Abstract
O. Salzman, C. Ulloa, A. Felner and S. Koenig. Multi-Objective Search: Algorithms, Applications, and Emerging Directions [Emerging Trends in AI]. In AAAI Conference on Artificial Intelligence (AAAI), pages (in print), 2026.Abstract: Multi-objective search (MOS) has emerged as a unifying framework for planning and decision-making problems where multiple, often conflicting, criteria must be balanced. While the problem has been studied for decades, recent years have seen renewed interest in the topic across AI applications such as robotics, transportation, and operations research, reflecting the reality that real-world systems rarely optimize a single measure. This paper surveys developments in MOS while highlighting cross-disciplinary opportunities, and outlines open challenges that define the emerging frontier of MOS research.
Many publishers do not want authors to make their papers available electronically after the papers have been published. Please use the electronic versions provided here only if hardcopies are not yet available. If you have comments on any of these papers, please send me an email! Also, please send me your papers if we have common interests.
This page was automatically created by a bibliography maintenance system that was developed as part of an undergraduate research project, advised by Sven Koenig.