Abstract

Y. Tang, Z. Yu, Y. Zheng, S. Kumar, J. Li and S. Koenig. Caching-Augmented Lifelong Multi-Agent Path Finding. In AAMAS-25 Workshop on Autonomous Robots and Multirobot Systems, pages (in print), 2025.

Abstract: Multi-Agent Path Finding (MAPF), which involves finding collision-free paths for multiple robots, is crucial in various applications. Lifelong MAPF, where targets are reassigned to agents as soon as they complete their initial targets, offers a more accurate approximation of real-world warehouse planning. In this paper, we present a novel mechanism named Caching-Augmented Lifelong MAPF (CAL-MAPF), designed to improve the performance of Lifelong MAPF. We have developed a new type of map grid called cache for temporary item storage and replacement, and created a locking mechanism to improve the planning solution's stability. A task assigner (TA) is designed for CAL-MAPF to allocate target locations to agents and control agent status in different situations. CAL-MAPF has been evaluated using various cache replacement policies and input task distributions. We have identified three main factors significantly impacting CAL-MAPF performance through experimentation: suitable input task distribution, high cache hit rate, and smooth traffic. In general, CAL-MAPF has demonstrated potential for performance improvements in certain task distributions, map and agent configurations.

Download the paper in pdf.

Many publishers do not want authors to make their papers available electronically after the papers have been published. Please use the electronic versions provided here only if hardcopies are not yet available. If you have comments on any of these papers, please send me an email! Also, please send me your papers if we have common interests.


This page was automatically created by a bibliography maintenance system that was developed as part of an undergraduate research project, advised by Sven Koenig.