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Abstract

Since more and more algorithms are proposed for multi-agent
path finding (MAPF) and each of them has many hyperpa-
rameters to be specified, choosing one for a specific scenario
that fulfills some requirements is a very important task. Pre-
vious research in algorithm selection for MAPF mostly fo-
cused on optimal algorithms and showed that machine learn-
ing could help. In this paper, we study algorithm selection
for general solvers for MAPF, which further includes choos-
ing between different suboptimal algorithms and choosing
between solvers from different hyperparameters of the same
algorithm. We formulate the problem as a group of predic-
tion problems with different optimization objectives, which
handle the new tradeoff between runtime and solution quality
introduced by suboptimal algorithms, and different metrics
to evaluate the learning model. Then we propose a group of
learning tasks to solve these production problems. We iden-
tify the issue of always using resize for inputs. We use exten-
sive experiments to show how different learning tasks should
be used for different problems. We also discuss how to choose
machine learning models for MAPF algorithm selection to
balance the model size and the final performance.

Introduction
Multi-agent path finding (MAPF) is the problem that con-
siders how to generate a set of collision-free paths for a
team of agents given the start and goal locations of each
agent while minimizing some optimization objectives (such
as travel times, travel distances, etc.) (Stern et al. 2019).
In recent years, MAPF has been an emerging research do-
main that has gotten a lot of focus because of its wide appli-
cations in warehouses, airport schedules, and autonomous
driving. While the problem is proved to be NP-hard in cer-
tain cases (Yu and LaValle 2013; Ma et al. 2016; Nebel
2020) and also hard in practice in other cases, many al-
gorithms are created to find optimal, bounded suboptimal
or suboptimal solutions. For the same standard benchmark,
new algorithms can solve the scenarios faster and faster or
give better solutions within the same time limit. However,
there is no silver bullet in the MAPF research community:
Even the latest algorithm does not perform the best in every
scenario (Okumura et al. 2022), and different hyperparam-
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eters are needed for the best performance in different sce-
narios. Due to the extremely large number of possible com-
binations between algorithms and hyperparameters, running
them all one by one or in parallel is very impractical. There-
fore, for real-world deployment, when there is a previously
known map with a strict time limit and solution quality re-
quirement, choosing the specific algorithm and specific hy-
perparameters is a very important task, and algorithm selec-
tion in MAPF has become a focus for all potential users in
both research and industry.

Researchers have already shown that machine-learning-
based algorithm selection can learn a way to efficiently pro-
pose the fastest algorithm in specific scenarios (Kaduri, Bo-
yarski, and Stern 2020). However, most previous works fo-
cused on only optimal algorithms with their speeds as the
sole algorithm selection criteria and did not consider the
emerging research on suboptimal algorithms. Since subopti-
mal algorithms do not need to find the optimal solution, their
solutions can be extensively more different from each other
than those of optimal algorithms, and considering both solu-
tion cost and runtime naturally make the selection problem
a bi-objective optimization problem. That is why studying
algorithm selection problem for suboptimal algorithms are
naturally more difficult than for optimal algorithms. In prac-
tice, users usually want to make sure that the cost of the so-
lution is not too bad or want to trade off between the runtime
of the algorithm and the cost of the solution. However, dif-
ferent users may have different tradeoff preferences, making
giving one algorithm-selection algorithm very hard.

In this paper, we address the algorithm-selection problem
for solvers for MAPF without the specific limit for focusing
on optimal algorithms only and without the specification that
is selecting algorithms between completely different algo-
rithms but also selecting between different hyperparameters
for a single algorithm. We formulate the problem as a pre-
diction problem and use image-based machine learning to
make the prediction. We propose multiple groups of objec-
tives where each objective can be a way to trade off the cost
and the runtime. We realize that there are large differences
between different objectives and different learning metrics.
So, unlike other works, we specifically propose a group of
different learning tasks for different metrics, instead of us-
ing the same training scheme and evaluating it on multiple
tasks. Based on a newly constructed dataset built on the stan-



dard MAPF benchmark (Stern et al. 2019), we use extensive
experiments to show that using the same loss function all
the time, which is what the prior works on algorithm selec-
tion for optimal MAPF did, can make the model perform
bad for specific objectives in algorithm selection for subop-
timal MAPF. We also show how different machine learning
models can make a difference in the algorithm selection per-
formance. We further use an ablation study to identify how
different features should be treated differently during the
rescaling period. We also discuss how to choose the neural
network used in the algorithm selection problem for MAPF
that is fast, easy to train, and performs well.

The main contributions of this paper are:
1. We are the first to study the algorithm selection problem

that considers both runtime and solution costs in subop-
timal MAPF algorithms.

2. We are the first to propose and verify that different ways
of training should be used for different metrics with dif-
ferent objectives in algorithm selection for MAPF.

3. We are the first to evaluate many modern computer vision
models for algorithm selection for MAPF and the first to
show that feature-sensitive pre-processing in the phase of
machine learning is important.

4. We are the first to address the problem of hyperparameter
selection in MAPF.

Related Work
The multi-agent path finding (MAPF) problem is the prob-
lem of finding a set of conflict-free paths for a set of agents
in a known environment while minimizing their travel times.
Specifically, in this paper, we consider exactly the same
problem as (Stern et al. 2019; Li et al. 2022), which is a
four-connected grid map, where each agent is given a start
cell and a goal cell. A scenario is defined as the combi-
nation of the description of the map, which is the size of
the map and which cells have obstacles, the start cells, and
the goal cells of each agent. At each timestep, an agent can
move to an adjacent cell or stay in its current cell. A con-
flict happens if two agents result in the same cell at the same
timestep. Each agent remains at its goal cell after it arrives
until every agent arrives at their goals. The quality of one
solution is the total sum of travel times of each agent, which
is also known as the sum of costs in the MAPF community.
While there are a few works that directly generated solu-
tions from machine learning (Laurent et al. 2020), MAPF
is nowadays mainly solved with more classic methods like
heuristic search algorithms (Sharon et al. 2015), rule-based
algorithms (Han and Yu 2020), and reduction-based algo-
rithms (Surynek et al. 2016). There are mainly two groups of
algorithms, namely the optimal algorithms and the subopti-
mal algorithms. The optimal algorithms like Conflict-Based
Search (CBS) (Sharon et al. 2015) are guaranteed to gener-
ate a solution that is optimal but usually requires a long run-
time. Suboptimal algorithms usually generate good-quality
solutions faster but do not guarantee the founded solution
to be the best one. Within suboptimal algorithms, the al-
gorithms can be further classified into two groups, namely,
ones that still guarantee the solution quality to be within a

suboptimality bound like Explicit Estimation CBS (EECBS)
(Li et al. 2021) and ones that do not like Prioritized Planning
(PP) (Silver 2005), Parallel Push-and-Swap (PPS) (Sajid,
Luna, and Bekris 2012), and Priority Inheritance with Back-
tracking (PIBT+) (Okumura et al. 2022). In this paper, we
consider optimal algorithms and both types of suboptimal
algorithms as candidate algorithms.

Algorithm selection is the problem of selecting a specific
algorithm for a specific scenario (Smith-Miles 2008). It has
been successfully used in many optimization problems, in-
cluding satisfiability and traveling salesman problem (TSP)
(Kerschke et al. 2018; Xu et al. 2012). The rich studies in
those domains have built up a standard way of measuring
the performance of selected algorithms for their specific way
of usage. However, algorithm selection in MAPF is still at
an early stage, where most papers (Sigurdson et al. 2019;
Ren et al. 2021) just show that, with a specific technique,
the selection algorithm could be helpful in choosing a cor-
rect solver algorithm but lacked thorough performance met-
rics. (Sigurdson et al. 2019) is the first to introduce the algo-
rithm selection problem into MAPF. They proposed a modi-
fied version of AlexNet (Krizhevsky, Sutskever, and Hinton
2012) to make their prediction and showed that it is possible
to predict the fastest algorithm in MAPF. (Kaduri, Boyarski,
and Stern 2020) improved the results by using VGGNet (Si-
monyan and Zisserman 2015) and gradient boosted decision
tree with XGBoost (Chen and Guestrin 2016). (Ren et al.
2021) proposed MAPFAST, which added more features re-
lated to the shortest path between the start and goal loca-
tions of each agent. They also added two auxiliary output
channels into the loss function to help find the fastest algo-
rithm, and used an inception-based neural network (Szegedy
et al. 2015) to train the model. (Kaduri, Boyarski, and Stern
2021) empirically showed that different types of maps have
different preferences for different algorithms, and thus ver-
ified the usefulness of algorithm selection. Previous works
focused on either only the accuracy of finding the fastest or
only the coverage rate, which is how likely the chosen algo-
rithm can finish in a given time limit. Since both criteria are
only related to the runtime of the algorithms, in this paper,
we focus on not only optimal algorithms but also suboptimal
algorithms, and consider how to take both runtime and cost
into account at the same time. We also explore more modern
neural network architectures to verify if modern architecture
can help in prediction.

In this paper, we formulate the problem as an image-
based prediction problem, a popular topic in computer vi-
sion. Many works can be used to solve the problem. AlexNet
(Krizhevsky, Sutskever, and Hinton 2012) was the first
model that shows that deep learning can achieve success in
class prediction. VGGNet (Simonyan and Zisserman 2015)
was then proposed to show that using a small kernel size
can stably predict good results while keeping the total num-
ber of training parameters low. GoogLeNet (Szegedy et al.
2015) was proposed about the same time for the same pur-
pose but proposed an inception unit as their solution. ResNet
(He et al. 2016) proposed to use skip links between lay-
ers to solve the vanishing gradient problem, making very
deep architectures possible, and has become one of the most



commonly used models in computer vision. In recent years,
Transformer (Vaswani et al. 2017) has been more and more
popular in all machine learning research, including com-
puter vision. Vision Transformer (ViT) (Dosovitskiy et al.
2021) proposed to split the image into smaller blocks for
transformer to use, and is now a popular and successful
model in computer vision. In this paper, we choose to test
four of the aforementioned neural networks that are pop-
ular in computer vision and algorithm selection in MAPF
research.

Preliminary
Algorithm selection in MAPF is the problem of choosing a
suitable algorithm that is the best in a given scenario . Gener-
ally, algorithm selection includes both selecting completely
different algorithms and choosing the hyperparameter(s) of a
fixed algorithm. For clarity, we use the word solver to refer
to these different candidates, but we still call the problem
algorithm selection to be consistent with other papers that
solve the same problem. The input for the algorithm selec-
tion includes exactly the same information as a MAPF solver
knows without adding any information from each candidate
solver. The selection algorithm is then required to output the
best solver. Typically, machine-learning-based selection al-
gorithms first transform the scenario information to desired
formats and features they would like to use as input and then
use the learning model to output the answer directly. We fol-
low the same workflow in this paper.

Previous works on algorithm selection for MAPF mostly
consider optimal solvers only and thus set up runtime as the
only objective for choosing the solver. However, using a sin-
gle objective is not applicable to more general algorithms.
Although suboptimal solvers generally run faster than op-
timal solvers and can solve many scenarios that optimal
solvers cannot solve, they do not have any guarantees on
their solution qualities. Thus how to trade off between their
solution qualities and their runtimes has been a long focus
for potential users. In reality, people may have their own way
of judging how important some objectives are compared to
others. They might want to use a weighted sum to estimate
a score for the solver and want the best one, or they just
want to ensure the solution they get is not so bad in all ob-
jectives. These tasks are similar but different, and most pre-
vious research in algorithm selection (not limited to those
for MAPF) optimizes just accuracy after defining the score
(Heins et al. 2021). While that is acceptable for algorithm
selection for TSP and SAT because their specific way of ap-
plication does not care about runtime and cost at the same
time, we need to care about them at the same time in MAPF.

In this paper, we formulate our algorithm selection as a
standard image-based-input prediction problem solved by
computer vision techniques. It is remarkable that, in the
last decade, computer vision has earned a great improve-
ment with tens of thousands of papers every year. There
are many new neural network models created and evaluated
on standard datasets like ImageNet (Yang et al. 2020) and
CIFAR-10 (Krizhevsky and Hinton 2009), and many mod-
els have successfully been used in different applications like

autonomous driving, face recognition, and many novel ap-
plications. These successful applications, in turn, encourage
the investment and development of computer vision. Fur-
thermore, these models have successfully shown that with
specific data augmentation, raw image input without human-
involved complex pre-processing can be as good as using
more manually designed features. That is why we would like
to explore many modern computer vision models to see if
they can directly generate some good results. However, as
we will later show in the experiment section, we find that
there is no panacea to planning: Using the same model with
the same loss function does not work for all objectives.

Algorithm Selection for Suboptimal MAPF
Dataset
Because there is no standard dataset for algorithm selection
in MAPF right now, we first describe how we build our own
datasets before we describe our learning tasks.

Candidate Solvers In this paper, we build two separate
datasets for the purpose of doing standard algorithm selec-
tion between different algorithms, and for the purpose of do-
ing solver selection between different solvers that are from
the same algorithm.

For the standard algorithm selection part, we enumerate
some of the most commonly used MAPF solvers nowadays.
Our candidate algorithms are: CBS (Sharon et al. 2015),
EECBS (Li et al. 2021), PP (Silver 2005), PPS (Sajid, Luna,
and Bekris 2012), and PIBT+ (Okumura et al. 2022) . We
did not include some recent research like large neighborhood
search (LNS) (Li et al. 2021) which can use different MAPF
solvers as subsolvers. LNS-based solvers can solve any sce-
narios that are solvable by other solvers by using them as the
initial solver with just a small overhead and can solve more
scenarios when the later neighborhood search actually hap-
pens. So comparing them to more standard MAPF solvers is
generally not fair. Theoretically, LNS users can also use our
model to choose which algorithm they want to use as their
subsolvers.

For the hyperparameter selection, we want to select the
optimality bound for EECBS. The optimality gap w in
EECBS guarantees the solution found to be within w times
compared to an optimal solution, and more time will be
spent during the search almost for sure if a small and tight
bound is given. But a large w can also find near-optimal
or even optimal solutions in specific scenarios, so choos-
ing the optimality gap can make the runtime much faster
in those scenarios where giving a small value is not helpful
for EECBS to find a better solution. Specifically, we aim to
choose the optimality gap from w = 1.05, 1.1, 1.15, 1.2.

Features Features have long been known as a very impor-
tant factor in machine learning research related to MAPF.
Most previous works on algorithm selection for MAPF used
the scenario information without any pre-processing (Sig-
urdson et al. 2019; Kaduri, Boyarski, and Stern 2020). One
exception (Ren et al. 2021) considered only a given short-
est path without specifying a clear way to determine which
shortest path to use when an agent has multiple shortest



paths. It also over-compressed different kinds of information
into each channel, which can largely reduce the potential
performance. So, in this work, we use the image represen-
tation of the MAPF scenarios from the MAPF benchmark
and propose a new set of features, each one of which is a
separate channel fed into the model.

The features we used are listed here in order:

1. Whether this specific cell is an obstacle. This is always
the same in scenarios generated from the same map.

2. Whether this specific cell is a start cell. Different start
cells do not have any further differences.

3. Similar to start cells, an indicator of whether the specific
cell is a goal cell for any agent.

4. If everyone follows its shortest path selected by (Han and
Yu 2020) without considering any conflict, how many
times will the cell be visited.

5. Total number of conflicts on the cell between all pairs of
shortest paths from different agents.

6. Total number of conflicts on the cell between all pairs
of shortest paths and 1-suboptimal paths from different
agents that happens on the cell.

7. How many times will the cell be visited if every agent
tries every possible shortest path on its own without con-
sidering any conflict.

Here, we define a 1-suboptimal path as a path whose length
is the length of the shortest path plus 1. In this paper, we
make the input a rectangle image, and then we normalize all
the input features to 0 to 100 by dividing every channel with
the maximum value of all maps for a specific channel.

We realize that although cells with obstacles can never
be occupied or visited by any agents, treating those cells
with a value of 0 is not always helping the learning. So, we
change all obstacle cells to a value of 200 for the (4) and
(7) channels listed above, which is the heatmap that sums up
the shortest path from a given set. We choose to just change
these two channels both after some empirical results on a not
complete enumeration, and from the intuition, deep learning
models may want to learn the total density from the heatmap
so having an extra obstacle in the map should make the map
more crowded than make them less crowded, which should
be related to the average value of these two channels.

After defining the feature, we need to pre-process the data
to make the input fit into the same neural network so we do
not need to train separate models for different maps. While
previous works (Sigurdson et al. 2019) all use a default re-
size 1, which is also known as interpolation in many fields,
to make all image to be of the same size without even men-
tioning that in the paper, we realize that this is not always
the correct thing to do. Although we formulate our problem
as an image-based input problem like computer vision, this
resizing way works properly in computer vision because the
pictures have a good property of zooming invariance, i.e., a
hand is still a hand no matter how many times it is zoomed

1Researchers in MAPFAST (Ren et al. 2021) said they use
padding to formalize the input but in fact, they are not using it
according to their public code on Github.

Figure 1: The frequency of each algorithm being the best one
on a given map when w = 0.001 in Eq. 3. Different maps
have different numbers of total scenarios because different
maps are different in size and obstacles so the total capacity
is naturally different.

in or zoomed out. However, in MAPF, each agent can only
move one cell at one timestep, so zooming invariance is not
held. So using resize as the way to rescale images of differ-
ent sizes to the same sizes is not a proper way. So we give
another option for pre-processing the data, which is for each
given image, we make the original image in the center, and
pad the image to a fixed size of 384 × 384 with the number
we get from an obstacle. Specifically, the value padded is
not a fixed number in different channels because obstacles
are not necessarily getting the same value in different chan-
nels, and giving the padded part a different value compared
to obstacles will lead to some inconsistency.

Labels With all the candidate solvers, we run all solvers
on all maps in the MAPF benchmark (Stern et al. 2019). For
each solver, we enumerate different numbers of agents with
a step size of 10 agents until there are no more than 2 solvers
that can solve any larger scenario within the time limit of
2 minutes on the map. With all these generations together
with the features we have just defined, we get an algorithm
selection dataset of 89,940 data points and a hyperparameter
selection dataset of 53,691 data points. It is noteworthy that
the algorithm selection dataset is a much larger dataset com-
pared to any previously used dataset in (Kaduri, Boyarski,
and Stern 2020; Ren et al. 2021), and a reasonable size for
trying modern deep learning models that have millions of
parameters without immediately overfitting.

Optimization Objectives
Previous works on algorithm selection for MAPF typically
consider the runtime or success rate (at a fixed runtime
threshold) of an solver as the only objective and never take
solution quality into account. In this way, they can hopefully
always deliver a solution to the deployed scenario. However,
the actual solution quality can vary largely across differ-
ent solvers in different maps when we consider suboptimal
solvers. So we need to consider both runtime and cost (so-
lution quality) at the same time. While there are many ways



to do this, we use this section to give two intuitive ways of
defining the optimization objective.

We first normalize the time and the cost to a similar scale,
in a way that is independent of the set of candidate solvers.
Suppose the time limit is timelimit, and the sum of costs
for shortest paths for every single agent is costbound in the
scenario, the time and cost used in Eq. 3 are calculated by:

time′ =
time

timelimit
(1)

cost′ =
cost

costbound
, (2)

where time′ and cost′ are the actual values used in Eq. 3.
Furthermore, if in any scenario, a specific solver cannot be
finished in the time limit timelimit, the time used for cal-
culation is defined as 5 × timelimit, and the cost used for
calculation is 5× costmin, where costmin are the minimum
sum of costs in all success candidate solvers (i.e., all candi-
date solvers that find solutions within the time limit).

The first, and the most common way of doing so is to use
a weighted sum of different objectives as the score (Bischl
et al. 2016; Heins et al. 2021; Seiler et al. 2020). Specifically,
we calculate the following objective score:

score(a) = time′a + w ∗ cost′a, (3)

where w is the hyperparameter that users can control to rep-
resent their preference, and time′ and cost′ are the normal-
ized metrics we calculated above. Then we will want to find
the solver with the best score:

min
a

score(a) (4)

The second group of objectives is to choose a solver that
gives a solution within a given cost bound the fastest. Specif-
ically, we find the solver a so that:

min
a

timea

s.t. costa ≤ bound ∗ costmin, (5)

where costmin is still the minimum sum of costs in all suc-
cess candidate solvers. This group of objectives is useful in
the case that the users just need some guarantee on the solu-
tion quality, but as long as the solution is a relatively good
one the runtime becomes the only consideration.

With different objectives, we can have the same input but
different labels from one data point. In Fig. 1, we show the
frequency of different solvers being the best in different sce-
narios. We can see that while trading off the runtime and
cost at different weights, the best solvers are changing a lot.
We further provide the frequency plots of all unique tasks
in the appendix. We can find that the single best solver that
solves most cases is changing while we change the weight
and the tasks. It is also different between maps in how large
the difference between single best solvers and other solvers
is even if the single best solvers are the same.

Figure 2: Performance of Algorithm Selection Models in
terms of accuracy (higher is better) and VBS-SBS gap
(lower is better). Blue points are actual samples we collected
in different models. The green dotted line is an imagined
line of how the model can be better given the known optimal
point (1,0) marked as orange circle.

Metrics for Learning
After defining the optimization objectives, we briefly talk
about the two metrics we use in this paper.

The first metric is the standard accuracy, which is used
both in popular machine learning research, and in earlier pa-
pers in algorithm selection for MAPF (Ren et al. 2021).

Accuracy is normally a good metric in ML, but it only
takes right or wrong into account, not how wrong the model
is. On the other hand, if we really want to use an algorithm
selector, we definitely want to know how bad the wrong
choices can lead to as long as the selector is not perfect.
So the second group of objectives is a well-known metric
in algorithm selection, the VBS-SBS gap (Xu et al. 2012).
Given a pre-calculated virtual best solver (VBS) that always
outputs the best solver and a single best solver (SBS) that
is the posterior best possible solver that always outputs the
same solver, the gap for the current solver a is calculated by:

gap(a) =
score(a)− score(V BS)

score(SBS)− score(V BS)
, (6)

where score is the average score function over all data
points, which can be the score function we defined in Eq. 3,
or just runtime if we use the second optimization objective.
This objective is commonly known as a metric for a predic-
tion model, with 0 as the theoretical best and 1 as the same
performance as the prediction model that always outputs the
single best solver. A good model should have a gap smaller
than 1, and the smaller the gap is, the better the model is.

Although there are some people already working with this
metric, this metric does not get better in the same direction
with accuracy. Intuitionally, if a user chooses to optimize ac-
curacy, the model can easily converge to a group of weights
that mostly choose the common scenarios. However, that re-
sult can also be the worst one when it is wrong, thus leading
to bad results in any metrics that give a penalty for outputting
a wrong answer depending on how wrong the answer is. As
shown in Fig. 2, a large accuracy does not guarantee a small
VBS-SBS gap, and, in most parts where a model can reach
nowadays, a small gap requires a drop in accuracy. So we
believe the previous workflow of training a model and then
evaluating it with both metrics is not the proper way.



Learning Tasks
There are typically three ways to do algorithm selection:

1. Classification: The most standard way is to treat the prob-
lem as a classification problem. The model predicts the
probability of choosing each solver and is trained with
typical classification loss. For inference, the solver with
the largest probability is selected.

2. Regression on Expected Score: This method still pre-
dicts the probability of each candidate being the best,
but it now uses a regression-based loss instead of a
classification-based loss during training. Every time, the
probability got from the output is used to calculate the
expected score by using the model following the prob-
ability, and the loss is a function related to how much
difference this score is compared to the VBS.

3. Regression on Score Prediction: Instead of giving the
probability of choosing each solver, models can be
trained to predict the score of a given solver, and every
time for inference, it predicts the expected score for ev-
ery model and choose the model with the best score.

In this paper, based on the time and actual tasks we have,
we only use the first two ways of doing algorithm selection
to build our learning task, specifically, classification and re-
gression for the expected scores. We choose to use two vari-
ants of classification and one way of regression.

The first variant of classification is the most popular ver-
sion, which is to use a cross-entropy loss for the classifica-
tion problem. We call this method CE (cross-entropy).

The second variant of classification is by simply changing
the cross-entropy loss to a binary cross-entropy loss, which
we call BCE (binary cross-entropy).

The third way of learning is the regression on the expected
scores we described above. With the possibility get from the
model, we calculate the expected score and compute Huber
loss (Huber 1992) between our expected score and the score
of VBS. We call this learning way Reg (Regression).

A learning task is the combination of optimization objec-
tives and a specific learning way. We use Score-w-y to re-
fer to the optimization task in Eq. 4, where w is w from
Eq. 4 and y is the learning way to create a learning task.
We use Bound-b-y to refer to tasks optimizing as Eq. 5,
where b is the value of bound in the equation. For exam-
ple, Score-0.001-CE is the task that we set w = 0.001 in
Eq. 3 for score definition, and we use cross entropy to do
the training. Bound-1.1-BCE means the optimization tasks
with bound = 1.1 in Eq. 5, and optimized by the binary
cross-entropy loss.

Experiment
Experiment Settings
In this paper, we develop our machine learning model based
on 4 different computer vision models: VGG16 (VGGNet)
(Simonyan and Zisserman 2015), ViT-Tiny (ViT) (Dosovit-
skiy et al. 2021; Wightman 2019), MAPFAST (Ren et al.
2021), ResNet-18 (He et al. 2016), based on the standard
Timm library (Wightman 2019). Surprisingly, we found that
the auxiliary tasks used in MAPFAST are not helping the

result for any tasks in our dataset, so all numbers of MAP-
FAST are from models trained with only the first output
channel that directly outputs the probability of each solver,
and optimized as a standard classification problem. Remark
that, unlike previous papers, we do not train any results on
decision trees because previous papers have already shown
that neural networks can be better than decision tree models
in most cases. It needs to be addressed that ViT is very differ-
ent from any other model because it is not a convolutional
neural network. We hope that ViT can perform differently
because it does not have the limit of the small kernel size,
nor the shifted invariance property that CNN generally has.

While we primarily set our baseline as getting a better
number than SBS, our SBS is selected separately for accu-
racy (SBSAcc) and VBS-SBS gap (SBSGap). From intuition,
SBSAcc is the solver that is the most common in Fig. 1, while
SBSGap is the one that can solve the most instance, therefore
it does not get any large failing penalty. Because of the dom-
inance of each solver in our setting, the SBS for the entire
dataset is the same as the SBS per grid or per map type.

For every model, we use some data augmentation methods
to prevent the model from overfitting, which include random
flip, random rotation, and random erasing with a probability
of 0.5. We decide to use resize only in the 4th to the 6th
channels of the feature and padding in other channels be-
cause they are empirically the best as we will later show in
Sec. .

The running results of all MAPF solvers are collected on
the same AWS EC2 m4 server, while the training and test-
ing of all machine learning models are conducted on a xeon-
6130 server with a single NVIDIA-V100 and 184GB RAM.
All parameters are selected by grid-search, and the full hy-
perparameter table is provided in the appendix.

Results on Different Models
We show our results in Table. 1. Each horizontal block
shows one group of tasks that have similar optimization
objectives, but with different ways of creating the learning
tasks metrics by different learning metrics. From the table,
we can know that there is no learning task that can be good in
both accuracy and VBS-gap. Regression is the most promis-
ing way to build a learning task when using the VBS-SBS
metrics, while CE and BCE are better when using the accu-
racy metrics.

In all groups of tasks, there are always some learning tasks
with some machine learning models that get a VBS-SBS gap
smaller than 1, and better accuracy compared to SBS. This
means that algorithm selection in suboptimal solvers and hy-
perparameter selection between different solvers from the
same algorithm are both doable.

Compared between different neural networks, ViT per-
forms the best in most VBS-SBS gap metrics and some of
the accuracy metrics. Other models have their own advan-
tage and disadvantage in different learning tasks, and no
model has won the majority of tasks that is not won by ViT.

Ablation Study on Feature Rescale Method
In earlier papers using computer vision based models
(Kaduri, Boyarski, and Stern 2020; Sigurdson et al. 2019;



MAPFASTcl ViT VGGNet ResNet SBSAcc SBSGap
Dataset Task Acc Gap Acc Gap Acc Gap Acc Gap Acc Gap

Score-0.001-CE 0.81 21.07 0.81 19.03 0.84 20.49 0.91 2.60 0.80 1
Score-0.001-BCE 0.85 4.48 0.83 18.67 0.85 22.37 0.86 50.94 0.80 1
Score-0.001-Reg 0.80 0.89 0.79 0.87 0.80 1.00 0.80 0.94 0.80 1

Score-0.1-CE 0.61 16.73 0.61 14.83 0.69 12.90 0.61 1.11 0.57 1
Score-0.1-BCE 0.65 10.74 0.62 14.79 0.67 9.20 0.56 2.55 0.57 1
Score-0.1-Reg 0.57 0.75 0.57 0.71 0.57 1.00 0.57 1.00 0.57 1

Standard Score-1-CE 0.62 1.82 0.69 1.95 0.66 2.09 0.60 3.52 0.62 1
Score-1-BCE 0.57 4.42 0.68 1.89 0.64 1.96 0.62 2.53 0.62 1
Score-1-Reg 0.56 0.71 0.30 0.92 0.26 1.00 0.47 0.75 0.62 1

Bound-1.1-CE 0.56 2.99 0.65 2.66 0.69 2.81 0.61 4.24 0.51 1
Bound-1.2-CE 0.72 1.64 0.74 2.07 0.73 4.59 0.58 2.20 0.51 1

Score-0.001-CE 0.70 1.11 0.71 1.12 0.70 0.97 0.69 1.00 0.69 1
EECBS Score-0.001-BCE 0.69 1.05 0.69 1.00 0.70 0.93 0.69 1.00 0.69 1

Score-0.001-Reg 0.69 1.00 0.69 1.00 0.69 1.00 0.69 0.93 0.69 1

Table 1: The accuracy (Acc) and VBS-SBS gap (Gap) results for different models and different learning tasks in terms of
accuracy and VBS-SBS gap. The names of the tasks are shown in the Task column, following the naming described in the
experiment setting section. The best results for each metric on the same optimization objectives are marked with bold (Bound
tasks do not have bold in Gap metrics because in bound tasks accuracy is normally the primary focus).

Padding(p), Resize(r) Gap Acc
ppp pppp 1.000 0.262
ppp prrp 1.100 0.298
ppp rppp 1.000 0.262
ppp rrrp 0.911 0.307
ppp rrrr 1.265 0.305
rrr rrrp 1.118 0.297
rrr rrrr 0.945 0.279

Table 2: Part of results on different rescale method on dif-
ferent features. ’p’ denote using padding, while ’r’ denote
using the default resize in the corresponding channel of fea-
tures, in the order used in Sec. . The table is generated with
results trained with ViT on Score-1-Reg task. Full table can
be found in the appendix.

Ren et al. 2021), researchers are always using interpolation
resize (known as resize in ML libraries like Pytorch (Paszke
et al. 2019)) to make the images to a fixed size of 227×227.
However, resizing the pictures by interpolating the values on
every pixel from the original input is losing many underly-
ing assumptions in planning. For example, one of the most
important ones is that we can only move one cell at a time,
so a cell of 1 × 1 in a 10 × 10 map is very different from
a group of cells of 10 × 10 in a 100 × 100 map. So in this
part, we further examine how the performance of a model
will be if we change only one channel from interpolation to
padding.

Because enumerating all possible combinations of
padding and resizing in different channels needs 27 = 128
experiments, which is too large for us to test them all, we
assume that channels that have similar meanings should
be treated the same, and thus we can change the rescaling
method in groups. We show the results of different settings
of interpolation (resize) and padding in Table. 2. We found
that choosing to use which rescaling method can make a dif-
ferent, and change one channel to another is not independent
with what other channels currently are. In our setting, we

Figure 3: Comparison for VBS-SBS gap of different neural
networks for Score-0.001-Reg task regards numbers of pa-
rameters.

found that the best rescaling method is to use padding in the
first three channels that describe the MAPF instance as start
locations, goal locations and obstacles, and the last channels
that is the heatmap provide the sum of all possible shortest
path. All other channels should use resize. While we do find
this really helpful in our experiment, we encourage later user
to double check is the same hold in their dataset given that
the advantage is not very significant in our experiment.

Discussion on Choosing a Neural Network for
Algorithm Selection
While we have found that ViT is the neural network that
wins the most time in the experiment section, it is also inter-
esting to see how results change according to the number of
parameters it has, which affect both the training time and the
inference time. We conclude our findings in Fig. 3. We can
find that while we have used the smallest variants of each
group of neural networks, ViT is the one that not only has
a small number of parameters but also has a good perfor-
mance. Other modern models can also be successful in tasks
while small in the number of parameters, and VGGNet is the
only one that is both slow and performing badly.



Conclusion
In this paper, we study algorithm selection for subopti-
mal MAPF solvers. We formulate algorithm selection as
a prediction problem with multiple potential formulations
to trade off between runtime and solution cost differently.
Deep learning models are trained with many combinations
of optimization objectives and loss functions to make pre-
dictions. We observed that utilizing changing a combina-
tion can greatly enhance performance when training for spe-
cific metrics, particularly when training working with mod-
ern learning models. We show that different ways of rescal-
ing can benefit different features, and discuss how to choose
neural networks for algorithm selection. In addition, we
show that hyperparameter selection can be successfully done
with the same framework.

References
Bischl, B.; Kerschke, P.; Kotthoff, L.; Lindauer, M.; Mal-
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