Gelfond & Lifschitz, 1998) - Query
languages for the A,B,C set of action languages

– CTL (Computational Tree Logic) - Widely used
standard in satisfiability research and logic
synthesis

– Various implementation specific query
languages developed by individual researchers

15-Jul-991999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

Problems with StateProblems with State--ofof--thethe--ArtArt

� State Space Explosion
• Grounded representation size dependent on plan

length, number of actions, number of fluents and
number of possible parameters

• Instantiation of all plan times results in heavy
performance penalty for replanning

� Query Languages
• Query languages vary between action languages;

leading to confusion

� Satisfiability Checking
• Usage of CNF for state encoding produces slow

satisfiability checking for large problems

1999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

Proposed ImprovementsProposed Improvements

15-Jul-991999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

Proposed Theoretical ImprovementsProposed Theoretical Improvements
� State Space Reduction

• Innovative use of new encodings facilitated by new
satisfiability checkers

� Query Language Expressiveness
• Use of standards from other fields (e.g. CTL)

� Encoding for Satisfiability Checking
• BDD (Binary Decision Diagram)
• Efficient compact representation of states provided

by certain satisfiability tools

15-Jul-991999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

One Plan Step

State Space Reduction (I)State Space Reduction (I)

� Expected size:
• A = # of actions at any given time
• A'= Average # of possible parameters on any action A
• F = # of fluent variables
• F'= Average # of parameters on any action F
• n = # of time steps in plan

n)*FF*A(A*2 ′+′

Actions, AActions, AActions, AActions, AActions, A

Actions, AActions, AActions, AActions, Aparameters, A' Actions, AActions, AActions, AActions, Aparameters, A'

Actions, AActions, AActions, AActions, AFluents, F

parameters, F' parameters, F'

15-Jul-991999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

State Space Reduction (II)State Space Reduction (II)
� Approach: State-based Encodings

• Reduce state space by using a Finite State Machine and calculating
available next states.

• Dynamic environment = lots of replanning, current methods ground
representation of unreached states

� Impact:
– Reduces memory usage by only encoding current and next state
– Grounded state space size not related to plan length; results in a

reduction by a factor of 2n

FSM

Inputs/Initial
Conditions

OutputsState
Information

15-Jul-991999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

State Space Reduction(III)State Space Reduction(III)
� Most current tools:

• requires explicitly instantiation of each numerical parameter
• force relative boolean representations to describe absolute values.

� Approach: Parameterized Encoding
• does not require explicit instantiation
• allows direct representation of numerical values

� Impact:
– State space reduction of 2A'

at(x,y)

(0,0)

(2,2) Explicit

Boolean

Parameter

at(2,0), at(2,1), at(2,2)
at(1,0), at(1,1), at(1,2)
at(0,0), at(0,1), at(0,2)

above(bottom),
near(left), etc.
at(int x, int y)

A total of 9 variables are
needed.

Absolute positioning is lost
and all position is relative

Preserves positioning and
requires one variable; increases

computation reqs.

Encoding Ground State Comments

15-Jul-991999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

State Space Reduction (IV)State Space Reduction (IV)

� Intelligent branching - (Giungchiglia,et al. 1998)
• Many current SAT planners do not differentiate between fluents

and actions when searching the state space.

� Approach:
• Note: Changes in fluents are the result of actions.
• Any fluents whose values can be deterministically chosen by

action assignments can be pruned.

� Impact:
• Reduction of where F is a deterministically derived

fluent value and F' is the average # of possible parameters.
)*(2 FF ′

15-Jul-991999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

Query Language ExpressivenessQuery Language Expressiveness

� Approach:
• Support for standard CTL syntax provides access to

standard query representation without sacrificing
expressiveness.

• CTL Syntax:
– AF(x) - x will be always eventually true (always finally)
– AG(x) - x is always true (always globally)
– EF(x) - it is possible for x to be true (eventually finally)
– EG(x) - it is possible for x to eventually always be true

(eventually globally)

� Impact:
• Provides a common language-independent

representation accepted by many existing tools

15-Jul-991999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

BDD BDD -- Binary Decision Diagram (I)Binary Decision Diagram (I)

Loadi

Loadedi

Shooti

Loadedi+1

TF

Loadedi+1Loadedi+1

FTFT

F

T F

T F

T

T T T FFF

interial Loaded, ¬¬¬¬Loaded, Alive, ¬¬¬¬Alive,
caused Loaded after Load,
caused ¬¬¬¬Alive after Loaded ∧∧∧∧ Shoot,
caused ¬¬¬¬Loaded after Shoot,
nonexecutable Shoot if ¬¬¬¬Loaded
nonexecutable Load ∧∧∧∧ Shoot.

15-Jul-991999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

BDD BDD -- Binary Decision Diagram (II)Binary Decision Diagram (II)

� Approach:
• BDDs supported by a variety of SAT

checkers
• Provide an efficient and compact encoding

of state
� Impact:

• Reduction in memory usage for
representing grounded states

• Faster query language checking from SAT
checkers

• Faster plan solutions from usage of SAT
checkers

1999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

Current ImplementationCurrent Implementation

15-Jul-991999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

Research Leveraging Existing ToolsResearch Leveraging Existing Tools

� VIS ���� A satisfiability checker and
verification tool

� C ���� An advanced action language
representation

� BLIF-MV ���� A logic file format that can
be accepted by VIS.

� Antlr ���� A lex/yacc type parsing tool

15-Jul-991999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

ArchitectureArchitecture

Action LanguageAction Language

Parser/LexerParser/Lexer

Grounded
Representation

Grounded
Representation

SAT-based
Representation

SAT-based
Representation Satisfiability ToolSatisfiability Tool Final Plan or

Query Answer
Final Plan or

Query Answer

One of the available
action languages

Antlr

Instantiation/translation
of action language

VIS

15-Jul-991999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

Current State of ResearchCurrent State of Research

� Causal Parser implementation is
complete

• grounding and generation of SAT-based
representation is being explored.

� Numerical value usage within a SAT
checker is being explored.

� Speed/size testing against other
planners remains to be done.

15-Jul-991999 The Laboratory for Intelligent Processes and Systems, The University of Texas at Austin

ConclusionsConclusions

� SAT tools have been shown to perform
efficiently when used for planning tasks.

� Improvements are possible to:
• Enhance the language expressiveness
• Improve query utilization through standards

usage

� Usage of these techniques may reduce
memory requirements and increase
speed to plan solution

