Abstract

T. Phan, S.-H. Chan and S. Koenig. Counterfactual Online Learning for Open-Loop Monte-Carlo Planning. In AAAI Conference on Artificial Intelligence (AAAI), pages (in print), 2025.

Abstract: Monte-Carlo Tree Search (MCTS) is a popular approach to online planning under uncertainty. While MCTS uses statistical sampling via multi-armed bandits to avoid exhaustive search in complex domains, common closed-loop approaches typically construct enormous search trees to consider a large number of potential observations and actions. On the other hand, open-loop approaches offer better memory efficiency by ignoring observations but are generally not competitive with closed-loop MCTS in terms of performance - even with commonly integrated human knowledge. In this paper, we propose Counterfactual Open-loop Reasoning with Ad hoc Learning (CORAL) for open-loop MCTS, using a causal multi-armed bandit approach with unobserved confounders (MABUC). CORAL consists of two online learning phases that are conducted during the open-loop search. In the first phase, observational values are learned based on preferred actions. In the second phase, counterfactual values are learned with MABUCs to make a decision via an intent policy obtained from the observational values. We evaluate CORAL in four POMDP benchmark scenarios and compare it with closed-loop and open-loop alternatives. In contrast to standard open-loop MCTS, CORAL achieves competitive performance compared with closed-loop algorithms while constructing significantly smaller search trees.

Download the paper in pdf.

Many publishers do not want authors to make their papers available electronically after the papers have been published. Please use the electronic versions provided here only if hardcopies are not yet available. If you have comments on any of these papers, please send me an email! Also, please send me your papers if we have common interests.


This page was automatically created by a bibliography maintenance system that was developed as part of an undergraduate research project, advised by Sven Koenig.