Abstract

T. Phan, B. Zhang, S.-H. Chan and S. Koenig. Anytime Multi-Agent Path Finding with an Adaptive Delay-Based Heuristic. In AAAI Conference on Artificial Intelligence (AAAI), pages (in print), 2025.

Abstract: Anytime multi-agent path finding (MAPF) is a promising approach to scalable and collision-free path optimization in multi-agent systems. MAPF-LNS, based on Large Neighborhood Search (LNS), is the current state-of-the-art approach where a fast initial solution is iteratively optimized by destroying and repairing selected paths of the solution. Current MAPF-LNS variants commonly use an adaptive selection mechanism to choose among multiple destroy heuristics. However, to determine promising destroy heuristics, MAPF-LNS requires a considerable amount of exploration time. As common destroy heuristics are stationary, i.e., non-adaptive, any performance bottleneck caused by them cannot be overcome by adaptive heuristic selection alone, thus limiting the overall effectiveness of MAPF-LNS. In this paper, we propose Adaptive Delay-based Destroy-and-Repair Enhanced with Success-based Self-learning (ADDRESS) as a single-destroy-heuristic variant of MAPF-LNS. ADDRESS applies restricted Thompson Sampling to the top-K set of the most delayed agents to select a seed agent for adaptive LNS neighborhood generation. We evaluate ADDRESS in multiple maps from the MAPF benchmark set and demonstrate cost improvements by at least 50 percent in large-scale scenarios with up to a thousand agents, compared with the original MAPF-LNS and other state-of-the-art methods.

Download the paper in pdf.

Many publishers do not want authors to make their papers available electronically after the papers have been published. Please use the electronic versions provided here only if hardcopies are not yet available. If you have comments on any of these papers, please send me an email! Also, please send me your papers if we have common interests.


This page was automatically created by a bibliography maintenance system that was developed as part of an undergraduate research project, advised by Sven Koenig.